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Abstract

A continuation problem for finding successive solutions of discretised abstract
evolution problems of the first order is proposed and a general piecewise C'!' continu-
ation problem is studied. A condition ensuring local existence and uniqueness of its
solution curves is given. An analogy of the first-order system for smooth problems is
derived and results of existence and uniqueness of its solutions are stated. Possibility
of continuation of a solution curve along a direction from the first-order system is
discussed. A technique for numerical continuation of solution curves is developed.

Keywords: discretized evolution problem, continuation method, piecewise-smooth func-
tion, first-order system, predictor-corrector.

1 Introduction

When time-stepping schemes are used to solve quasi-static problems in solid mechanics
numerically, one can encounter situations where usual solvers (for instance, the Newton
method with the initial approximation chosen to be a solution from the previous time step)
fail to compute any solution. Typically, this can happen when a snap-through instability
is present and even a small change in loading leads to a dramatic change of the solution.
This has lead us to construct a suitable continuation problem for dealing with such situa-
tions. Although our motivation has originated from solving quasi-static problems with the
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particularity that the time derivative appears only in a nonlinear term, our approach can
be applied to first-order evolution problems generally. The idea how to do it is explained
in an abstract frame in Section 2.

Whereas continuation is well-established for problems involving a continuously differen-
tiable map (see [3], for example), a little work has been done for problems with non-smooth
maps and it is oriented mainly to homotopy methods to author’s knowledge [2, 12]. That is
why the next ambition of this paper is to give a rigorous analysis of a general continuation
problem. In particular, a problem involving an arbitrary piecewise C! (PC') map is con-
sidered in Section 3, and a result guaranteeing local existence and uniqueness of its solution
curves is stated. Furthermore, an analogy of the first-order system for smooth problems
is introduced, which gives the possibility of studying tangent behaviour of solution curves
near a given solution point.

Let us mention that the reason why we confine ourselves to the framework of PC*-
functions is that it seems to be well-suited for plane contact problems. These lead to
mappings that are not Gateaux-differentiable in general. Nevertheless, other problems
from engineering or economics are covered, as well [11].

Finally, a method of numerical continuation for tracing PC! solution curves of the
problem from Section 3 is described in Section 4. It is well-known that the standard
Newton method fails when folds occur on the curve, even in the smooth case. Hence, our
proposed technique is based on the predictor-corrector continuation method for smooth
maps sketched in [4], which is capable of traversing such types of points. Here, we shall
modify it to our PC'-case similarly as it is done in [7, 6], yet with an important difference:
whereas the cited works essentially use the so-called test functions, which require a quite
detailed specification of the PC'-function involved, there is no such need in the present
strategy. This makes it more straightforward and easier to implement.

The companion paper [9] deals with a continuation problem for quasi-static plane con-
tact problems with friction. The theory from the general case is developed and the method
of numerical continuation is tested on finite-element models.

Throughout the present paper, the following notation is employed: x -y = 'y is the
scalar product of vectors & and y and B(x,r) stands for a closed ball centred at & with
radius r. The gradients of a real-valued function f and a vector-valued function f at a
point @ are denoted by V f(x) and V f(x), respectively, and the partial gradients of f and
f with respect to y at (z,y) are denoted by V, f(x,y) and V, f(x,y), respectively.

2 Construction of the Continuation Problem

Let us consider a nonlinear evolution mathematical model whose spatial semi-discretisation
leads to a problem of the type:

Find x: [0,T] — RY such that
G(z(t),z(t)) = F(t,z(t)) in (0,7), x=(0)=x"



with NeN, T >0, G: RV xRY - RV, F: RxRY — R" and =, € R given. Here,
@ = da/dt stands for the time derivative of x.

To illustrate the idea how to construct the announced continuation problem for a par-
ticular time discretisation, we divide the interval [0,7] into np sub-intervals [ty, txi1],

k=0,...,np — 1, and use the backward difference
. £r tk — L tk
m(tk—&-l) ~ ( +1) ( )
U1 — Ui
In this way, we obtain a sequence of incremental problems for £k =0,...,ny — 1:

Find 2" € RY such that

k+1 k P
> _ F(tk+1,wk+1). ( k+1)

G (a:k“ r T

"t — t

Now, let £k > 1 be fixed. We introduce the continuation problem with an additional
scalar parameter v as follows:

Find (y,x) € R x RN such that ()
H(v,z) =0,
where H: R x RY — R is defined as
T — ok 2k k1
H(ya)=Ge, 2" 4 (1) =T ) - (1P () + (1 - 1) F (1. ).
tor1 — th by — tp—1

It is readily seen that any x* solving (Z,) satisfies H (0, z*) = 0 and @ solves (Py1)
if and only if H(1,x) = 0. Hence, if we are able to continue solutions of (&) numerically,
we are furnished with the following method for finding solutions of (Z?1): starting with
(0,z*) as the initial point, any couple (v, x) with v = 1 found during the continuation
gives x solving the problem (Z.1).

Let us note that the term (1 — ~)(x* — 1) /(t; — t;_1) in the definition of H ap-
proximates a multiple of the time derivative of = at t,. Thus, it not only makes (0, z*)
a solution of (), but also adds a kind of viscosity and makes the continuation problem
more coherent.

Remark 1. The backward difference used in the time discretisation corresponds to the
backward Euler method. Nevertheless, our approach can be easily modified for other
classical time discretisation schemes like the #-method or midpoint rule. Indeed, when
using any time-stepping scheme, one can always introduce a parameter v so that problems
on successive time levels are recovered for v equal to 0 and 1, respectively. Clearly, our
approach can be applied also to any second-order evolution problem after rewriting it as a
system of the first order.

In the remaining part of the paper, we shall suppose that the function H in the problem
(2) is an arbitrary PC!-function as defined in the appendix.
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3 Analysis of the Continuation Problem

One would expect that the solution set of H(y,x) = 0 could be described as a curve.
We shall show that under assumptions of an appropriate implicit function theorem, this
is indeed, at least locally, the case. In particular, we shall use the notion of a completely
coherently oriented function, which is introduced in the appendix for functions that are
PC*.

Let H be a PC'-function and (¥, Z) € R x RY be such that

(i) H(7,z) = 0; | } )

(ii) H is completely coherently oriented with respect to x at (7, &

Then it follows from Proposition 5 in the appendix that the equation H (v, x) = 0 deter-
mines a unique implicit PC'-function () in a neighbourhood of (¥, Z) with x(y) = z.
Defining a curve c as

c: s (s,x(s))
on the corresponding neighbourhood of 7, we arrive immediately at the following proposi-

tion:

Proposition 1. Let H: R x RN — RY be a PC'-function and (7,x) € R x RN satisfy
(1). Then there exist an open interval J and a PC'-curve ¢: J — R x RN such that

(1) F5€J: ¢(5) = (7@);}

(jj) Vs € J: H(e(s)) = 0. (2)

Moreover, the solution set of H (v, x) = 0 coincides with the image of ¢ in a neighbourhood
of (7, ).

Keeping this result in mind, we shall suppose in the following that we are given a zero
(7, ) of H and there exists a PC'-curve ¢: s — ¢(s) = (v(s), z(s)) satisfying (2). Since
any PC'-function is locally Lipschitz continuous and B-differentiable, we can compute the
right-hand side derivative of (2)(jj) at § according to Proposition 3 from the appendix (for
any function f of a real variable, f' denotes its right-hand side derivative for brevity of
notation here and in what follows):

H'(c(s)) = H'(c(5); €(5)) = H'((7, 2); (+/(5), #'(5))) = 0.

) =
Thus, if ¢ is a curve passing through (7, ) whose course we do not know completely,
we can recover its tangent behaviour at (7, &) by solving the problem:

Find (7, 2') € R x RN such that} ()

H'((7,2); (7, =) = 0.
By analogy with continuation of smooth curves, we call this problem a first-order system.
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It is known that the derivative H'((y, Z); (7', «')) is a piecewise-linear function of (7, ')
for any PC!-function H. Invoking theory of piecewise-linear functions, we have results of
existence and uniqueness of solutions of (Z').

Proposition 2. Let H: R xRY — RY be a PC*'-function that is coherently oriented with
respect to x at (,&). Then for any 7' € R, there exists at least one © € RN such that
(v, &) solves (2'). If H is even completely coherently oriented with respect to  at (7, &),
the vector @' is determined uniquely.

Proof. Under the given assumptions, the mapping H:RxRY - R xRY introduced as

..ty o (FO2,020)

is piecewise-linear and (completely) coherently oriented and the assertions follow directly
from Proposition 4 in the appendix. O

For other criteria guaranteeing unique solvability of (£?'), see [10, Section 4], [1] and
the references therein.

So far, we have shown that any one-sided tangent vector of a solution curve of () is
a solution of the first-order system (). Now, we shall deal with the converse: Having a
solution (7', ') of (') at our disposal, we shall give conditions under which it corresponds
to a tangent to a solution branch of (£?) emanating from that point. We shall obtain even
uniqueness of such a solution branch.

The first result complements Proposition 1.

Theorem 1. Let the assumptions of Proposition 1 be fulfilled and (v',x') € R x RY solve
(2"). Then there are § > 0 and a PC'-curve c: [5,5+ ) — R x RY such that

(1) e(s ;
(Jj) Vs ):
(133) €(5) = (', &)

, )
5

m ~—
\.Cm

H(c(s)) = 0; (3)

Moreover, if (7, x') # (0,0), the image of any other curve ¢: 5,5 + 5) = R x RN with
0 > 0 and such that

() e(s) = (7, @);
(Gj) Vs € [5,5+6): H(é(s)) = 0; (4)
(i) &(s) e Jr(v @)

coincides with the image of ¢ in a neighbourhood of (3, &).

Proof. As we already know, H(~y,z) = 0 determines a unique implicit PC*-function ()
in a neighbourhood of (7, &). Let us define ¢ as

c:s (Y(s=35)+7,z((s—35)+7).
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Then (3)(j) and (jj) are clearly satisfied for sufficiently small § > 0 and
(5) = (v, 7' (7).

From the derivation of (), we know that (7/,~7'@’(7)) belongs to its solutions and the
uniqueness result of Proposition 2 implies that

' (y) =2,

which completes (3). The second part of the assertion follows from the uniqueness of the
implicit function () in a neighbourhood of (7, &). O

Due to the implicit function theorem used in the proof, the previous theorem can
be applied only to cases where exactly two one-sided solution branches s — (y(s), x(s))
emanate from (,&) — one with 7 increasing and the other one with  decreasing. The
next theorem covers also situations with more solution branches.

Theorem 2. Let H: R x RN — RY be a PC'-function and (3,z), (7,x') € R x RY
satisfy H(y,Z) = 0 and H'((7,%); (v, ")) = 0. If {HDY,c; is a family of C" selection
functions of H at (7,&) and there exists ig € I such that

(i) H")(7,2) = H(7,2);
(i) VH™(3,2)(+. ') = H'((7.®): (., 2) # VH" (3, 2)(¢,2'), Vi #io; 0 (5)
(iif) Vo H'") (3, &) is non-singular,

then all the conclusions of Theorem 1 hold and the solution curve c is even of the class C*.

Proof. By the classical implicit function theorem, the equation H (iO)(y, x) = 0 determines
a unique implicit function x(vy) around (7, &). In this case, x(7) is continuously differen-
tiable and its (two-sided) derivative is:

#(7) = ~(VoHO(3,2)) 'V, HO (5, ). (6)
Let us define a curve ¢ by
c:s— (Y(s—35)+7.z((s—35)+7).
Then (3)(j) clearly holds. By (5)(ii) and (iii),

VH(3,2)(y,z') = V,H"(3,2)y + V,H"©(3,2)z' = H'((7,&); (Y, z')) = 0,
' = —/(V.H"(7,2)'V.H"(7,2).

This combined with (6) yields

d(5) =0 7Y2®) = (v



that is, (3)(jjj) is fulfilled, as well. Moreover, H"(¢(s)) = 0 and to prove (3)(jj), we have
to show: '
H (c(s)) = H™(¢(s)) for s > 5, s close to 3. (8)

Hereafter, we shall suppose that
viel: HY(y,2) = H(y,2) 9)

(the other indices may be omitted from I by virtue of continuity of H).
Making use of (5)(ii), one can find for any i # iy an index j(i) such that

VH((3,®)- (@) # VH() (7,3) - (7, ),
which ensures € defined by
e 1= min| (VH() (5, 2) = VH()(7,2)) - (7,2)]

to be positive. Continuous differentiability of H @ implies that there is & > 0 such that

Vi # iy Y(v,2) € B((7,2),0): |(VH{)(v,z) = VH{)(v.2)) - (. 2)] > %
and
Vi #io V(v,2) € B((7,2),0) V(u,v) € B((7,2'),d'):
(VH0(r,2) = VHG (,2)) - (u,0)]
> \(VH@. (v, 2) — vyﬁg)) (v, 2)) - (. )|
\( VH (1, )~ VH 2 (v,2)) - (u— v — @)
—v /0 ) VHO (v, 2)|[[l(w =+, v — )| >0

for some ¢’ > 0 by boundedness of VH;Q) (v, ) — VH](Z)) (v, x). Therefore, there is 7 > 0
such that

Vi # i V(u,v) € B((7/,2'),d") Vr € [0,7):
|(VH (7 +ru, @+ ) — VH;E;’))(W—I—TU,:T:—I—TU))-(u,'v)‘>0 (10)

and due to (5)(ii) and continuity of H'((%,Z);.),

Vi # i ¥(u,v) € B((y,2),0):
H'((5.2): (u.)) = VH® (5,2)(1,v) # VHO(3,2)(u.v). (1)

Now, let us take (u,v) € B((y, '), arbitrary but fixed and define ¢, ¢V : R — RN
by
¢ r—HA+ru,z+rv), ¢V:r— HIF+ru,z+rv).
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Clearly,
@' (r) = H' (7 + ru, & + rv); (u,v)), (q’)(i)) (r) = VHY (Y + ru, & + rv)(u, v)

and by virtue of (9), (10) and (11),

viel: ¢(0) = ¢(0), (12)
Wi # o Wr € [0,7): [(60) () — (619 ()| > 0,
Vi #io: ¢/(0) # (¢7)(0). (13)

As ¢ are of the class C', we obtain
Vi o Vr € (0,7): |60, () — \—\/ (6%, 9)(0) d]
_ /0 60 (8) = (Y (B dt >0 (14)

because (¢ i) (8) — (¢§Z((; )'(t) may not change its sign due to continuity.

On the ba81s of these relations, we shall prove that

vre[0,7): ¢(r) = ¢ (r). (15)

Firstly, let us suppose that one can find {r, }nen, rn — 04, and {i,, }nen, o # i € I, such
that ¢(r,) = gb(“‘ (rn). Since [ is finite by definition, we may suppose that 7, are chosen
so that 4, = i for some 4y # 7 € I fixed. From here and (12),

#(0) = tim 2 =90 60() = 60(0)

n—oo ’r’n n— oo T’n

= (¢pY'(0),

which contradicts (13). Hence, there exists 7 > 0 such that

vr e [0,7): o(r) = ¢ (r).

From continuity of ¢ and ¢ and (14), it is readily seen that we can take 7 = 7, that is,
(15) holds. By definition of ¢ and (") this means that

Vr € [0,7) Y(u,v) € B((y,2'),8"): HF +ru, & +rv) = H (¥ +ru, &+ rv). (16)
Let us define a cone € and a number & by

¢ = JrB((y. ), 9),

r>0

6 = rmin{]|(u,v)|; (u,v) € B((¢,2'),8)}.



Figure 1: Intersection € N B((0,0),0).

Obviously, 4 is positive (by (11), for example) and from (16), it follows that
V(u',v') € €N B((0,0),0): HFH+u,Z+v)=HO>F+u &+ (17)

(see Figure 1). Having this result at hand, it is now easy to verify (8).
Indeed, (7) furnishes us with 6 > 0 such that

vse (i+0): L0 e gy a). ),

Vs €[5,5+08): e(s)—c(3) € (s—35)B((y,a'),d) C €.

Taking into account continuity of ¢ and reducing ¢ if necessary, we also have:

~

Vs € [5,5+9): c(s)—c(5) € B((0,0),9).
Hence, invoking (3)(j) and (17), we arrive at (8):
Vs € [5,5+0): H(c(s)) = H™(c(5) + c(s) — ¢(3)) = H™((7, &) + c(s) — ¢(5))
= H((7,2) + c(s) — ¢(5)) = H(c(s)).
Finally, for any curve ¢ satisfying (4), the same arguments give
H)(&(s)) = H(¢(s)) = 0 for s > 5, s close to 3,

and uniqueness of the implicit function determined by the equation H (iO)(% ) =01n a
vicinity of (7, &) completes the claim. O

The following examples of scalar functions of two variables show what can happen when
the assumptions (5)(ii) or (iii) of the previous theorem are not fulfilled.

Example 1 (the null direction of the derivative of H is in the kernel of gradients of more
than one selection function). Let G and H be defined by

GO (y,z):=—x+7v ify<0,2<0;

G(y,1) = GO(y,2) =~z +7* if7>0,2<0;
, GO(vy,2) =0+~ ify>0,2>0;
GO (y,2) =z +~ if v <0, x> 0;
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x
x? =
z=20
(7, 2) "
(a) Example 1: G =0. (b) Example 1: H = 0. (c¢) Example 2: H = 0.

Figure 2: Violation of the assumptions in (5): (a), (b) the null direction in the kernel of
two selection functions; (c¢) singularity of the partial gradient with respect to x.

HV(y,2):=20++% ify<0,2<0;
HA (v, z) =2z ifv>0,2<0;
HY (y,x) = —x ify>0,x>0;
and (9, ) := (0,0). Then
G'((7,7); (1,0) = 0= VG®(3,2) - (1,0) = VG (3,7) - (1,0),
H'((7,7);(1,0)) =0

However, no solution branch of G = 0 emanates from (7,Z) in the direction (1,0), one
solution branch of H = 0 emanates from (7, ) in the direction (1,0) and two solution
branches of H = 0 emanate from (7, Z) in the direction (—1,0) (see Figures 2(a) and (b)).
From here, one can see that neither uniqueness nor existence of solution branches can be
either guaranteed or excluded in the null direction of the derivative on the basis of the
first-order analysis only.

Example 2 (singularity of the partial gradient with respect to ). Let H: R*> — R be a
smooth function defined by H(v,z) := z(2? — ~) (that is, HY) = H is the only selection
function) and (¥,z) := (0,0). Then VH(¥,z) = (0,0)" and H'((¥,%); (v, 2")) = 0 for any
(7/,2") € R%. On the other hand, H~'(0) is formed by two curves that intersect at (7, z)
and their tangents at (7, ) are linearly independent (see Figure 2(c)).

Let us note that this example is a case of a (smooth) bifurcation (for its definition, see,
for instance, [3, Section 24]). In general, if (5)(iii) does not hold, a bifurcation can occur
in the solution set of H) = 0, whose subset can form a part of the solution set of H = 0.

Remark 2. Apparently, solution curves of H (v, x) = 0 do not have to be always parametris-
able by « (this will not be considered even in the next section). Nevertheless, it is readily
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Figure 3: A PC'-curve with smooth and non-smooth folds.

seen that one can interchange the role of v and @ with the role of x; and the N-tuple
(v, @1,...,%j_1,%j+1, ... TN), respectively, for any j = 1,..., N in the previous analysis
and all the results can be generalised in this way. In particular, the assumption (5)(iii) in
Theorem 2 can be replaced by the following weaker assumption:

(iii) VH)(7,2) has N linearly independent columns. (57)

4 Numerical Continuation

This section describes a numerical method for tracing PC! solution curves of (£2). It is
capable of traversing folds (also called turning points) with respect to the parameter -,
where it is not possible to parametrise the curve by ~. Let us note that apart from folds
known from theory of classical continuations, we have to deal with folds where H is not
Gateaux-differentiable, as well (see Figure 3 for illustration).

We shall not make an explicit difference between the state variable « and the parameter
~ and we shall consider a uniform formulation of (&), namely,

H(y)=0

with y = (v, ). Nevertheless, to avoid bad scaling when calculating tangents, for example,
we shall use the following weighted scalar product and norm:

Y Dw = U0y + 5Ys Uy Yo = VY, Y= (40 Y,), U= (3, U,)

as proposed in [8, pp. 86 and 87]. Here, x should be chosen so that ky/ g, is proportional
to the scalar product of the corresponding spatial variables, usually in L?. One can take,
for instance, x = h? where h is the mesh size and d stands for the dimension of the
underlying problem. Alternatively, x can be chosen as 1/N, for simplicity.

The principal idea of our continuation strategy is the same as the one proposed in [7, 6],
namely, to continue smooth pieces of solution curves by a predictor-corrector method and
to join the smooth pieces continuously.

The predictor-corrector method employed here is a slight modification of the inexact
Moore-Penrose continuation implemented in MATCONT [4], which can be viewed as an
approximation of a continuation routine making use of the Moore-Penrose pseudo-inverse.
It computes a sequence of points {y,} lying approximately on a solution curve and a
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Figure 4: Inexact Moore-Penrose predictor-corrector.

sequence of the corresponding unit tangent vectors {¢;}. The method consists of two
different steps: A predictor step generates an initial approximation of a new point in the
direction of the tangent vector. Corrector steps, which are iterative steps of Newton’s
type, bring the predicted point back to the curve as illustrated in Figure 4. Since points
of non-differentiability of H may be encountered in this procedure, the adaptation of the
Newton steps for piecewise-smooth functions [5, 7.2.14 Algorithm] is used and gradients of
active selection functions of H are taken, in general. The following algorithm sketches our
implementation.

Algorithm 1 (Piecewise-smooth inexact Moore-Penrose predictor-corrector).

Input data: ¢,¢’ > 0, couin < 1, Amax = 2 > Amin > 0, Bine > 1> haee > 0, Jmax = Jinr > 0
and y,, to € RV ! satisfying:

IH (yo)l <e, H'(ygito) =0, [tollw = 1.
Step 1: Set k:= 0.
Step 2: Set nge := 0.
Step 3 (predictor step): Set j := 0 and

Yg =Yg + htk, TO = 1.

Step 4 (corrector step): Select an index i; from Iz (Y;), find Y ;1 and T such that

VHY (Y ) (Y1 - Y;) = —H(Y;), VH" (Y )T =0,
T]‘T(Yj-l—l - Yj) =0, (T’ Tj)w =1

and set o
Ty =T/,

Step 5: If |[H(Y j11)|| <eand ||[Y ;11 — Y|, <€, go to Step 8.

12



Step 6: If j < Jnax, set j := 7+ 1 and go to Step 4.

Step 7: If h > hpin, set h := max{hgech, Amin}, Ndec := Ndec + 1 and go to Step 3.
Otherwise, break; predictor-corrector has failed.

Step 8: If T]-THtk < Cmin, g0 to Step 7. Otherwise, set

Yry1 = Y, b =T,
if § < jonr and ngec = 0, then A := min{hinch, hmax }-

Set k :=k + 1 and go to Step 2.

Here, ¢ and €’ are convergence tolerances and ¢, serves for controlling changes of
direction between the tangent vectors at two consecutive points. Further, hp. and Ay,
are the maximal and the minimal step lengths used in the predictor step, respectively, and
hine and hge. are scale factors for adjusting the step length h. It is shortened in the case
of non-convergence of the corrector or too large deviation between the newly computed
tangent and the previous one. On the other hand, it is elongated for the next predictor
step if the last computed couple is accepted, the number of corrector steps does not reach
Jine and the number nge. of step length reductions of h for the current value of k is zero.
Finally, jmax stands for the maximal number of corrector steps allowed.

We have chosen the inexact Moore-Penrose predictor-corrector for our continuation
technique because it is an efficient path-following method that can traverse smooth folds
with respect to the parameter. From our experience, it may pass also over points of
non-differentiability if the test on the tangent direction is satisfied. However, we have
encountered points of non-differentiability where our predictor-corrector failed to converge
and its improvement was needed to overcome this difficulty.

Let y be a point of non-differentiability on the solution curve that we want to pass
over. The analysis in the previous section suggests to compute g, solve H'(g;t) = 0
for a new tangent direction t and restart the predictor-corrector with y and t. However,
this approach requires an explicit knowledge of sub-domains where H coincides with its
individual selection functions, which does not have to be always at one’s disposal.

To avoid this requirement, we shall present another approach that consists in restarting
the predictor-corrector with an approximation of the couple (y,t). It is applicable in the
most probable case when only two selection functions of H are active at ¢, HY and H®,
and the adjacent smooth pieces of the solution curve ¢ solve H M) = 0and H? = 0,
respectively. Moreover, we shall restrict ourselves to the case when the one-sided tangent
directions to the solution curve, say t*) and ¢®, do not lie on a line (otherwise, we would
have no problem with the tangent predictor). In addition, we shall suppose that

VH®Y(g) and VH® () have both the maximal rank N (18)

(compare (5’)). For the sake of simplicity of our exposition, we shall also assume that the
set {y € RV H(y) = HY(y) = H?(y)} forms an N-dimensional C'-manifold in a

13



H=0

Figure 5: Transition between smooth pieces of the solution curve.

Yy — rhat

Figure 6: Approximation of a new tangent direction.

neighbourhood of g (this is satisfied, for example, when there exists a function p: RV ! —
R of the class C" such that p(y) = 0 iff HY(y) = H®(y) in a vicinity of g and Vp(g) #
0). The overall considered situation is depicted in Figure 5.

Now, let an approximation of the solution piece {y € R¥*1; H(y) = H(l)(y) = 0}
be known from the predictor-corrector run through till A = hpyn, (Y, tx) denotes the last
computed couple and we want to pass to the piece {y € RN*!; H(y) = H® (y) = 0}. To
do this, we seek approximations of g and t® as suggested before.

Firstly, let us observe that when we choose the minimal step length h,,;, sufficiently
small, the predictor-corrector follows the first part of the solution curve corresponding to
HWY(y) = 0 very close to g as it generates points from the sub-domain {y € R¥N*1: H(y) =
HW(y)} of smooth behaviour if the step length h in the predictor step is small enough.
Hence, y; can be supposed to be a good approximation of y.

Secondly, to compute an approximation of t?), we shall make use of the equality

H'(5:t?) = VH®) ()t = 0

(see Figure 5). Figure 6(a) shows that taking hy sufficiently large in comparison with the
value of hpi, (but not too large to remain in the neighbourhood of y where Figure 5 is
relevant), the point y, +hit; belongs to the interior of the sub-domain {y € RV; H(y) =
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H®(y)}. Therefore, H is Fréchet-differentiable there and
VH(y, + hty) = VH® (y, + nty) ~ VH® (y)

if y), + Mty remains sufficiently close to §. According to (18), VH (y,, + hity) has still
rank N for h; not too large and span{t®'} can be approximated by span{t} if ¢ solves

Finally, we have to determine an appropriate direction of ¢. Figure 6(b) illustrates
that there exists 7 € {£1} such that y, — rhot remains in {y € RN*: H(y) = HY (y)}

for any hy positive (restricting ourselves to the values of hy such that y, £ hot is in the

||t| ﬂu‘tu is observably smaller

than 1 for ¢t_ with VH (y, — rhyt)t_ = 0. By ||.||, we denote the Euclidean norm here
and in what follows. 3
On the other hand, y, + rhaot appears in {y € RV*1; H(y) = H®(y)} for hy larger

[t 2|

"I

neighbourhood of g). This can be recognised by the fact that

than some positive threshold. For such values

of VH (y,, + rhat). i
This suggests the following procedure for selecting the desired direction of ¢: Increase
the values of hy successively and when you arrive at hy and r € {41} such that

is close to 1 for t; from the kernel

72|

nenmen = b VH(y, +rhot)t =0, |t], =1,

take rt as an approximation of ().
The overall algorithm for finding a new tangent direction can be sketched as follows.

Algorithm 2 (Simple tangent switch).
Input data: hy, hy > 0, cuin < 1 and y, t € RV with ¢, = 1.
Step 1: Compute t such that

Step 2: Find ¢, and t_ such that
VH(y+hpt)ty =0, |[to]l, =1

|t

Step 3: If —— > ¢, then set t :=¢.

[le I1IEN
Otherwise, if ||t| MLH > Coin, Set t:= —t.
Otherwise, increase hy and go to Step 2.
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The value of ¢y, should be chosen the same or close to the one in Algorithm 1 whereas
the value of h; should be a bit greater than h,,;, from Algorithm 1. In our computations,
hy = 1.5hn; showed to be reliable. Finally, in our test examples in [9], we take hy = hpn
at the beginning and we increase the values of hy by adding A, - 10Uog10(h/hmin)] £ it in
Step 3. Here, |.| stands for the lower integer part.

To sum up, the whole numerical continuation of (&) is started with the predictor-
corrector (Algorithm 1) with a point y, approximating a solution and the corresponding
unit tangent £y in the direction of desired continuation. If the predictor-corrector fails for
some value of k, the simple tangent switch is run with the last computed couple (y,, tx).
After finding a new tangent direction ¢, one restarts the predictor-corrector with (y,,t)
and continues tracing a solution curve. Let us point out that this method shows to work
well even for curves involving non-smooth folds in our test examples.

5 Conclusion

We have proposed a continuation problem for finding solutions of discretised abstract first-
order evolution problems with the property that any solution from one time level of the
discretised problem furnishes us with an initial point for computing solutions on the next
time level. Confining ourselves to a PC' continuation problem, we have proved local
existence and uniqueness of solution curves under assumptions required by an appropriate
implicit function theorem. Moreover, we have derived a first-order system characterising
one-sided tangents to curves solving the continuation problem and we have stated criteria
guaranteeing existence and uniqueness of solutions of this system.

Possibility of continuation in the direction of a null vector of the first-order system has
been deeply discussed. In particular, it has been shown that if the null vector is directed
at the interior of a sub-domain of smooth behaviour and if the corresponding selection
function has the maximal rank, then there exists a unique solution curve emanating in
that direction (Theorem 2). In addition, it has been demonstrated on simple examples
what can happen when one of these two assumptions is violated. We believe that this
analysis gives insight into possible scenarios during piecewise-smooth continuation.

Finally, an easy-to-implement restarted predictor-corrector continuation method of
PC" solution curves has been described. It is capable of passing over points on transitions
between two different selection functions and of traversing smooth as well as non-smooth
folds. Numerical tests will be presented in the companion paper [9].

A Piecewise-Differentiable Functions

For the sake of completeness of our exposition, we introduce basic notions and results
from theory of piecewise-differentiable functions here. Our presentation is extracted from
[11, 10].

Definition 1. (i) A function H: RM — RY is PC! if it is continuous and for every
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y € RM | there exist an open neighbourhood O of 4 and a finite family of C*-functions
HY: 0 =R, icl, such that

VyeO: H(y) e {HY(y);iel}.

The functions H® are termed selection functions of H at y.
(ii) A selection function H® of a PC"'-function H is called active at g if

HY(y) = H(y)

and essentially active at y if

y € Int{y € O; H"(y) = H(y)}.

The set of indices of active and essentially active selection functions of H at y are denoted
by Iu(y) and I§(y), respectively.

Due to continuity, selection functions can be chosen at every point 4 so that they are
all active there. One can also show that every PC!-function is locally Lipschitz continuous
and Bouligand-differentiable (B-differentiable). Let us recall that the B-derivative of H at
y in the direction z is the directional derivative H'(y; z) that satisfies:

H — H(y) — H'(y;
iy 1y +2) — H(y) (y; 2)]]

= 0.
==0 1]l

The following chain rule holds for B-derivatives:

Proposition 3. Let G: RM — RN and H: RN — R be locally Lipschitz continuous
and B-differentiable at y and G(y), respectively. Then the composite function H o G is
B-differentiable at y and

(HoG)(y:z) = H(G(y): G'(y; 2))-
The following definition introduces two important notions for PC*-functions.

Definition 2. Let H: RY x RM — R¥ be a PC'-function with essentially active selection
functions HV ..., H™ at (Z,9).

(i) The function H is called coherently oriented with respect to x at (z,y) iff the
partial gradients V ,H (i)(ﬁz, Y), i = 1,...,n, have the same non-vanishing determinantal
sign.

(ii) The function H is completely coherently oriented with respect to x at (&,y) if all
matrices of the form .

Vo H " (2,9)7
Vol (2.9)"

V. HN (z,9)"
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where iq,19,...ixy € {1,...n}, have the same non-vanishing determinantal sign.

We say that H is (completely) coherently oriented with respect to @ if it is (completely)
coherently oriented with respect to  on RY x RM. Besides, if M = 0, that is, if the
dimensions of the preimage and image space of H coincide, then we simply speak of
(complete) coherent orientation of H.

A special case of a PC-function is a piecewise-linear function. It is a continuous func-
tion whose selection functions are linear, that is, of the form y — A®y for some matrices
A®_ Tt is known that the B-derivative H '(y;.) of a PC'-function H is a piecewise-linear
function. In fact, H'(y;.) is Lipschitz-continuous and

H'(y;2) e {VHY (y)z; i € I (y)}
in this case.

Proposition 4. A coherently oriented piecewise-linear function is surjective. If it is in
addition completely coherently oriented, it is a homeomorphism.

Proposition 5. Let H: RY xRM — RY be a PC'-function. If H is completely coherently
oriented with respect to x at a zero (x,y) of H, then the equation H (x,y) = 0 determines
a unique implicit PC-function x(y) in a neighbourhood of (Z, 7).
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