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Received: date / Accepted: date

Abstract Recent interest in complex systems and specially social networks has catalyzed

the development of numerous models to help understand these networks. A number of mod-

els have been proposed recently where they are either variants of the small-world model, the

preferential attachment model or both. Three fundamental properties attributed to identify

these complex networks are high clustering coefficient, small average path length and the

vertex connectivity following power-law distribution. Different models have been presented

to generate networks having all these properties.

In this paper, we focus on social networks and another important characteristic of these

networks, which is the presence of Community Structures. Often misinterpret with the met-

ric called clustering coefficient, we first show that the presence of Community Structures

is indeed different from having high clustering coefficient. We then define a new network

generation model which exhibits all the fundamental properties of complex networks along

with the presence of Community Structures.

Keywords Social Networks · Communities · Small World Networks · Scale Free Networks ·

Network Generation Models

1 Introduction

Most real world systems can be modeled as graphs where different fields of study use ex-

tensively the node-link representation to represent information. Wide use of this represen-

tation has been witnessed in Social Networks [42]. A social network can be defined as a
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set of people, or groups of people interacting with each other [36,42]. These interactions

can be classified into several types like friendship or business relationship. Although many

examples have been studied for social networks, two classic examples that have attracted

extensive attention in the computer science community and the social network community

at large, are the Actor collaboration network from Internet Movie database (IMDB) and the

Science collaboration network.

Social network modeling and analysis allows us to understand the different types of

relationships that can either facilitate or impede knowledge creation and transfer in a society

on the whole, in an organization in particular, and in individuals, providing an insight on the

underlying patterns and the social structures present in these networks [35,9].

The study of networks in general, and of social networks in particular, was revived by

the pioneering work of Watts and Strogatz [43] on the properties of small world networks.

Equally important was the work from Barabasi and Albert on the growth of networks and

the property of scale free degree distribution [4]. Although random graphs had been studied

extensively in the past [30], most of the real world networks have the properties of small

world and scale free networks.

A small world network as defined by Watts and Strogatz [43], is a network when com-

pared with a random graph of same node-edge density, has higher clustering coefficient and

the typical distance between any two nodes scales as the logarithm of the number of nodes.

The two structural properties used to define a small world network are, the average path

length and the clustering coefficient. The most popular manifestation of the concept of low

average path length is the ’six degrees of separation‘, uncovered by the social psychologist

Stanley Milgram, who concluded that there was a path of acquaintances with a typical length

of about six between most pairs of people in the United States [26]. More precisely, the path

length refers to the minimum number of edges traversed to go from a node A, to node B.

The average path length is the average calculated for all pair of nodes in a network. Another

important characteristic of these networks is the average clustering coefficient of nodes [43],

sometimes referred as Transitivity [30] to avoid confusion from the concept of Community

Structure (or Clusters) [36,42]. The concept is very well known in social networks and can

be described as the friend of your friend is likely to be your friend. Mathematically, for a

graph G with nodes V and edges E, the clustering coefficient (CC) for a node v is defined

as:

CC(v) =
r(N(v))

|N(v)|(|N(v)| − 1)/2

where u ∈ V and (u, v) ∈ E. The neighborhood of a node v is defined as the set of

nodes in the neighborhood of v denoted by N(v). The number of elements in set N(v) is

given by |N(v)|. And the notation r(N(v)) represents the number of edges (u,w) such that

u,w ∈ N(v) and u 6= w. To calculate the clustering coefficient of the entire network, we

take the average for all nodes in the network.

A scale free network is a network in which a few nodes have a very high number of con-

nections (degree) and lots of nodes are connected to a few nodes. Generally, it was believed

that the degree distribution in most networks follow a poisson distribution but in reality, real

world networks have a highly skewed degree distribution. These networks have no charac-

teristic scales for the degrees, hence they are called scale free networks [32]. In other words,

the degree distribution of scale free networks follow a power-law distribution [4].

Apart from the small world and scale free properties, another important characteristic of

real world systems and specially social networks is the presence of Community Structures.

A more generic formalism for the term community is clusters, where sociologists use the
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term community [7] as compared to the statistical and data mining domain where people

use the term clusters [38] to refer to the same concept. Roughly speaking, we like to define

a community as a decomposition of a set of entities into ‘Natural Groups’. There is no

universally accepted definition of clustering [12], most researchers describe a cluster by

considering the internal homogeneity and the external separation as the fundamental criteria

for defining a cluster [17,1,20]. A number of algorithms are present in the literature to study

clusters and clustering problem in social networks[28,21,15].

Different network generation models have been proposed to generate artificial networks

having both the small world and scale free properties. These models do not generate graphs

with community structures by construction as the probability of connection is based solely

on the degree of a node and in some cases, the immediate neighborhood of this node.

In this paper, we present a new network generation model which incorporates the prop-

erties of small world and scale free networks with the additional advantage of having dis-

tinct community structures. We explicitly target social networks and argue that using three

fundamental concepts from the social network study, we can generate artificial networks

replicating real world social networks. Clustering or Community detection remains an im-

portant technique to organize and understand complex systems [16,20,34,44] having a wide

range of applications in various fields. For empirical evaluation of algorithms, metrics and

analytical methods, it is important to be able to reproduce networks having community struc-

tures with small world and scale free properties that are close to real world networks. The

proposed model, by construction incorporates the presence of community structures as we

determine the connectivity of nodes based on a pre-generated clustering. We explain the

details in the coming sections.

For the sake of discussion and explanatory purposes, throughout this paper, we are going

to discuss four social networks. Two well studied and well structured social networks are the

Actor collaboration network where nodes represent actors and two actors are connected to

each other if they appear in a movie together. The other network is the Science collaboration

network where nodes represent scientists and two scientists are connected to each other

if they have written an artefact together. Apart from these two networks, we consider two

hypothetical cases from everyday life. Consider a person joining a new organization as an

employee and a person joining a sports club as a leisure activity. We will refer them as Actor,

Author, Employee and Club networks respectively throughout this paper.

The rest of the paper is organized as follows: The next section contains a review of the

existing network generation models for small world and scale free networks. In section 3,

we discuss the metric clustering coefficient and compare it with the presence of community

structures as being two separate concepts. We then discuss assortativity, transitivity and pref-

erential attachment in social networks in section 4 and argue that with a little modification

to these concepts, we can understand how networks having community structures evolve

in the real world . We then present a network generation model in section 5. We introduce

three networks in section 6 that are used for experimentation and comparative analysis with

the artificial network generation models. In section 7, we show that the existing network

generation models not only produce graphs without community structures but have other

limitations as well. Finally we conclude giving possible future directions of our research in

section 8.
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2 Existing Network Generation Models

In this section, we review a number of network generation models proposed in the literature

having small world and scale free properties. A comparative summary of these models is

presented in Table 1.

Holme and Kim [19] modified the well known Barabasi and Albert model [4] to obtain

graphs that are small world as well as scale free. The idea is pretty simple and effective. A

Triad formation step is added after the preferential attachment step where every node intro-

duced in the network, connects not only to node w, but also to a randomly chosen neighbor

of w thus resulting in a triad formation. The idea is similar to another model separately

proposed by Dorogovtsev et al. [10] in the same year where every new node added to the

network is connected to both ends of a randomly chosen link where one of the nodes of this

link is selected through preferential attachment. These models inspired Jian-Guo et al. to

introduce another similar model [25]. The network starts with a triangle and at each time

step, a new node is added to the network with two edges. The first edge would choose a

node to connect preferentially, and the second edge will choose a node connected to the first

node, again based on preferential attachment. This is different from the model of Holme and

Kim where the second node is randomly chosen. Wang et al. [41] proposed a similar model

to that of Dorogovtsev et al. where at each time step, a new node with two edges is added to

the network and the two edges are connected to the two ends of a randomly chosen existing

edge.

Fu and Liao [14] proposed another extension to the Barabasi and Albert model which

they called the Relatively Preferential Attachment method. At each time step, the newly

introduced node in the network connects to a node w with preferential attachment, the nodes

in the immediate neighborhood of w have higher probability of connecting to this new node

as compared to other nodes. The only difference in this model with the already proposed

models is that the new node can have m edges instead of two edges where the value of

m is chosen as an initial parameter which remains constant throughout the execution of

algorithm.

Klemm and Eguiluz [23] also proposed a model, where each node of the network is

assigned a state variable. A newly generated node is in the active state and keeps attaching

links until eventually disactivated. At each time step, a new node is added to the network

by attaching a link to each of the z active nodes. The new node is set as active. One of the

existing nodes is disactivated where the probability of a node being disactivated is inversely

proportional to its degree i.e lower the degree, higher the probability of disactivation. To

reduce the average path length of the entire graph, at every step, for each link of the newly

added node, it is decided randomly whether the link connects to the active node or it connects

to a random node.

Catanzaro et al. [6] present a model taking into consideration the assortativity of social

networks. Assortativity is the tendency of nodes to preferentially connect to nodes that are

similar to them. This similarity in general, can consider any attribute but in case of social

networks, it is referred to as the connectivity or the node degree of the nodes. At every step,

a new node is added to the network based on preferential attachment and a new edge is

added between two existing nodes. These existing nodes are chosen on the basis of their

degree thus forcing links between similar degree nodes. The model is innovative as it allows

addition of new links between old nodes.

Another interesting model was proposed by Guillaume and Latapy [18]. They identify

bipartite graph structure as a fundamental model of complex networks by giving real world

examples. The two disjoint sets of a bipartite graph are called bottom and top. At each step,
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a new top node is added and its degree d is sampled from a prescribed distribution. For each

of the d edges of the new vertex, either a new bottom vertex is added or one is picked among

the pre-existing ones using preferential attachment. A more generalized model based on

similar principles was proposed by Bu et al. where instead of using the bipartite structure,

a network can contain t disjoint sets (instead of just two sets, as is the case of the bipartite

graph) where the example of sexual web [24] was considered as a model. A sexual web is

a network where nodes represent men and women having relationships to opposite sex, and

similar nodes do not interact with each other. At each time step, a new node and m new

edges are added to the network with the sum of the probabilities equal to 1. The preferential

attachment rule is followed as the new node links with the existing nodes with a probability

proportional to the degree of the nodes.

Wang and Rong [40] proposed a slightly different model, which is still a modified form

of the preferential attachment model. Instead of adding one node at a time, the model pro-

poses to add n nodes at each time step which are connected in a ring formation. Any two

nodes in the n new nodes are connected to the existing network where these connections are

determined through preferential attachment.

Generation models for clustered graphs exist in the literature such as the work of Condon

and Karp [8] and Virtanen[39] where the idea is to generate graphs that are already clustered

as opposed to random graph models of Rapoport [33] and Erdos and Renyi [11]. A recent

work by [45] addresses the issue of generating clustered small world networks which are not

scale free and the clusters are randomly connected to each other. As these generation models

do not produce graphs with small world and scale free properties which are fundamental to

most real world networks. Thus the study and comparison of these other models remain out

of the scope of the paper.

Comparing the different network generation models (See Table 1), first five models are

quite similar to each other, as they try to force the triad formation step, one way or the other.

Another common aspect in the first five models is that in every step, only one node and two

edges are added to the network. The only other taxonomical grouping possible is the last

two models where the bipartite and n-partite structures are used as the fundamental property

of real world networks. The model of Wang and Rong is slightly different as it allows the

addition of m new nodes at every time step. The ideas of Klemm and Eguiluz, Catanzaro

et al. are quite original and provides another way to look at the evolution and structure of

complex networks.

3 Clustering Coefficient and Community Structures

Largely due to the terminology used to define the metric clustering coefficient, often it is

misunderstood that a network having high clustering coefficient suggests the presence of

clusters or community structures in a network. Clustering coefficient, by definition, deter-

mines the local cohesiveness of a set of nodes, i.e. it focuses on the immediate neighborhood

of nodes but fails to capture the presence of communities on the whole as argued by differ-

ent researchers [5,16,46]. High clustering coefficient only indicates the presence of a large

number of triads, i.e. three nodes connected to each other through three edges. This property

is often present in social networks where it refers to the phenomena that if you know two

people, there is a high probability that the two people know each other as well. This metric

also measures the presence of cliques as they are a composition of triads but it cannot be

used to identify the presence of densely or sparsely connected nodes in a network as we

explain below using examples.



6

Comparative Summary of Existing Network Generation Models

Model Year Nodes
Added
per
Step

Edges
Added
per
Step

Innovation

Holme and
Kim

2002 1 m Triad formation step, forcing a new node to connect to the neighbors
of the first node it links to, in order to have triangles and increase
the clustering coefficient.

Dorogovtsev
et al.

2002 1 2 Randomly chose an edge and attach both ends of this edge with the
new node where the probability of choosing an edge is based on the
degree of the nodes at its ends.

Jian-Guo et

al.

2005 1 2 Each new node attaches to existing node with preferential attach-
ment and choses one of its neighbors again based on preferential
attachment (and not randomly as compared to Holme and Kim).

Wang et al. 2006 1 2 For each edge, a new node with two edges is added, which is
attached to both end nodes of the edge. Produces Fractals rather
than a random graph.

Fu and Liao 2006 1 m Once a new node attaches to a node, its neighborhood has a higher
probability of connecting to the new node.

Klemm and
Eguiluz

2002 1 m Activate and Disactivate nodes based on node degree where nodes
having low degree have a high probability of getting disactivated.

Catanzaro et

al.

2004 1 m Assortativity &
Allows growth in old nodes by allowing new edges.

Guillaume &
Latapy

2004 1 m Bipartite Structure identified as a fundamental characteristic for real
world graphs.

Bu et al. 2007 1 m n-partite Structure, where nodes do not connect to similar node
types.

Wang and
Rong

2008 n m Add m new nodes and any two nodes in the m new nodes link
together from each other and they link to existing nodes based on
preferential attachment.

Table 1 Comparing and Summarizing different Artificial Network Generation Models for Small World-Scale
Free Networks existing in the literature.

Fig. 1 is an example graph that depicts the differences between clustering coefficient and

community structure. Fig. 1(a) clearly has four communities with high connectivity between

nodes of the same community and (b) has several nodes sharing common neighbors but

visually, no distinct groups. Both these graphs have the same number of nodes and edges

where the clustering coefficient for graph (a) is 0.70 and (b) is 0.69. No information about

the presence of four communities can be deduced from the clustering coefficient of graph

(a).

Another interesting example is shown in Figure 2 considering (a) and (b) as clusters

obtained from some graph. Both contain the same number of nodes and edges. Thus the

density (ratio of number of edges and number of nodes) of the two clusters is exactly the

same. Cluster (a) is constructed using Quads instead of triads where a quad is a set of four

nodes connected through four edges in a ring. We then compare this cluster with a cluster

constructed with triads. Both these clusters are shown in in Figure 2(a) and (b). The clus-
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Fig. 1 Two graphs with the same number of nodes and edges (a) Four Groups of Nodes well connected
within and sparsely connected with other groups.(b) Nodes sharing neighbors in the form of triads. Clustering
Coefficient for graph (a) is 0.70 and (b) is 0.69. High values for clustering coefficient does not necessarily
imply the presence of community structures in a network as shown in graph (b).

Fig. 2 Consider two clusters of some graph with same number of nodes and edges and thus having the same
density in terms of number of nodes and number of edges. (a) Nodes well connected to each other forming
quads, (b) Nodes sharing neighbors to form triads. Clustering Coefficient for cluster (a) is 0.0 and (b) is 0.69
representing the absence of triads in cluster (a). The Average path length of (a) is 2.3 and of (b) is 2.6 showing
that cluster (a) is more compact and on average, the nodes are much closer to each other than cluster (b). This
example shows that a cluster can exist even with a low value of clustering coefficient as shown in (a).

tering coefficient of cluster (a) is 0.0 representing the absence of triads and as compared

to cluster (b) with a value of 0.69. This is no surprise as clustering coefficient, by defini-

tion, measures the quantity of triads in a graph. Another important metric used to classify

a network as small world is the average path length. Calculating the average path lengths

of the two clusters, (a) has a lower value with 2.3 as compared to (b) with a value of 2.6

showing that cluster (a) is more compact and on average, the nodes lie closer to each other

as compared to cluster (b) and thus is a better cluster even though its clustering coefficient

is 0.

From the above two examples, we can conclude that a graph having high clustering

coefficient does not necessarily suggests the presence of distinct group of nodes tightly

connected to each other and loosely connected within themselves. Moreover a cluster can

be a good cluster even if its nodes have a low average clustering coefficient.

4 Assortativity and Triads in Social Networks

In this section, we present three fundamental concepts associated with the theory of so-

cial networks. First, we briefly introduce these concepts and then we argue that combining
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these concepts, we can produce a network generation model with small world and scale free

properties having distinct clusters.

The Theory of Assortativity or Assortative Mixing refers to the principle that in a net-

work, similar nodes tend to attach to each nodes. This similarity can be based on one or

more than one attributes. An important application of this theory is the assortative mixing in

social networks where nodes attach to other nodes having similar degree. This differs from

biological and technological networks that exhibit disassortative mixing [29,27]. Disassor-

tative mixing refers to the phenomena where dissimilar nodes tend to connect to each other.

A good example is the Sexual Web [24] where nodes representing men or women connect

to nodes with opposite sex.

We move on to another important concept in social networks, the formation of Triads in-

troduced by Simmel [37] as a fundamental structure for social networks. In fact, the smallest

and most elementary social unit, a dyad is a social group composed of two members while

a triad is a social group composed of three members. Groups of larger size are also possible

but since a variety of relationships can form in them, they are less stable [37] and often less

studied in sociology.

Finally, the principle of Preferential Attachment introduced by Barabasi and Albert [4]

as an ingredient for growing network model with power law degree distribution. Some times,

referred to as the ‘Rich gets richer’, the idea is that in real world networks, nodes having high

degree have a high probability of attracting more connections as compared to nodes with low

connectivity. In terms of social networks, this means that a famous person is likely to become

more famous as compared to a person who is not well known in the social community. The

idea is the direct implication of the human trait of extraversion-introversion [22]. Extroverts,

who are open to meeting new people and developing new relationships are expected to have

high degree of connectivity in a social network as compared to Introverts, who tend to be

more reserved, less outgoing, and less sociable.

Extending the principle of assortativity, we argue that in theory, since nodes tend to

connect to similar nodes, it is not always the case that the similarity is based on node degree.

We consider examples from two of the most studied social networks in computer science, the

actor network and the authorship network [43,4,13,42]. If the degree was the only criteria

for associating to other nodes, in case of an actor network, actors beginning their career will

never get to play a role in a movie with well known actors. This is contrary to the reality

as often, new actors are given supporting roles along with well known actors and thus the

similarity is based on some other criteria. Similarly, for the authorship network, if degree

was the only criteria, an experienced professor will never take a doctorate student who has

only a few publications under his supervision which is generally not the case.

Our deduction from the above two examples is that the nodes tend to associate to other

nodes having similarity based on the context and not the node degree. For example an actor

starting his career as a comedian has a higher probability to act in a comedy film and thus

act with a well known actor in the domain of comedy films. In this case, the similarity

is based on the domain of the two actors. Similarly for the case of authorship network, a

student having done a masters in a particular domain such as computer networks, has a high

probability of collaborating with a well know researcher of the same domain, probably as

a doctorate student. Again, the connectivity preference is due to the domain or subject of

research. Generalizing from this concept, for other social networks in real world, consider

the example of a person joining a new organization as employee. He has a high probability

of interaction with his fellow employees, people working on the same project or sharing

the same office. Another example is that of a person joining a sports club. He has a high

probability of interaction with people sharing the same sports activity like Tennis.
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Returning to the formation of triads in social networks, our perspective is that usually

when a person enters a new social network, its not just the triads that are formed but Groups

of larger size, or cliques are formed. From the actor example, it is quite clear that a new

actor will probably act with a well known actor, but the social interaction will take place

within the entire cast of the movie. This interaction will be represented with a clique where

all the nodes representing the actors will be connected to each other. The authorship network

is no different as people co-authoring an artefact will form a clique. Similarly in real world,

usually groups of larger size are formed. Continuing with the two examples, a new employee

will interact with not just only one or two more people, but with different colleagues in the

same organization which work together on the same project or with whom he shares an

office, and for a person joining a sports club, he will interact with people sharing similar

activities instead of just one or two others.

Addressing the principle of Preferential Attachment, we argue that for every node in a

Group (or Clique), few nodes have a higher number of connectivity with other nodes. For

example, in a group representing the actors playing in the same movie, the famous actors

will have many connections with others as they would have played a role in many movies.

Similarly, in the authorship network, an experienced researcher would have published an

artifact with many other researchers and thus would have a high number of connections.

Combining the above principles together, we claim that People in social networks are

most likely to interact with similar people where similarity is based on the context and the

domain. People form Groups of larger size and not just triads, there are few people that have

a very high degree of connectivity as compared to others. Based on these ideas, we present

a new network generation model in the next section.

5 Proposed Network Generation Model with Communities

The basic idea of the proposed algorithm comprises of three major steps. Instead of adding

one node at a time, we add cliques of various sizes. This results in the network having

high clustering coefficient. Next, we associate a possible connectivity attribute drawn from a

degree distribution following power law. This ensures that the degree distribution of the final

network follows a scale free property. Finally, to obtain community structures where some

nodes are densely connected within and sparsely connected to other nodes, we generate

a cluster tree which represents the possible communities for this network. Based on the

connectivity attribute, and the distances in the cluster tree, nodes within the cliques are

merged together creating highly dense groups of nodes well connected within and sparsely

connected to nodes distant in the cluster tree.

The proposed algorithm comprises of several steps where each of these steps is ex-

plained in detail below. The following mathematical notations are used throughout the ex-

planation: G(V,E) represents an undirected multigraph where V is a set of n nodes and E

is a set of e edges. The graph G is initially empty and the nodes and edges are added as

the algorithm progresses. C represents a set of cliques such that C = {C1, C2, · · · , Ck} are

different cliques each comprising of one or several nodes. T represent a tree where its leaves

are equal to k (the number cliques in set C ).

5.1 Step 1: Clique Generation
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Fig. 3 Step 1: A graph G containing only cliques of different sizes. Parameters used for this example are
minSize=1, maxSize=5 and k=11.

In contrast to existing network generation models, instead of adding one node or triads at a

time, to generate the network, we start by adding cliques of variable sizes to G. The algo-

rithm takes as parameter, the number of cliques to be generated (k), the minimum (minSize)

and the maximum size (maxSize) of the cliques to be generated. A random number is gen-

erated between these two limits and for each random number, a clique Ci is added to the

graph G such that nodes and edges of the clique become member of V and E respectively.

As a result, G contain nodes that are well connected to each other within a clique, and nodes

from different cliques are not connected to each other. G becomes a graph comprising of

C = {C1, C2, · · · , Ck} as shown in figure 3.

5.2 Step 2: Scale Free Degree Distribution

In order to have the degree distribution of G follow a scale free behavior, we generate a

separate scale free graph G′ with the same number of nodes as in G, using [4]. Next, we

assign the degree of a node in G′ as an attribute of a node in G chosen randomly and call

this attribute sfDeg. Nodes once processed are not reconsidered for another assignment.

The Psuedo Code for the process is given in algorithm 1. Every time the procedure getNode

is called, it picks a unique and randomly selected node from a given graph until all the nodes

have been selected. The assignment of values from nodes of G′ to G is random but since

there are few nodes with very high node degree, there is a high probability that they are

divided among the cliques sparsely. Thus we end up with one or two nodes in a clique with

a high node degree as shown in figure 4. This step assures that the final graph G has a scale

free degree distribution.

5.3 Step 3: Merger of Nodes

The next step is the merger of nodes from different cliques to form a single connected

network. The merger is a simple step where two nodes to be merged are replaced by a single

node, and all the edges connected to the two merged nodes are connected to this new node.

Figure 5 shows how two nodes from two different cliques are merged forming a connected

network of two cliques. The exact details of how to select two nodes and how many nodes

are selected for merger are explained in the following sub-steps.
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Algorithm 1: Scale Free Degree Association to nodes of G

Input: Graph G and G′

Output: G(V,E)
begin

node n, n′;
attribute sfDeg(G);
n← getNode(G);
n′ ← getNode(G′);
foreach node ∈ G do

if degG(n) < degG′ (n′) then
sfDeg(n)← degG′ (n′);

else
sfDeg(n)← degG(n);

end

Fig. 4 Step 2: A scale free degree distribution is imposed as attribute of nodes in graph G containing cliques.

5.3.1 Step 3.1: Calculate Number of Merges

As a first step, we need to calculate for each node, how many merges will it perform with

other nodes. This calculation is based on the attribute sfDeg. The idea is pretty simple, the

more a node is merged with others, the more higher its degree will be in the final network.

This phenomena is shown in figure 5 where the two merged nodes result in a single high

degree node. The number of merges for each node n ∈ G is calculated using sfDeg as

follows:

Node Merges(n) =

⌊

sfDeg(n)

Avg Node Degree(G)

⌋

(1)

We use the following equation to calculate the total number of merges for a clique Cj ∈

C:

Clique Merges(Cj) =
∑

∀n∈Cj

Node Merges(n) (2)

5.3.2 Step 3.2: Generation of Cluster Tree

As the main objective is to have distinct clusters in the graph, we generate a random tree T

with the number of leaves exactly equal to the number of cliques generated in step 1. Each

clique Cj ∈ C is assigned to a leaf of the cluster tree T as shown in figure 6. The tree can
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Fig. 5 Merging two nodes from two different cliques. Two nodes from different cliques are removed and a
new node is added which takes all the connections of the two removed nodes.

Fig. 6 Step 3: A cluster tree T is generated and cliques are assigned to its leaves to decide how the nodes (in
the cliques) will be connected to each other forming clusters.

have varying depths to generate a hierarchical clustering where one such tree is shown in

figure 6.

5.3.3 Step 3.3: Merging Nodes of Cliques to Form Clusters

For every clique Cj ∈ C in the cluster tree T , we calculate a vector of probabilities Pji

where j represents the clique for which this vector is being calculated and i represents the

clique with which the probability of connecting j is calculated. This probability is inversely

proportional to the distance between two cliques in T and is spread equally over the branches

of T as shown in figure 7. The vector Pji thus obtained represents the probability of two

cliques having their nodes merged.

For example, to calculate the probability of connection of the encircled node with other

nodes in T , the probability is uniformly divided among the three branches (1/3 in this exam-

ple) for each branch leading outwards from the encircled node. One of these branches leads

to the root of the tree which is again uniformly divided among two of its children as shown

in figure 7.

Using probability vector Pji and Clique Merges(Cj) from equation 2, we calculate the

exact number of pairwise merges using the equation below:

Pairwise Merges(Cj , Ci) =
⌊

Clique Merges(Cj) ∗ Pji

⌋

∀j, i ∈ C (3)

Pairwise Merges(Cj , Ci) is a directed vector representing the exact number (as integer)

of merges between each pair of clique (Cj , Ci). Based on these integer values, nodes from

different cliques are merged to form connections between cliques which results in a fully

connected network with the desired properties. This calculation is depicted in figure 8 where

we show the probability vector for C0, P0i
and its corresponding Pairwise Merges(C0, Cb)

∀b ∈ C.

Figure 8 also shows the probability of C0 divided uniformly among C1, C2 and the rest

of the cliques in the cluster tree. The close neighbors of C0 in the tree C1, C2 have a very
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Fig. 7 Calculation of probabilities of merger of the left most leaf containing a clique (encircled) with other
leaf nodes based on distances in the Cluster Tree T where the probabilities represent the likeliness of a node
in the encircled leaf (containing a clique) to be merged with other nodes in the cliques.

Fig. 8 Calculation of Pairwise Merges(C0, Cb) using distances in T and Probability Vector of C0 to
determine the number of merges between C0 and Cb where Cb ∈ C and C0 6= Cb.

high probability of 0.33 each of merging with C0. The merger of nodes with close neighbors

result in lots of connections being built between the cliques nearer to each other in the tree

and thus represents clusters in the final graph. Algorithm 2 contains the pseudo code for the

merger of two nodes.

Algorithm 2 uses a procedure Merge where two functions are used to select nodes from a

clique named Select One Noderand(Ca) and Select One Nodeprob(Cb). The implemen-

tation of these functions is very simple. The function Select One Noderand(Ca) chooses

a node n randomly such that n ∈ Ca and Ca ∈ C and Node Merges(n) > 0. Note that the

equality in equation 2 is always preserved during the execution of algorithm. The function

Select One Nodeprob(Cb) uses the sfDeg(n) to calculate a probability which is propor-

tional to the node degree of the node. Thus nodes having high connectivity have a high

probability of being selected as compared to nodes with low connectivity.

5.4 Further Explanations and Possible Variants to the Proposed Model

In this section, we provide explanations of the different steps of the proposed model and

relate these explantations to real world social networks. This helps to understand how char-

acteristics of real world networks are incorporated in the proposed model. We also discuss
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Algorithm 2: Merger of Nodes in the Cliques to Form Clusters in G

Input: Graph G, Pairwise Merges, Node Merges, C = {C1, C2, · · · , Ck}
Output: G(V,E)
begin

foreach Ca ∈ C do

foreach Cb ∈ C do

while Pairwise Merges(Ca, Cb) > 0 do
Call Merge(Ca, Cb);
Pairwise Merges(Ca, Cb)=Pairwise Merges(Ca, Cb)-1 ;

end

Procedure Merge(Ca, Cb);
begin

node nu, nv ;
nu ← Select One Noderand(Ca) ;
Node Merges(nu)=Node Merges(nu)-1 ;
nv ← Select One Nodeprob(Cb) ;
Merging Nodes(nu, nv) ;

end

possible variations in the different steps that can change the behavior of the network gener-

ated. These variations demonstrate the robustness and flexibility of the proposed model as it

can be used to generate networks with varying properties.

The first possible variation to the model is in the very first step explained in section 5.1

where we add cliques of different sizes. The size of the cliques can be forced to be exactly

3, in which case we would have forced the presence of only triads just as the other network

generation models presented in section 2. Due to the presence of cliques (or triads), the

average clustering coefficient of the entire graph increases as compared to a random graph

which is a fundamental property to identify a small world network.

The assignment of values in the section 5.2 is easy to comprehend once considered in

the context of real world. This assignment represents that in certain social groups, there are

people who have relatively high connectivity with others. Continuing with our two exam-

ple social networks, a famous actor who plays in many films will have a high number of

connections with other actors and similarly, a senior professor will have a high number of

connections with other researchers. This value is used in Step 3 of the model to determine

how different cliques of Step 2 are merged together to form a single connected network.

A variation to this step can be the assignment of a normal degree distribution or a uni-

form degree distribution. The choice results in what the final degree distribution would be for

the generated network. This flexibility is quite useful as the model can be used to generate

networks with any kind of degree distribution.

In section 5.3.2, we discuss how a cluster tree is used to generated a network with hi-

erarchical clusters. A possible variation is the gerenation of a flat or partitional clustering.

We can generate only a tree with depth 2 where we have all the cliques at the bottom level,

merging with other cliques at level 1 to form clusters and the root represents the regrouping

of all the clusters as shown in figure 9 which contains 4 clusters and 12 cliques.



15

Fig. 9 A cluster tree T to generate Flat or Partitional clustering with the leaf nodes containing the cliques at
the bottom level, the clusters at the second level and the root regrouping the clusters at the top level.

6 Real World Social Networks

For the analytical study of the network generation models, we compare the networks gener-

ated by existing models with real world networks using a number of metrics (see Section 7).

We consider three social networks, two of which are author networks and the third one is an

actor network.

The author network is a network where nodes represent scientists and an edge between

them represents a collaboration in terms of co-authoring a scientific artefact like a book or

an article. The two data sets are the Network Science data set and the Geometry data set. The

Network Science data was compiled by Newman [31] from the bibliographies of two review

articles on networks, M. E. J. Newman, SIAM Review 45, 167-256 (2003) and S. Boccaletti

et al. ,Physics Reports 424, 175-308 (2006), with a few additional references added by hand.

The network contains a single connected component with 379 nodes and 914 edges.

The other Author network is the authors collaboration network in computational ge-

ometry. It was produced from the BibTeX bibliography obtained from the Computational

Geometry Database geombib1, version February 2002. Problems with different names refer-

ring to the same person are manually fixed and the data base is made available by Vladimir

Batagelj and Andrej Mrvar from the Pajek datasets website2. Only the biggest connected

component was considered for experimentation where the reduced simple network contains

3621 vertices and 9461 edges.

The Actor network is a network where nodes represent actors and two actors are con-

nected to each other if they have acted in a movie together. The data set we use here is a

subset taken from the IMDB3 database of movies made until the year 1999 and used by

other researchers such as [3,2]. This network contains 7640 nodes and 277029 edges.

The choice of selecting these models is based on two criteria. First we wanted to use

graphs that are publicly available and have been studied by other researchers. Moreover,

networks having varying density and size so as to see the behavior of the different models

in terms of scalability and flexibility could be evaluated.

7 Results and Discussion

We calculate a number of statistics using various Network generation models and compare

them with the real world networks of equal sizes. The results are shown in Table 2,Table 3

1 http://www.math.utah.edu/˜beebe/bibliographies.html
2 http://vlado.fmf.uni-lj.si/pub/networks/data/
3 http://www.imdb.com/



16

Comparative Summary of Various Statistics of Real World and Network Generation Models

Model Nodes Edges Average Path Clustering Maximum
Length Coefficient Node Degree

Network Science 379 914 6.04 0.74 34

Zaidi et al. 364 935 4.7 0.65 34

Holme and Kim 379 757 4.86 0.77 42

Fu and Liao 379 744 4.03 0.01 31

Klemm and Eguiluz 379 755 9.08 0.5 33

Catanzaro et al. 379 898 2.42 0.58 197

Guillaume & Latapy 379 5315 2.30 0.54 109

Bu et al. 379 755 3.05 0.37 80

Wang and Rong 379 943 4.32 0.37 14

Table 2 Comparing different models with the Collaboration Network of Scientists from the Network Science
data.

Comparative Summary of Various Statistics of Real World and Network Generation Models

Model Nodes Edges Average Path Clustering Maximum
Length Coefficient Node Degree

Geometry 3621 9461 5.31 0.53 102

Zaidi et al. 3567 9433 5.4 0.66 127

Holme and Kim 3621 7241 7.3 0.79 90

Fu and Liao 3621 10662 4.22 0.005 101

Klemm and Eguiluz 3621 10857 2.27 0.72 197

Catanzaro et al. 3621 8896 2.47 0.48 1720

Guillaume & Latapy 3621 528499 * * 1275

Bu et al. 3621 10856 3.13 0.24 607

Wang and Rong 3621 10828 4.6 0.10 30

Table 3 Comparing different models with the Collaboration Network of Scientists from the Computational
Geometry data.

Comparative Summary of Various Statistics of Real World and Network Generation Models

Model Nodes Edges Average Path Clustering Maximum
Length Coefficient Node Degree

Actor 7640 277029 2.94 0.87 1271

Zaidi et al. 7413 244905 3.1 0.98 352

Holme and Kim 7640 274865 2.35 0.09 2303

Fu and Liao 7640 29972 4.00 0.004 163

Klemm and Eguiluz 7640 274374 1.99 0.97 7627

Catanzaro et al. 7640 28127 1.99 0.78 7639

Guillaume & Latapy 7640 2378281 * * 2614

Bu et al. 7640 274935 1.99 0.83 12151

Wang and Rong 7640 273355 3.28 0.94 83

Table 4 Comparing different models with the Actor network from the IMDB dataset.

and Table 4. In some cases, the models are not parameterized and thus the node-edge density

could not be controlled. We tried to generate models of similar size in terms of number

of nodes, and where possible, similar number of edges. An important observation about

these networks is that since all of them use the preferential attachment to produce the scale

free property, the degree distribution for all the models follow a power law. To the best of

our knowledge, there is no metric which tries to identify the presence of communities in

a network by analyzing the graph on the whole in a global perspective, thus the presence

of community structure in the proposed model is only justified by construction. Using the
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cluster tree, the way the nodes connect to each other can be controlled and thus any network

that is produced has densely connected nodes which are sparsely connected to other nodes.

Lets have a look at some individual results for the various models in comparison to

the real world networks. For example, graphs generated using the model of Guillaume and

Latapy, the node-edge density in every case is very high and could not be controlled. The

model of Fu and Liao, in all the three examples, have a very low clustering coefficient

as compared to the respective real world network and thus could not really be classified

as generating similar networks to the real world networks used as examples in our study.

Looking at the clustering coefficient of the model by Wang and Rong in Table 3, it is quite

clear that the model fails to generate a high clustering coefficient for a similar size network.

An observation about the model of Holme and Kim, In Table 4, where the node-edge density

of the network is comparatively high to other two networks but the the network has a large

size, the clustering coefficient drops considerably. The model of Klemm and Eguiluz scales

well in terms of clustering coefficient, but in case of low node-edge density (see Table 2), the

average path length is considerably high to be a small world network. Also, from Table 4,

the average path length in case of a number of models is 1.99, which is a direct implication

of a node having a very high degree. As a result, most of the nodes are connected to this

high degree node and thus have almost a distance which reduces the average path length of

the entire network.

From the above examples, one obvious problem that can be inferred is that these models

have problems with scalability, as the node edge density is varied for a network, the models

are not able to reproduce comparative values with real world networks for various statistics.

On the other hand, the proposed model in this paper has the ability to control the size of

cliques as the starting point, which helps us to gauge the density and at the same time, and

generate small world and scale free networks. The values are quite close to the ones expected

and thus the proposed model is quite flexible.

8 Conclusion and Future Research Directions

In this paper, we have studied the concepts of assortativity, triads and preferential attach-

ment as the building blocks for the structure of social networks. We use these concepts to

present a model to generate artificial social networks. We evaluated a number of network

generation models that successfully generated small world and scale free networks but fail

to capture another important characteristic of real world network i.e. the presence of Com-

munity Structures. We compared the existing and the proposed network model with real

world social networks using a number of statistics. Results show that the proposed model

indeed generates networks that have community structures and are topologically similar to

real world networks as compared to the other existing models that generate small world and

scale free networks. Moreover, we identified another problem for the existing models, the

scalability in terms of node-edge density, where it is difficult to maintain the high clustering

coefficient and low average path length as networks of varying sizes are produced.

In this paper, we have focused on social networks and effectively presented a model to

generate networks having small world and scale free behavior with communities. We intend

to extend our study to other types of networks such as biological and technological networks

to propose network generation models for these types of networks as well incorporating

several real world networks.
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