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based on the simulation and modeling of networks with do- 
main dependent as well as domain independent characteristics. 
Furthermore, these models help us understand the underlying 
processes and structural changes taking place in many diverse 
real world networks. 

    An important characteristic of these networks is the pres- 
ence of community structures. Networks in general and social 
networks in particular highly depend on a society based 
structure where groups of people are very well connected 
to each other and sparsely connected to people from other 
groups [7]. This phenomena has been observed in networks 
from many different domains such as computer networks [8], 
biological networks [9] and maritime transportation networks 
[10]. A number of network studies depend on the underlying 
community structure present in a network [11]. For example, 
[12] studied communities of scientists and the role of infor- 
mation diffusion in the creation of knowledge. [13] studies the 
effects of communities on the immunity coverage required to 
prevent disease epidemics in societies. Tunable methods that 
can generate networks with desired network characteristics and 
the presence of communities can be very useful in such studies 
as they can provide a benchmark for empirical evaluation. 
Researchers [14], [15] have proposed different models to 
generate networks with community structures in an attempt 
to generate networks which are topologically similar to real 
world networks. 

    An important feature often overlooked by different net- 
work generation models with community structures is the 
topological structure of a community itself. Usually models 
propose increased intra-community links and reduced inter- 
community links but the connectivity within a community is 
ill defined or follow only power-law degree distribution. The 
major contribution of the model is that we maintain three 
important topological characteristics within each community: 

• 

• 

• 

The degree distribution of nodes follows a power-law. 

The clustering coefficient is high. 

Each community can be further divided into sub- 
communities, i.e. there are hierarchical communities 

    Abstract—Recent years have seen a growing interest in the 
modeling and simulation of social networks to understand several 
social phenomena. Two important classes of networks, small 
world and scale free networks have gained a lot of research 
interest. Another important characteristic of social networks is 
the presence of community structures. Many social processes 
such as information diffusion and disease epidemics depend on 
the presence of community structures making it an important 
property for network generation models to be incorporated. 

    In this paper, we present a tunable and growing network 
generation model with small world and scale free properties as 
well as the presence of community structures. The major contri- 
bution of this model is that the communities thus created satisfy 
three important structural properties: connectivity within each 
community follows power-law, communities have high clustering 
coefficient and hierarchical community structures are present in 
the networks generated using the proposed model. Furthermore, 
the model is highly robust and capable of producing networks 
with a number of different topological characteristics varying 
clustering coefficient and inter-cluster edges. Our simulation 
results show that the model produces small world and scale free 
networks along with the presence of communities depicting real 
world societies and social networks. 

I. I NTRODUCTION 

    Traditionally graph and network studies were made using 
regular and random graphs [1] until the late 1990’s when 
two ground breaking discoveries were made about real world 
networks. The presence of low average path lengths and high 
clustering coefficients lead to the discovery of small world 
networks [2] and the study of degree distribution following 
power-law lead to the discovery of scale free networks [3]. 
These topological characteristics are commonly present in 
many real world networks such as social networks [4], bio- 
logical networks [5] and information networks [6]. 

    The discovery of small world and scale free properties have 
catalysed the research in the area of developing new graph and 
network generation models as networks with these properties 
appear readily across different and contrasting domains. This 
research area presents interesting challenges and new horizons 
for researchers to develop theories, models and algorithms 



in the network 

    Each of the above characteristics has associated social se- 
mantics. Consider a co-authorship network where researchers 
collaborate to author manuscripts. Each research group rep- 
resents a community as members regularly collaborate to 
increase intra-cluster edges which in turn results in high 
clustering coefficient. Subsequently, this research group also 
belongs to the community of researchers working in the same 
area across different research labs and different countries. 
These researchers collaborate less frequently but have still 
more edges when compared with research groups working in 
different domains. This creates a hierarchical community struc- 
ture in the co-author network as argued by other researchers as 
well [16]. Each research group is usually headed by a senior 
professor with research publications, which means that a senior 
professor will have a high number of co-authors. Structurally 
this implies that the senior professor will have many edges 
connecting it to many authors. Usually each research group 
has a few senior researchers with high publication profile 
and the rest of the team comprises of researchers with low 
publications. These researchers are often associated with the 
senior professors while authoring an article justifying that 
every community demonstrates scale invariance power-law. 
Similarly the group dynamics and synergy is reflected by 
the people within a research group collaborating to author 
manuscripts. This results in a high number of triad formation 
which in turn results in high clustering coefficient for members 
of a research groups depicting a community. 

    The contribution of this paper is that we propose a new 
network generation model. The proposed model is inspired 
by [17] to generate networks with small world and scale free 
properties where we modify it to introduce community struc- 
tures. The model caters the three described features present in 
community structures which is fundamental to many real world 
networks and specially in the case of social networks. Param- 
eters to control inter-cluster connectivity and triad formation 
gives us more flexibility over the generation process and thus 
enables us to generate networks with desired properties. The 
networks produced using the proposed algorithm also exhibit 
small world and scale free properties. The model is tunable and 
robust as it can be used to generate a variety of networks by 
varying different parameters such as only scale free networks 
with community structures and networks with varying inter- 
cluster edges. 

    The rest of the paper is structured as follows: In the next 
section, we review the literature related to network generation 
models. Section III describes the proposed model whereas sec- 
tion IV analyses and explains the use of different parameters to 
generate networks with varying structural properties. Section V 
presents the results of the evaluation of the networks generated 
using the proposed model satisfying the small world and scale 
free properties with clear community structures. Finally we 
conclude in section VI giving future research directions. 

A. Models for Random, Small World and Scale Free Networks 

    Earlier studies related to network models were focussed 
on generating random graph. Most notable work of all is the 
graph generation model by [1]. Molloy and Reed [18] proposed 
a model to generate graphs with desired degree distribution. 
Watts and Strogatz proposed the famous model to generate 
small world networks [2] where the algorithm starts with a 
regular graph and random rewiring of edges based on some 
probability results in a small world graph with small average 
path length and high clustering coefficient. Albert and Barabasi 
introduced another important model [3] based on preferential 
attachment to generate scale free networks. 

    Since the discovery of small world and scale free networks, 
a number of network models have been proposed to generate 
networks with these two properties. Most of these models are 
variants of the two basic models [2], [3] discussed above. For 
example Holme and Kim [17] introduce a triad formation step 
after the preferential attachment step in [3] which creates triads 
in the network increasing the overall clustering coefficient. 
Other variants such as [5], [19]–[24] produce networks by 
introducing triads one way or the other and nodes connect 
using the preferential attachment rule to have a scale free 
degree distribution. 

    Another approach for generating small world and scale 
free networks is the use of n-partite structure. Newman et al. 
[25] study a network generation model with arbitrary degree 
distribution. The goal is to generate affiliation networks similar 
(such as co-authorship network [6]) using random bipartite 
graphs. Guillaume and Latapy [26] also used a similar idea 
as they identify bipartite graphs as an underlying structure for 
networks with small world and scale free properties. Bu et al. 
[27] used a n-partite structure, which is simply a generalization 
of the earlier proposed models. Good references on network 
generation models can be found in [28]–[30]. 

B. Models for Networks with Community Structures 

    Li and Chen [31] introduced a model for weighted evolving 
networks with community structures. The model incorporated 
three types of power-law distributions, first on the node degree, 
second on link weights and third on node strengths along 
with the presence of clear communities. The model does not 
produce networks with high clustering coefficient as nodes 
within a community do not follow triadic closure property. 

    Xie et al. [32] proposed a community-based evolving 
network model where they focus on the cumulative distribution 
of community sizes which also follows power-law in real 
world networks. As a result, when new connections between 
communities are added, or a new node to an existing com- 
munity is added, communities with larger sizes are selected 
preferentially. 

    Zhou et al. [33] identify two important topological char- 
acteristics, first, intra-cluster connections are very dense as 
compared to inter-cluster connections and second, size of 
communities often follows a power-law just as [32] proposed. 
Based on these characteristics, they propose a weighted grow- 
ing model with power-law distributions of community sizes, 
node strengths, and link weights. 

II. R ELATED W ORK 

We divide the literature review into two logical subsections. 



    Kumpula et al. [34] utilize the concepts of cyclic closure 
and focal closure from sociology to propose a model to 
generate a weighted network with communities. New links are 
created preferably through strong ties which make these links 
more stronger. The model also allows the removal of nodes to 
mimic real world scenarios where nodes may leave a network. 

    Xu et al. [35] introduce a model with communities 
that gives a realistic description of local events using three 
processes, adding new intra-community nodes, new intra- 
community links or new inter-community links. The model 
uses preferential attachment mechanism resulting in power law 
degree distribution but since the intra-community links only 
connect on the basis of node degree, the network lacks triads, 
producing networks with low clustering coefficients. 

    Lancichinetti and Fortunato [15] propose an algorithm 
to generate benchmarks to test clustering algorithms for di- 
rected/undirected and weighted/unweighted graphs with op- 
tional overlapping communities. This algoritm produces net- 
works following power-law distribution for node degree as well 
as community sizes. They do not address the internal structure 
of each community as we do in this paper. 

    Badham and Stocker [29] propose a spatially constructed 
algorithm to generate networks with tunable degree distribu- 
tion, clustering coefficient and assortativity with the objective 
that such models should be flexible to generate networks with 
varying values of these properties giving more control over 
the generation process. They do not explicitly include the 
generation of community structures in their model. 

    Ren et al. [36] study the connecting patterns among 
existing papers in co-authorship networks and highlight that 
existing models cannot correctly model high clustering in such 
networks. Their proposed model can generate networks with 
power-law degree distribution, high clustering coefficient and 
the size distribution of co-citation clusters as observed in co- 
authorship networks. 

    Moriano and Finke [37] also propose a model with small 
world and scale free properties along with groups of nodes 
densely connected to each other and sparsely connected with 
other nodes. The model helps to explain networks with ex- 
tended power law degree distributions and clustering coeffi- 
cient that does not diminish as the size of the network grows 
very large. The connectivity of new nodes probabilistically 
chooses nodes of same type or different type to form com- 
munity structures. 

    Zaidi [30] proposed a model to generate clustered small 
world networks. The author first demonstrates that small world 
networks can be produced from completely random graphs 
by introducing a little order in them, which is a contrasting 
approach to the famous model of [2]. The further extends 
this model to generate clustered networks with small world 
properties where communities connect randomly to other com- 
munities. The model does not generate scale free networks. 

    Zaidi et al. [38] also proposed a static network generation 
model with community structures i.e nodes added at the start 
remain the same throughout the algorithm and only edges are 
rewired to create communities. The model is probabilistic and 
increases the edge connectivity among nodes closer to each 
other and reduces edges among nodes far apart in the network. 

Fig. 1. Steps of the proposed model. (1) Step 1 with c=3 triads where every 
triad is connected to every other triad. (2) Step 2, A new node n1 is added 
and forms a triad with probability Pt with a neighbor of n2 . (3) Step 4, A 
new node n3 is added and forms a triad with probability Pt with a neighbor 
of n4 . (4) Step 6, The communities of newly added nodes n1 and n3 which 
are selected on the basis of preferential attachment forms an inter-cluster edge 
with probability Pc . 

But the process is not a growing one, and it is not parametrized 
to generate desirable clustered network as compared to the 
model proposed in this study. Furthermore this model does 
not ensure the presence of the three structural properties for a 
community discussed in the introductory section of this paper. 

    All the different models for generating networks with 
community structures discussed above do not focus on the 
internal structure of communities just as we do in this paper. 
We focus on three structural properties present in our society 
and propose a model to simulate these properties. 

III. P ROPOSED M ODEL 

    The model takes as input the desired number of nodes in 
the network n, the number of edges for each newly added node 
m, the minimum number of communities c, the probability of 
triad formation Pt and probability Pc of having inter-cluster 
edges. The model starts with an empty network. Rest of the 
steps are explained below: 

1) Add c triads representing c communities in the net- 
work. Each node in a triad belongs to the community 
of the triad. Every community thus created is then 
connected to every other community. An edge is cre- 
ated between randomly selected nodes from different 



2) 

3) 

4) 

5) 

6) 

7) 

communities. This step generates a graph as shown 
in figure 1(1). 
Add a new node n1 and connect it to an existing 
node n2 which is selected on the basis of preferential 
attachment. Now n1 belongs to the community of n2 
as shown in figure 1(2). 
With probability Pt , either n1 connects to m − 1 
preferentially selected neighbors of n2 belonging to 
the same community as n2 forming a triad or n1 
connects to other nodes preferentially selected from 
the community of n2 (which might not necessarily be 
a neighbor of n2 ). Figure 1(2) shows that the newly 
added node connected to one of the neighbors of n2 . 
Add a new node n3 and connect it to an existing node 
n4 which is again selected on the basis of preferential 
attachment. Now n3 belongs to the community of 
n4 . We make sure that n3 does not belong to the 
community of the node added in the previous node- 
addition step to the network. Figure 1(3) shows this 
step. 
With probability Pt , either n3 connects to m − 1 
preferentially selected neighbors of n4 belonging to 
the same community as n4 forming a triad or n3 
connects to other nodes preferentially selected from 
the community of n4 ( which might not necessarily 
be a neighbor of n4 ), as shown in Figure 1(3). 
With probability Pc , add an edge between two pref- 
erentially selected nodes belonging to the two com- 
munities to which nodes were added in the previous 
steps, which is the communities of n2 and n4 as 
shown in figure 1(4). 
Repeat from step 4 until number of nodes in the 
network becomes n. 

IV. D ISCUSSION 

S.No 
Key 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Number 
of Nodes 

 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
 1000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 

Initial Number 
   of Triads 

10 
10 
10 
10 
10 
10 
10 
10 
20 
20 
20 
20 
20 
20 
20 
20 
10 
10 
10 
10 
10 
10 
10 
10 
20 
20 
20 
20 
20 
20 
20 
20 

 Probability of 
Triad Formation 

0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 
0.5 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
1.0 

   Probability of 
Inter-Cluster Edges 

0.01 
0.10 
 0.5 
 1.0 
0.01 
0.10 
 0.5 
 1.0 
0.01 
0.10 
 0.5 
 1.0 
0.01 
0.10 
 0.5 
 1.0 
0.01 
0.10 
 0.5 
 1.0 
0.01 
0.10 
 0.5 
 1.0 
0.01 
0.10 
 0.5 
 1.0 
0.01 
0.10 
 0.5 
 1.0 

 TABLE I.T HE TABLE SHOWS THE 24 DIFFERENT COMBINATIONS 
POSSIBLE FOR 4 PARAMETERS AND DIFFERENT POSSIBLE VALUES . T HE 
SERIAL NUMBER WILL BE USED AS A KEY TO IDENTIFY NETWORKS AND 
                    THEIR PARAMETERS USED . 

   As described above, the model uses five parameters, 
n, m, c, Pt , Pc . The parameter n defines the number of nodes 
desired in the final network and m defines the number of 
connections each newly added node will have in the network 
(except for the nodes added in the initial triads in step 1). 

    Preferential Attachment for individual nodes: The prob- 
ability of a new node preferentially selecting an existing node 
ni from the set of current vertices V is a function of the degree 
of node ni which can be calculated using: 

P (nk ) = 
degree(nk ) 
             , ∀j ∈ V 
 degree(nj ) 

This ensures that communities of different sizes evolve in 
the network where the degree distribution of community sizes 
follow scale free behavior. This is because new nodes select a 
node to attach based on its degree, which in turn implies that 
a community is selected based on preferential attachment of 
nodes present in a community as shown in the above equation. 

    Minimum Number of Communities c: This parame- 
ter controls the minimum number of communities we want 
to generate in the network. Further Communities and sub- 
communities form as order emerges from the connectivity of 
new nodes entering the network probabilistically. As the num- 
ber of nodes increases, sub-communities increase depicting 
the natural evolution process of communities in real world 
networks. A simple variation for this parameter would be to 
use the value 1 signifying only 1 community, along with the 
triad formation step using Pt , the behavoir of the network 
would be the same as the model proposed by [17]. Small 
sub-communities will still form in this network but they will 
not be clearly separable. Another important variation would 
be if we use c = 1, m = 1 and Pt = 0 i.e. eliminating the 
triad formation step, the model generates random scale free 
networks similar to [3]. 

    Probability of Triad Formation Pt : This parameter con- 
trols the presence of triads in the network. The triad formation 
step is performed with a probability Pt , or a preferential 
attachment step is performed with probability 1 − Pt instead 
of triad formation step. Both the triad formation step or 
preferential attachment step, the new node is only connected 
to nodes from the same community. A value of Pt = 0 means 

    This ensures that the nodes are selected based on prefer- 
ential attachment. 

    Preferential Attachment for each community: The prob- 
ability that a new node selects a community ck to attach can 
be estimated as: 

P (ck ) = 
degree(ni ) 
            , ∀i ∈ ck , ∀j ∈ V 
degree(nj ) 

   As the network grows, the community sizes vary as a 
function of the high degree nodes present in that community. 



Fig. 3. Values of Modularity (Q)-Blue Bar and Relative Density (RD)-Maroon 
Bar, obtained after running a clustering algorithm on the generated networks. 
High values suggest the presence of community structures in the generated 
network. 

Pc = {0.01, 0.1, 0.5, 1.0} which makes 32 different combi- 
nations. We used m = {2} for all performed experiments 
which means that every new node entering the network has 
degree 2 to start with, which increases probablistically as other 
new nodes select previously added nodes as their connections. 
Table I shows all these combinations and a key is assigned 
to each combination to uniquely identify a network and the 
parameters used to generate it. For each of these parameter 
values, we generated 5 networks each, and used the average of 
the metrics obtained as a result, eliminating potential outliers 
and exceptions that might bias the ultimate results as the 
algorithm is probabilistic in nature. 

    Figure 2 show the values of average path length, average 
clustering coefficient and power-law coefficient(alpha) for all 
the generated graphs. This is to demonstrate that our graphs 
are indeed small world and scale free networks. All the graphs 
have an average path length between 3 and 7. Path lengths 
of around 7 are observed in networks where we introduce 
inter-cluster edges with a probability of 0.01. This results 
in clearly separated communities with very little inter-cluster 
edges, which in turn results in increased distances among 
nodes from different clusters. For the clustering coefficient 
values, we used two parameter values, 0.5 where triads are 
formed only for 50% newly added nodes with m edges giving 
CC values in the range of 0.3 and 0.5, and the parameter 
value 1.0 where all nodes and edges added to the network 
belong to at least one triad which raises the CC around 0.65. 
Finally for the alpha value, since all our connectivity is based 
on preferential attachment, all the 32 generated networks have 
values between 2 and 3. 

    In order to show the presence of community structures 
in the generated networks, we used two well known metrics, 
Modularity (Q) [39] and Relative Density [40]. We clustered 
the generated graphs using the method proposed by Newman 
[41] which generates flat clusters. We calculated the Q and 
RD values which are shown in figure 3. Consistently high 
values clearly demonstrate the presence of community struc- 
tures present in the networks. As the inter-cluster edges are 
increased, both Q and RD values decrease implying that the 
control parameter Pc can be used to generate communities with 
low or high inter-cluster edges which subsequently affects the 
Q and RD values. 

Figure 4(a,c) are two sample networks (Network 5 and 

Fig. 2. Different metrics calculated for the 32 generated graphs showing 
that the graphs are indeed small world and scale free. (a)APL=Average Path 
Length (b) CC=Clustering Coefficient (c)) Alpha=Power-law coefficient. 

that in steps 3 and 5, triads are not formed, as a result of 
which the overall clustering coefficient remains quite low. The 
network thus generated is a random scale free network with 
communities. A value of Pt = 1 would mean that every node 
added to this network with m edges, forms triads for every 
edge making the overall clustering coefficient quite high as is 
the case for small world networks. 

    Probability of Inter-cluster Edges Pc : The inter-cluster 
density is controlled through this probability. A value of Pc = 
0 means that no further intra-cluster edges would be added 
to the network as described in step 6. This results in well 
separated communities with exactly two intra-cluster edges for 
each community which were added in step 1. These edges are 
added so that the final network obtained, remains a connected 
network. A value of Pc = 1 results in high inter-cluster edges 
making it difficult to distinguish communities structurally. 

   We demonstrate the effects of varying these parameters 
empirically in the next section as we generate numerous 
networks using the proposed model. 

V. E XPERIMENTATION AND R ESULTS 

   We tested the proposed model with the parameter values 
of n = {1000, 10000}, c = {10, 20}, Pt = {0.5, 1.0} and 



Fig. 5. The graph shows the values of power-law coefficient for the top 
10 communities in terms of size for the two networks shown in 4. All the 
values are consistently between 2 and 3 aprrox. Network 5 has parameters: 
n = 1000,c = 10,Pt = 1.0,Pc = 0.01 and Network 6 with parameters:n = 
1000,c = 10,Pt = 1.0,Pc = 0.1. 

Fig. 6. The graph shows the values of clustering coefficient for the top 10 
communities in terms of size for the two networks shown in 4. All the values 
are consistently above 5. Network 5 has parameters: n = 1000,c = 10,Pt = 
1.0,Pc = 0.01 and Network 6 with parameters:n = 1000,c = 10,Pt = 
1.0,Pc = 0.1. 

6 in Table I) generated from the proposed model. Both 
these networks show community structures with different color 
encodings for the top 10 communities in terms of size. More 
communities with smaller sizes are encoded with yellow color. 

    Figure 4(b) shows Network 5 where larger clusters contain 
clear separation and can be re-clustered to form hierarchical 
community structures. Some of these clusters are highlighted 
and can be visually compared with Figure 4(a). 

    To prove our claim that the communities thus produced 
follow power-law degree distribution with high clustering 
coefficient, we plotted the power-law coefficient and clustering 
coefficient of the top ten communities in terms of node-size 
for the two graphs presented in figure 4. Figure 5 shows the 
power-law coefficient which lies in the range [2,3] clearly 
showing that the communities thus produced follow scale free 
behavior. Similarly figure 6 shows high clustering coefficient 
values for the biggest communities in networks 5 and 6 re- 
affirming that formation of triads ensures that communities 
have a large number of triads. 

    Finally to show the scalability of the proposed model, 
we plot the execution times for the generation of different 
size networks in Table II. The proposed model has been 
implemented using Tulip graph library1 [42]. The running 

1 The 

Fig. 4. Figure shows the graphical representation of the networks generated 
using the proposed model. (a) Network 5 with clearly seperated communities. 
The top 10 communities in terms of size are uniquely colored and smaller 
communities are colored in yellow. (b)Network 5 with smaller communities 
outlined within larger communities. (c) Network 6 with more inter-cluster 
edges and less seperation between communities. 

source code of the model can be requested from the first author through 
email. 



S.No 
1 
2 
3 
4 

Nodes 
 1000 
 10000 
100000 
1000000 

Time in Seconds 
below 1 
   2 
  224 
 21966 

[6] 

[7] 

TABLE II.             T HE TABLE SHOWS THE RUNNING TIMES IN SECONDS FOR 
GENERATING DIFFERENT SIZE NETWORKS USING THE PROPOSED MODEL . 

[8] 

[9] 
times given in the table are on a standard intel core i5 machine 
with 4Gb Ram. 

    In terms of complexity of the proposed algorithm, the most 
complex task is the calculation of probability for a new node 
entering the network based on preferential attachment. This 
task, in the worst case requires n ∗ nclarge steps where n is 
the desired number of nodes in the network and nclarge is the 
number of nodes in the largest community. The preferential 
attachment probability for every node added to the network 
is calculated in the worst case, with every other node in the 
largest community. If a network is generated with only a single 
community, nclarge becomes n and the complexity of the 
entire algorithm would then become O(n2 ). For a network 
where the community sizes are sparsely distributed, as is the 
case with many real world networks, this complexity becomes 
O(n ∗ nclarge ) with nclarge << n. 

VI. C ONCLUSION 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

    In this paper, we have introduced a new tunable and 
growing network generation model which incorporates the well 
known small world and scale free properties as well as the 
presence of community structures. The model incorporates 
three important features of community structures from our 
society. First, the node degree distribution within a community 
follows power-law behavior, second, the clustering coefficient 
within communities is high and finally there is a hierarchical 
community structure within communities. The model is very 
flexible and robust and can be used to generate a variety of 
networks as per requirements. These characteristics can be 
very useful for generating benchmark and test datasets for 
empirical studies. Although the model is flexible, but it does 
not include domain dependent knowledge and cannot be used 
to generated networks with structural properties other than 
community structures, small world, scale free and random. 
This work can clearly be extended to generate networks for 
particular domains such as biological networks, computer 
networks. Further more, the current model does not simulate 
the dynamic changes like removal of previously added nodes or 
edges, changing previously added edges which are important 
characteristics for the recently studied social networks. We 
intend to extend this study towards this direction as well. 
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