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This work presents the modeling of high contrast partially electroded resonators by means of a
polynomial approach. This method allows easily solving the equations that govern the structure. The
boundary, symmetry, and continuity conditions are automatically incorporated into the equations of
motion by the use of delta functions for the variables stress (T) and electric displacement (D) and
appropriate analytical expression forms for the independent variables, mechanical displacements
(1), and electric potential (¢). Structure symmetry was used to reduce the number of unknowns. For
the zinc oxide (ZnO) resonator in extreme geometrical cases (thin plate and bar cases), a good
agreement was obtained between the results of the proposed polynomial approach and those of an
analytical approach for both the modal and harmonic analyses. The proposed polynomial
approach was used to calculate the 2D resonator electrical admittance (full and partial
metallization) near the 1D thickness fundamental mode, and the results highlight the presence of
spurious modes. Influence of the metallization rate on the number of spurious modes in the
bandwidth is studied. This model can also easily calculate the electromechanical coupling
coefficient and the field profiles. Illustrations for both electromechanical coupling coefficient and
particle displacement profiles are given for aluminium nitride (AIN), lead zirconate titanate, and

ZnO resonators. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821768]

. INTRODUCTION

Since the 1990s, the technology of mobile telecommuni-
cations has evolved considerably in the world market. The
existence of Micro Electro Mechanical Systems (MEMS),
such as piezoelectric resonators, is one factor that accelerates
this technology. MEMS is an emerging technology that may
fundamentally affect every aspect of our lives.! It has the
advantages of small size, low-cost, and high-quality factor.’
Actually, the mobile phones are becoming the most indispen-
sable device for people because of the multiplication of their
functionalities (video, TV, Internet, Global Positioning
System, etc.). To improve the performance and satisfy the
customers in trade, modeling tools are needed.

For modeling the resonators, several models are used in
the literature: 1D model is specialized to study analytically
one-dimensional structure since it gives access to the main
resonance response, and the calculation is simple. However
this model does not take into account the effects of structure
edges or resonator shape.” The Mason model is a model
based on equivalent electrical circuits. It is particularly use-
ful and easily used to simulate the electrical behavior of the
resonator” but is not readily usable to take into account spuri-
ous effects. The finite-element method (FEM) is widely used
in many different fields with a tremendous ability to solve
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problems in complex and inhomogeneous media.”””
However for large or radiating structures, it can lead to high
computational expense and storage requirements which call
for specialized calculation techniques giving rise to many al-
ternative improved finite element methods.'®™"* The polyno-
mial method could be an alternative method to treat large or
radiating structures as it does not at all require meshing the
volume. Large finite and semi-infinite structures could be
dealt with using appropriate orthonormal sets of polyno-
mials, Legendre polynomials for large structures, and
Laguerre polynomials for semi-infinite structures, for
instance. However, until now polynomial method suffers
from two major drawbacks: (i) It does not converge satisfac-
torily in the case of high contrast structures and (ii) it cannot
deal with partially electroded structures. In this paper as
announced in the perspectives of a previous paper,'* we pro-
pose an extension of the polynomial method in order to
obtain satisfactory converged solutions in case of high con-
trast and partially electroded areas through modeling of finite
piezoelectric resonators by Legendre polynomials.

From now on, the former polynomial approach will be
named the I-region polynomial approach and the new one
the 3-region polynomial approach. In Sec. II, we define the
boundary, symmetry, and continuity conditions according to
the geometry of the structure and describe the mathematical
formulations giving the physical equations that govern the
structure. In Sec. III, we present numerical results. In the first

© 2013 AIP Publishing LLC
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two paragraphs, through, respectively, a modal and a har-
monic analysis, the results obtained for two extreme geome-
tries by the 1-region and the 3-region polynomial approaches
are compared with those obtained by an analytical modeling
for both a full and a partial metallization. In a third para-
graph, the proposed 3-region polynomial approach is
exploited to highlight its potentialities. Section IV is a brief
conclusion with prospect.

Il. MATHEMATICAL FORMULATION
A. Complete structure

The studied structure is a piezoelectric layer sandwiched
between two thin ideal metal electrodes (no mass and no
stiffness). The piezoelectric layer is partially electroded as
shown in Fig. 1. The parameters characterizing the piezo-
electric layer are elastic stiffness tensor «c», piezoelectric
tensor e, permittivity tensor ¢, and mass density p. The struc-
ture is finite in the x; direction and infinite along x,, and it is
assumed that the resonator is polarized by a voltage source
V. The coordinate axes xp, X, and x3 are chosen so that they,
respectively, coincide with the crystallographic axes X, Y,
and Z with x3 perpendicular to the constituent layers of the
resonator. Throughout this paper, exp(iwf) time dependence
is implicit.” This structure is divided into three regions: one
electroded area (region 1) and two non electroded areas
(regions 2 and 3) as shown in Fig. 1. L; and W are, respec-
tively, the resonator and electrode widths, and L3 is the
thickness resonator.

We adopt here the following change of variables:
o =W/Ly,q; = 2x;/L; (with i =1,3); the normalized varia-

. 7(R) R ~(R)
bles: 7™ = 7(®) 2, D

ac C
physical parameters: €.,y = €cpa/\/ 5533, Eca = €ca /€33, and
Cacbd = Cacbd/ c%, where €.pq, €cq, and Cqepq TEPTESENL,
respectively, the normalized piezoelectric constant, dielectric

permittivity, and elastic stiffness. T((Il:) and D_E.R Jare the nor-
malized stress and electric displacement. The bracketed
superscript denotes the region number. The subscripts a, b, c,
and d take on the values 1 and 3, and summation over
repeated subscripts is implied throughout this paper, unless
otherwise specified.'> We also define the normalized elastic

Viscosity by 7uepg = Nacha-@L/Cs, Where oy, is the 1D thick-

= DE-R)/ ¢33; and the normalized

ness resonance angular frequency: w; = n/Ls.\/c%;/p and
By = ki35 + €333/€33. We assume that the crystal of the

A X3
-Wi2 +W/2
+L3/2
( Region 3) (Region 1) ( Region 2)
V (’V >
2 ; -
-L3/2
-L4/2 +L/2

FIG. 1. Schematic view of a partially and symmetrically metalized
resonator.
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piezoelectric layer is a hexagonal 6 mm class crystal with a
complex normalized elastic stiffness ¢,.,; = Cacba + il 4epa2s
where Q is the normalized angular frequency defined by
Q = w/w,."* The constitutive equations of the structure are
defined by

— 3
Tac 72143

& ac O (R)
+(251d+53d)ei (;Zd ]H(m(fll)H(%), )

B 8M<R>
(2014 + 03d)Chepg 8—;1

(R

(2014 + O34)rCcap 8(2

D=7

R L3
(R)

T —
qu ]H( an @), @

— (2014 + 03d)&ca

where the superscript S denotes the global structure and 9;; is
_Jrifis @®

the Kronecker symbol defined as 6; = { 0ifij’ uy,’ and

(;S(R) are, respectively, the components of the mechanical dis-

placement in angstrom and electric potential in volt in the

region R, where R is the number of the region in the structure

R=1,2,3),r=10""/c2 /&35 (V/A), and z = L3 /L.

To automatically incorporate the boundary conditions
for the variables T and D, we define the rectangular
Lift —1<¢g <1
0 otherwise > I (a1)
o 11f—0€§q1§06 ®) o 11f06§q1S1
o {0 otherwise 1) = 0 otherwise ’ and

1if —1<g; < -«
3) _ S4q1 >
I1(q1) {O otherwise ’

window functions Il(g3;) = {

The equations of wave propagation in the structure can
be written as

2 aTi(‘ 2.8
Lag = —Po'us 3)
oD®
C=0 4
4. ) (€))

where ui =>r quR), R=1,23.

B. Half-structure

Because of the symmetry in the complete structure, it is
sufficient to study the half structure with the appropriate
boundary, symmetry, and continuity conditions. This allows
reducing the number of unknowns which saves both com-
puter storage and time. Thus, the new structure to be studied
is divided into two regions, region 1 and region 2 as shown
in Fig. 2.

The boundary, symmetry, and continuity conditions in
the half structure are given here below.

For the variables T and D, we have
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FIG. 2. Half-structure of a partially and symmetrically metalized resonator.

T (g5 = =1) =0,

T (g =1)=0,

Tiy (a1 =0) =0,

T =o) =T (g1 =)

D" (g1 =) =D (g1 = w). (5a)

D (g1 =) = D (g1 = ),

D (g1 =0) =D (g1 =1) =0,

oW (g1 =) = dP (g1 = w),

(g3 =+1) — (g3 = 1) =V. (5b)

The boundary, symmetry, and continuity conditions are
automatically incorporated into the equations of motion
using the delta functions for the variables D and T and
appropriate analytic forms for the variables u and ®. In the
case of the half structure, Egs. (1) and (2) can be developed
in each region as

" o o]
. 3 au €dac O
T, = L _(Zéld +034)Clcpa 40 + (2010 +030) = 9qa |’
(6a)
] @ . @]
. 3 au Cdac O
T, = L _(Zéld + 034)Cepa 40 + (2010 + 030) = dqa |’
(6b)
- (1) (1>-
2 o _ ¢
p == e “ 0qa
¢ =L _(251(1 + G3a)recan 244 (2014 + 03a)ca 9q4 |’
(6¢)
- (2) (2>-
) 2 81/[ ad)
D~ =— Aqa
( z -(251d+53d),ecdb B0, (2014 + 034)€ca—H— Dqa
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Substituting Eqgs. (6a)—(6d) into Egs. (3) and (4), with the
appropriate boundary, symmetry, and continuity conditions
for the variables T and D given by the use of delta functions,
yields for the half-structure

or™® _
(201c +830)> B +03 > T [0(ge + 1) — 3(qe — 1)]
R ¢ R

— 201 T25(qe — 1)+ 201 (TP = T1)5(qe — )
_ L
+ 2516»5a3T(<11-)5(4c) =- %—3 ZZ ul®, (7a)
33 2 R

Zélc + 5'5( Z +53c 2 [5(61( + 1) - 5(61( - 1)]
R (‘
+26,.068(g.)— 20,.0P8(g. — 1)
+261.(D? —D"M)5(q. — o) = 0 R=1,2. (7b)

The delta functions multiplied by the normal electric dis-
placement component and the normal stress components
satisfy the boundary and continuity COIldlthIlS in the
studied structure. Indeed, the terms 53CT (3(in1) 5 D
gz 0T 06— 1), d1e daTV0(a0), 3D 5(q0),
51D 5(ge—1), 31T —T)6(g ) and 51.(D D)
0(g.—o) in Egs. (7a) and (7b) impose, respectively, that
T® =0 and D=0 for g3=+1 (boundary condition at the
mechanically free surfaces); Tﬁ) =0 for ¢;=1, T’gll):o for
¢1=0, D_él):O for ¢;=0, and l§§2>:O for ¢;=1 (boundary
condition at the lateral surfaces); T((IZ]):T((III) and D—gz) :[5(11>
for g =0 (continuity condition). Equations (7a) and (7b) are
detailed in Appendix A. The variables uﬁ, and qb are
expanded in a double series of orthonormal functions in
gi1and g3 with an analytic form chosen to ensure some of the
boundary, symmetry, and continuity conditions.
In region 1:

W (gr,a3) = > > 00 (@1)0,(a3)p s (B)

n=0 m=0

oo 00

ZZQ (41 Q2n+1(q3)p3n12n+1’ (8b)

n=0 m=0

611,613

ZZQI q1 Q2n+1(‘13) 1(1112)n+1

n=0 m=0

V.,
¢(1>((11 .q3) _—%

(8¢)

In region 2:

! (4,43) + (g1 — )
X ZZ m Ch Q2n(q3)p§ r)an (8d)

n=0 m=0

W (q1,q3) =
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M?(Qh%) =u§”(oc, 73) + (g1 — )

X Z Z Q£)12> (QI)Q2n+1(q3)pg?r)nZn+l’ (8e)

n=0 m=0
$P(q1,q3) =" (2.q3) + (¢, — 2)
X302 (91001 (@)1, (8)
n=0 m=0

wih 0 () = EER (1), o) = /1
P; (% - m) and Qi(q3) = /%5 Pi(g3), where P; and Py
are the Legendre polynomial of degree, respectively, j and k.

The coefficients p<R) and rfnR) are in angstrom and in volt,

a,mn
respectively. In Eq. (8a), the factor ¢; ensures that

u1(q1 =0,q3) = 0. In Eq. (8c), the factor (¢3 — 1) ensures
that ¢ (g1,q3=1)— ¢ (g1,gs=-1)=V. In Egs.
(8d)—(8f), the factor (¢; — o) ensures the continuity of the
involved variable at the interface between region 1 and
region 2.

Using the symmetry of the structure, we can exploit the
odd-even parity for the fields along the ¢3 axis, even parity
for u; and odd parity for u3 and ¢. This generates a reduction
by one-half of the number of terms in the expansion of the
fields with regard to the polynomials Q(¢3). In practice, the
summation over the polynomials in Egs. (8a)—(8f) is trun-
cated at some finite values m =M and n =N when higher
order terms become essentially negligible.” Substituting
Eqgs. (8a)—(8f) in the constitutive equations (6a)—(6d), them-
selves substituted into Eqs. (7a) and (7b), multiplying by
Q( )(ql) and Oy (¢3), and integrating over ¢z from —1 to +1
and over ¢g; from O to « in region 1 and from « to 1 in region
2, we obtain a system of 6 x (M + 1) x (N + 1) linear equa-
tions with 6 x (M + 1) x (N 4 1) unknowns (pglizm and r(R))
with a parameter Q

(AA + iQNN).P + BBR + EEV = —Q’MM.P,  (9a)
CC.P+DDR+FFV =0, (9b)

. 1 1 2 2
with P = LD(l,r>112n pg,r)nZ/H—l pEJ)nZn pg,r>;12n+1]r and R =

[r,(n1 ;n +1 ,(nz %n ', where the superscript  denotes a trans-
posed vector or matrix. The matrices AA, MM, BB, EE, CC,
DD, NN, and FF are detailed in Appendix B.

Substituting Eq. (9b) into Eq. (9a) gives a linear equa-
tions system

[(AA — iQ.NN) — BB.DD™'.CC + Q*MM).P
+ (EE — BB.DD"' .FF).V = 0. (10)

1. Harmonic analysis

Now our goal is to calculate the electrical input admit-
tance Y expressed in normalized form

J. Appl. Phys. 114, 124502 (2013)
Y =Y/iwC,, (11)

where C, = &335 /L3 is the static capacitance.

Using the displacement current density defined as
J = iwD, the electric current that flows through the metallic
electrode of area S is given by

I = i833w”1§§”ds. (12)

Substituting electric displacement (2) into Eq. (12), we arrive
at the following expression for the current /:

= —V—i—%.GG.P, (13)

with GG = [@zéyGGl V2 2633GG3 0 0
GG3 are given in Appendix A.

Dividing the electric current / in Eq. (13) by the applied
voltage V and according to Eq. (11), the normalized electric
input admittance is given by

, where GG1 and

Y = —1+-—.GG.P. 14
+2v (14)

2. Modal analysis

Modal analysis is a specific case of harmonic analysis
obtained by cancellation of the electrical excitation. To
calculate the resonance frequencies Q,, we turn off the volt-
age source (V=0) in Eq. (10), and since the resonance fre-
quencies do not depend on the viscosity tensor, we can
simplify the problem by considering a lossless resonator
(7 = 0 thus NN = 0)."> So we obtain

~'[AA — BB.DD™'.CC|.P = —Q’1,.P, (15)
where /; is the identity matrix. To calculate the antireso-

nance frequencies €),, we vanish the normalized electric
input admittance (¥ = 0) in Eq. (14) and we obtain

V= %.GG.P. (16)

Substituting Eq. (16) into Eq. (9) yields an eigen values
equation
MM~'[AA — BB.DD™'.CC
+ (EE — BB.DD™' FF).GG|.P = -Q*1,.P,  (17)

thus allowing to calculate the antiresonance frequencies €.

lll. NUMERICAL RESULTS

To validate our approach, both the resonance and antire-
sonance frequencies through a modal analysis and the nor-
malized electric input admittance through a harmonic
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TABLE I. Material parameters used in simulations for a ZnO homogeneous
resonator.”*

J. Appl. Phys. 114, 124502 (2013)

TABLE III. Antiresonance frequencies of a ZnO homogeneous resonator
(withz=0.01; M=N=9; 0 = 100%).

Parameters Symbols ZnO
Mass density p 5.676
(10°Kgm ™)
Elastic stiffness c 20.97 12.11 10.51 0 0 0
(10" N/m?) 12.11 2097 1051 0 0 0
10.51 10.51 21.09 O 0 0
0 0 0 425 0 0
0 0 0 0 425 0
0 0 0 0 0 443
Elastic viscosity n 11.96
(107 Pas)
Piezoelectric e 0 0 0 0 -0.59 0
constant (C m~?) 0 0 0 -05 0 o0
{—0.61 —-0.61 1.14 0 0 O:|
Permittivity £ 0.738 0 0
(107 Fm™ 0 0738 0
|: 0 0 0.783}

analysis are calculated for two extreme geometries (thin
plate case z < 1 and bar case z>> 1) for which an analytical
solution is available. Numerical results calculated by the 1-
region and 3-region polynomial approaches are compared
with results obtained by the analytical modeling. For the
polynomial approach with only one region, the electric
potential is written as given by Eq. (A20) in Appendix A: the
factor [(¢3 — 1) + ¢3(¢} — «*)] allows imposing the voltage V
between the centers of the top and bottom electrodes, on one
hand, and between their ends, on the other hand. Moreover,
in the calculations two additional terms, d(¢; — 1)E; and
0(g3 + 1)E;, under, respectively, the top and bottom electro-
des, are added in the field equations in order to impose in the
model the voltage equipotentiality on the electrodes. The
material parameters used in simulations are given in Table I.

The associated relative accuracy is calculated as follows
for, respectively, the resonance and antiresonance normal-
ized frequencies'*

| (Q")analyti('al - (Q’ )polynomial|

&res(%) = 100. and

(QF ) analytical

gmm(%) — 100. |(Qd)analyti(‘al - (Qd)polynomiall '

( a )anal Iytical

The solutions to be accepted are those for which conver-
gence is obtained as M and N are increased.

TABLE II. Resonance frequencies of a ZnO homogeneous resonator (with
z=0.01; M=N=9; «=100%).

Analytical Polynomial Eanti Polynomial Eanti

Q, (3-region) Q, (%) (1-region) Q, (%)
0.00865 0.00865 0.03 0.00874 1.08
0.02495 0.02506 0.42 0.02481 0.54
0.04158 0.04163 0.11 0.04105 1.26
0.05821 0.05812 0.15 0.05741 1.37

A. Modal analysis

1. Full metallization (z < 1 thin plate case and
z>> 1bar case)

The resonance and antiresonance frequencies of a ZnO
homogeneous resonator for z=0.01 (thin plate case) and
z=100 (bare case) are given, respectively, in Tables II-V
with the truncation M =N =9. The results obtained by both
polynomial approaches are in very good agreement with the
results from the analytical method. These results validate our
polynomial approaches for the full metallization resonator
case.

2. Partial metallization

Tables VI-IX show the resonance and antiresonance fre-
quencies for a contour mode ZnO resonator with the metalli-
zation rates 80% (Tables VI and VIII) and 50% (Tables VIII
and IX). The good agreement obtained between 3-region
polynomial results and analytical results validates our 3-region
polynomial approach for partially electroded resonators. We
note that the resonance and antiresonance frequencies
increase with the decrease of the length of the electrode
which means that the frequency of the resonator can be con-
trolled by the rate of metallization. The discrepancy between
the one region polynomial results and analytical results, up
to more than 5% in the worst case, can be explained by the
contrast at the frontier between the electroded and nonelec-
troded regions with a difficulty for the series of continuous
orthonormal functions expressing the fields to retrieve the
exact fields values on each side of the frontier what moti-
vated our new approach.

B. Harmonic analysis

In Figs. 3 and 4 the normalized electric input admittance
was calculated for respectively a fully electroded (« = 100%)

TABLE IV. Resonance frequencies of a ZnO homogeneous resonator (with
z=100; M=N=9; 0 =100%).

Analytical Polynomial Eres Polynomial Eres Analytical Polynomial Eres Polynomial Eres

Q, (3-region) Q, (%) (1-region) Q, (%) Q, (3-region) Q, (%) (1-region) Q, (%)
0.00831 0.00831 0.00 0.00833 0.28 0.84529 0.84529 0.00 0.84551 0.03
0.02494 0.02494 0.01 0.02464 1.17 2.68306 2.68287 0.00 2.68369 0.02
0.04158 0.04156 0.04 0.04097 1.45 4.49031 4.48938 0.02 4.49102 0.02
0.05821 0.05807 0.22 0.05736 1.46 6.29353 6.29093 0.04 6.29355 0.00
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TABLE V. Antiresonance frequencies of a ZnO homogeneous resonator
(withz=100; M=N=9; « =100%).

Analytical Polynomial Eanti Polynomial Eanti

Q, (3-region) Q, (%) (1-region) Q, (%)
0.90013 0.90013 0.00 0.90044 0.04
2.70039 2.70018 0.00 2.70108 0.03
4.50065 4.49971 0.02 4.50143 0.02
6.30092 6.29837 0.04 6.30099 0.00

TABLE VI. Resonance frequencies of a ZnO homogeneous resonator (with
z=0.01; M=N=9; 2 =80%).

Analytical Polynomial Eres Polynomial Eres

Q, (3-region) Q, (%) (1-region) Q, (%)
0.00832 0.00832 0.00 0.00830 0.16
0.02506 0.02506 0.03 0.02487 0.74
0.04197 0.04198 0.02 0.04144 1.26
0.05890 0.05889 0.01 0.05800 1.52

TABLE VII. Antiresonance frequencies of a ZnO homogeneous resonator
(withz=0.01; M=N=09; 0. =80%).

Analytical Polynomial Eanti Polynomial Eanti

Q, (3-region) Q, (%) (1-region) Q, (%)
0.00873 0.00873 0.00 0.00863 1.06
0.02622 0.02621 0.01 0.02499 4.68
0.04369 0.04368 0.01 0.04149 5.03
0.06116 0.06112 0.05 0.05803 5.11

TABLE VIIIL Resonance frequencies of a ZnO homogeneous resonator
(withz=0.01; M=N=9; «=50%).

Analytical Polynomial Eres Polynomial Eres

Q, (3-region) Q, (%) (1-region) Q, (%)
0.00838 0.00838 0.00 0.00828 1.09
0.02570 0.02570 0.00 0.02486 3.24
0.04248 0.04247 0.02 0.04144 2.43
0.05979 0.05976 0.04 0.05803 2.94

TABLE IX. Antiresonance frequencies of a ZnO homogeneous resonator
(withz=0.01; M=N=9; «=50%).

Analytical Polynomial Eanti Polynomial Eanti

Q, (3-region) Q, (%) (1-region) Q, (%)
0.00873 0.00873 0.00 0.00893 2.40
0.02580 0.02580 0.00 0.02506 2.84
0.04256 0.04255 0.01 0.04154 2.38
0.05982 0.05979 0.03 0.05809 2.88
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10 T T T T T T T T
O Analytical

1o Polynomial

Normalized admittance

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Q

FIG. 3. Normalized admittance of ZnO resonator (z=0.01; L; =200 um;
Ly=2pum; M=N=09; a=100%) (solid line: 3-region polynomial method;
o symbol: analytical method).

and a half electroded (x=50%) ZnO resonator with
z=0.01. Here again, the 3-region polynomial results (solid
line) obtained with truncation orders M =N =9 and analyti-
cal results (o symbols) are in good agreement. Moreover, the
harmonic analysis retrieves the resonance and antiresonance
frequencies obtained by the modal analysis.

C. Model exploitation

To illustrate the capabilities of our 3-region polynomial
approach, we have calculated the normalized admittance for
two Bulk Acoustic Wave (BAW) resonators laterally
bounded (Y 2D) and unbounded (Y 1D) as shown respec-
tively in Figs. 5 and 6. We also calculated the electrome-
chanical coupling coefficient for ZnO, AIN, and PZT
resonators as shown in Fig. 7.

Figs. 5(a) and 5(b) show the calculated normalized admit-
tance as a function of the normalized frequency Qfor,

10 T T T T T T T T T

O  Analytical
Polynomial

Normalized admittance

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Q

FIG. 4. Normalized admittance of ZnO resonator (z=0.01; L; =200 pm;
Ly=2pum; M=N=09; 0 =50%) (solid line: 3-region polynomial method;
o symbol: analytical method).
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Normalized admittance
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(2)

-1

10 F

Normalized admittance

107

0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
Q

(b)

FIG. 5. 1D (dotted line) and 2D (solid line) normalized admittances of a
ZnO resonator with (a) full metallization (¢« = 100%) and (b) partial metalli-
zation (o = 50%).

respectively, a fully electroded resonator o = 100% and a par-
tially electroded one o =50%. The computing time for the
2000 points and truncation orders M = N = 9 are about 20 min
for an ordinary computer: CPU 2.80 GHz, Intel Pentium IV,
Ram 1 GB. The finite size of the electrode gives rise to spuri-
ous resonances contaminating the frequency response close to
the fundamental resonance frequency.'®'® These spurious
resonances, not found with the one-dimensional model, cause
ripples in the filter bandwidth.'**° Fig. 6 shows that the spuri-
ous resonances in the frequency bandwidth do no longer exist
for a low metallization rate oo = 7%.

A characteristic parameter used as a measure of the res-
onator performance is the electromechanical coupling coeffi-
cient® There are several ways for defining the
electromechanical coupling coefficient,'** but a definition
convenient for experimental work is the effective coupling
coefficient expressed as?? k,2 = f’%

Fig. 7 shows the electromechanical coupling coefficient
for ZnO, PZT, and AIN resonators for the first mode as a
function of the metallization rate o. The PZT resonator
shows the largest k7 compared with ZnO and AIN resonators.
The maximum &? is achieved with o =75%, and this value

J. Appl. Phys. 114, 124502 (2013)

Normalized admittance

0.98 0.985 0.99 0.995 1
Q

FIG. 6. Normalized admittance of a ZnO partially electroded resonator with
o0 ="7%.

decreases for larger metallization rates. This result highlights
the practical advantage to be able to deal with the partially
electroded resonator.

Figs. 8(a) and 8(b) show the particle displacement pro-
files at the normalized resonance frequencies 0.969 and
0.975 for o =50%. Fig. 8(a) displays the main thickness res-
onance; Fig. 8(b) displays the main thickness resonance
along with a lateral spurious mode.

IV. CONCLUSION

In this paper, we have extended the 1-region polynomial
approach to obtain satisfactory converged solutions in case
of high contrast and partially electroded areas. Advantage of
the resonator symmetry has been taken to reduce the number
of unknowns in the field equations. The equations of motion
are solved numerically by expanding each mechanical dis-
placement component and the electric potential in a double
series of Legendre polynomials. The boundary, symmetry,
and continuity conditions are directly incorporated into the

FIG. 7. Electromechanical coupling coefficient for ZnO (dotted line), AIN
(o symbol), and PZT (solid line) resonators.
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05—~

0.5 et

(b)

FIG. 8. Particle displacement u3 profiles into a ZnO partially electroded res-
onator with o = 50% (a) for Q, =0.969 and (b) for Q, =0.975.

propagation equation by using delta functions for the varia-
bles D and T, and appropriate analytic forms for the variables
u and ¢. Results from both modal and harmonic analyses are
presented for the ZnO resonator for extreme geometries. The
numerical results for partially and fully electroded resonators
are in excellent agreement with the analytical results. To
illustrate the application of the 3-region polynomial
approach, the coupling coefficient of the ZnO, AIN, and PZT
resonators and some particle displacement profiles are calcu-
lated. The results highlight the capability of our approach to
retrieve the spurious modes in the partially electroded reso-
nators. It is worth noting that, with a single calculation, our
method restitutes all types of modes (thickness, lateral, and
bar modes) in the structure.

We are now exploring the application of the method
to partially electroded resonator with thick electrodes.
The technique may also be extended to multi-electrode
resonators; however, the details have not yet been
worked out.

Finally, we remark that using the appropriate orthonor-
mal sets of functions, we may use the polynomial approach
to straightforwardly calculate the acoustic modes in large or
semi-infinite structures.

J. Appl. Phys. 114, 124502 (2013)

APPENDIX A: PHYSICS EQUATIONS RESOLUTIONS
DETAILS

For all calculations in this appendix, to simplify the
mathematical writing we use the contracted index notation for
all tensors. The constitutive equations (Eq. (6)) are written as:

In region 1:

- L2 lZ/“ 68”1 i ac';tq: ejl 86{;@3 ] AD

1= L2 lzgl 68”1 e aauq33 e13‘3 83(23 ] A2
T :L% lzcgsaau—ji) + s 88"21 ze—fa;s;j)] , (A3
D_gl) :L% [Z"eli 88“;1) +res 8;(](1;) — z&1 8;5;11)] , (A4
Bgl) :L% [27‘531 88“(151) +res3 aaui) — &3 3{;1:31)] . (AS5)

In region 2

Ty —L% l ) 65‘;1?) + 24 a;(; | ?88‘2( j @D
=1 [26’55 88”52) + Chs %u—f ?aa";( 12)] . (A8)
lj(lz) :L% [zrels (? +reqs %quz) — Ze11 aaqbq(lz)] , (A9
pY = L% [21‘631 8”5? +rex aaui) ~ &3 aé;pc]( 32) (A10)

Substituting the particle displacement and electric potential
Egs. (8a)—(8f) into Egs. (A1)-(A10) and substituting the
stress and electric displacement into Eqs. (7a) and (7b)
yields

or)) ord) ot ot
Ve

7(2)
z — T 6(gy — 1
Iq1 0q3 0q, 0q3 olgr = 1)

+ TV [5(gs + 1) — 8(gs — 1)]

+ TP[6(gs+ 1) = 8(gs — V)] +2(TV) = T1)d(g1 — )

:_iﬁaﬂ[

(A11)
c33 2

Vi) +uP (q1,93)),
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o) ot or® or{
I———+—F+z +—

_<1) _(2)
+ 1 0 +1)—96 — D]+ T +1)—9 —1
g, g3 g g3 3 [(513 ) (‘]3 )] 3 [(q3 ) (‘13 )]

r F 50 _ 7 L
+105(q1) = T80 — 1) +=(18 ~ )5 — ) = — 55 0’1 (1.0) + 68 (qras)). (A12)
33
op\" op\" op? oDy . o)
z + +z + +:zD76 —zD"8(q1 — 1)+ D3 [0(q3 + 1) — 6(q3 — 1
dq1 0q3 0q, 0q3 1 (Ch) 1 (QI ) [ (g3 +1) (q3 )]
+2(0% = DMYo(qy — o) = 0. AL

1. Resolution of Eqs. (A11)-(A13)

By the projection onto the bases Q (ql) and Oy (g3), the terms in region 2 are eliminated except the terms of the continu-
ity for ¢; = o, thus Egs. (A11)-(A13) give

R =) _ 7 L
j l + 5 L TS (gs + 1) = 8(gs — V] + 2T = T)d(g1 — 0) = =220V (g1,43) |,

0 541 6% C33 2
Qj /(41)0k(g3)dq1dqs (Al4)
ol aT 8T _ _ _ L
J J + T 6(gs + 1) — 3(gs — D]+ 2T = TM)a(gr — ) + T 8(g1) = — 22 02 (g1, 43)
0J-1| 3611 3613 33 2
Q,( (91)Qk(q3)dg1dqgs, (A15)
o 1 (l) . »
“ OV DD ) s(an) + =0~ DLt — ) = 0|0 ) ular s (A16)

By the projection onto the bases Q (ql) and Qy(g3) the terms in region 1 are eliminated except the terms of the continu-
ity for g; = o, thus Eqgs. (A11)-(A13) give

11 2)
” z S TP0S(gs + 1) — 8(gs — V] + 2T = T o(qy — 0) — 2T P8(gy — 1) = L PN C TP
1 341 q3 2
07 (q1)Qu(q3)dadgs, (A17)
11 2) L
“ l ot e T8 s + 1) = 3(gs — )] + (T8 = T1)o(qn — o) —2T55(q1) = —%fwzu?)(ql,m]
- q1 q3 (33
07 (41)Q(q3)dq1dgs, (A18)
11 <2>
[+ zDi”é(cn1>+D§2>[5<qz+1>5<q31)1+z<DiZ>Di”>é<q1oc>o]
o—1
07 (41)Q(q3)da:dgs. (A19)

We thus obtain a system of six equations in two unknowns R and P which can be written compactly in a matrix form as
(AA + iQ.NN).P + BB.R + EE.V = —Q*MM_.P

for Egs. (A14), (A15), (A17), and (A18) and
CC.P+DDR+FFV =0

for Egs. (A16) and (A19).
For the harmonic analysis, the normalized electric input admittance in Eq. (14) is given by
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1
rzey; \{GGIPI mon T €33 IGG3P§.2,12n+1

o

Y =-1
+2 Vv ’

with GG1 = Q') (a)J 1, and GG3 = J10:5°0,, 1 (1).
The normalized admittance analytical expression used to validate our model in thin plate case is defined by

t (O( CUL])
g
C . é% 2V,

C, C11833
e oL Y ST ~2 P le |1 )le
. —a
2Vee C11€33 ¢ 2Vcc § 2V,

with Cg = 0623332, Vt‘c = C# = 4 /7“11_613”'/”3 533 = &33 + and €31 = €31 — —635(;31.

The potential expression used in the 1-region polynomlal approach is chosen as follows:

[SIENY

Y =

V
?(q1.93) = qu +(@— 1) +ai(g — oD ZQS)(QI)QZH-&-I(CB)rr(n%nJrI' (A20)

APPENDIX B: DESCRIPTION OF MATRICES AND INTEGRALS

Here are the matrices of the infinite system of linear equations (8a) and (8b)

[ AA11_1  AAI13_1 AA11.12 AA13.12 BB1_1 BB1.12
e AA31_1 AA33.1 AA31.12 AA33.12 gp_ | BB3-1 BB3.12
AA1121 AA1321 AA112  AA132 |’ BB121 BB12 |’
AA3121 AA3321 AA312 AA332 BB321 BB32
EE11]
. EE3_1 Cco- CCl.1 CC3.1 CCl.12 CC3_12] DDl DD12
EE12 CCl121 (CC321 CCl2 CC32 DD2_1 DD2
EE32
NN11.1 NN13.1 NNI11.12 NN13.12 Mm1) 0 0 0
NN31.1 NN33.1 NN31.12 NN33.12 FF_1 o mMm1W 0 0
~ |NN1121 NN1321 NN112 NN132 | FF2 | ~ | aan1®@ 0 MM21® 0 ’
NN3121 NN3321 NN312 NN332 0 Mm3® 0 MM32?

with
MM = 105 g M Mm@ = aﬂQm ()T 156071, 0 MM21®) = (150 — 1101,
MM3®) = /1 —aQ0) () 71561071, MM32® = (J15 0 — 151 0) 1, 0.

To simplify the calculation we apply the elastic viscosity only for ¢33, so the elements of the matrix NN are assumed to be
equal to zero except

NN33_1 = ij33J 102075, 110,

Jjm

NN3322 = iy [T 150" — ol 1510175, 10 NN3321 = 51357/ T — Q1) () 7151075,

o0W
AA1L ] = zZE'H lﬁ;)j,l _ QJ(-I)(“> <Q5n‘)<0<) +a Qénql(oc)> 11/;11 1,0 + 5/55“0“]5/«11 107

AA131 = z[6)3J 250072, 10 + e 2004, ),
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AA11.12 = 261,01 ()02 () 1,10, AAT3.12 = 0,AA31.12 = 0,
AABIL = 2[4 (0" ()0 (o) + A0 )2, 4 4, 120 g4y 11,

AA33_1 = 28500 1, 0 4 e 10005, 110, Aa33 112 = 28,01 ()02 () 1,1,
a0\ .
AA1121 = —2%¢1,0 («) (Qﬁ,})(a) + a%)ﬁ,ml’l’o + a1 — ags O ()T 15005,
1

AA1321 = —61,077 (10, ()72,

AA112—7/55[J xll_wlaIO]JSknllo 2/[J50111_OC‘]5110]J17110

Jjm

AA132 = 2, [J45) — a 45 012, 0 4 zels 2 — a2 014, P

jm

AA3121 = —aze5s Q) (QL) (02,

o0 B -
AAB3 21 = 2%y ‘”(a)Qa’"Tf“)“k;‘%cw 20V ()7 175075, 1,

AA312 = ze[J 45 — ol 12, 0+ zel 2t — a2 0ua Y

jm

AA33 222655[ 50(11_0(‘]5110] 1 110+—/ [Jl“ll—oc]1“10] 5 110’

Jjm Jjm

BBI_1 = (z/r)J 20 les1 (725,17 — T2, + eis (U4, 1 —74,10)], BB1.12 =0,

BB3_1 = (22 /r)e1s) 5y 1, = T, + (1/r)essd 10,7015, — 75,01,

jm

BB3_12 = (2 /r)e150" ()02 (@) 1,1,
BB121 = —(z/r)esi 0" (1O (o) 12,17 — 72,1,

BB1.2 = (z/r)[e1s(J25," — a2l VAL + &3y (J4%" — oa )2, ),

jm jm

(1)
5321 = ~(e1s/)0” (0 P CUU1 2 1) (e V= 1500 )05, 2 - 5,

BB3.2 = (15 /r)US " — a5 W10+ (esa /) — ad 110175,

m jm Jm

EE1_1 =0, EE3_1 = (3V20/2r)es3J 15774,
EE12 = —(3v22/2r)e3,0" (1) 1,g"2, EE32 = (3\/2(1 — ) /2r)ess/ 13 T4 2,
CCLL = zrleis (745" + a0 ()04 () + e 211172,

CC3.1 = r[Z2e1sI5 T 1,010 + a3 157073, M1 cc1i12 = 0,

Jjm
CC3.12 = 2re1s0) ()02 () 1,10, cC121 = 0,
CC121 = —azrisQ)” (0L (2))2, ",

90, (@)

CC321 =—z r€15Q ( ) 8
q1

Jl];},lﬁ() + ré33\/EQS)(O{)JI;BLOJSI;I,I.O,

CC12 = zrles(J45, — agan0) g2, 10 + a5 (25 — 025 0)74, 1),

jm

CC32 =r[Zeis(U5y" — a5 W10 + e (T15) " — al 15 0)s ),

Jjm Jjm jm
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DD_1 = —Z& Sy 1, = T,
_ 833‘]10%0[‘]371 1,2 _J371 10]

pD12 = —2%,0" ()02 () 1,1,
DD2_1 = —&33v/1 — 150!

o0\ (=)
8‘]1

W (@S, =5,

+22511QJ(-2)(OC) [J171 1,2 Jl,;nl’l’o],

DD2 = — &, (IS5 — oI55, )1,

+533(11‘;;11,1 —oJ1 110)J5—1 l()]

FF_1 = —&333v2a 15 071,9",

201
FF2 = —%333 %n“”m 1.2

where

1
1 = [ Qe 0uas)das
—1

o
T = JQ;(l)(ql)q7"Q5,})(611)d6117
0

1
JE = JQ_:(” (@)d 02 (a)dan,

K

—1,1y _ * a[CI"Qn(%)]
J2 = J Qk<q3) 8q3 dq37

. dlag o)
12 = [ Va2 @l g,
0
1
; " 014" (q
I = 0% (q1) [ 5q1( 1)}@17
o
0,00,y [ *(1) 82[51"’YQ,(”1>(511)]
I3, =10 (q1) 94,2 dqi,
0
1
=Ly * 82 an
VA JQk(qa) [qa%f Lags,
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11y . 8[517Qn(f]3)]
Ja = JQk(qs)—a% dgs,

74057 _ IQ;H)(‘]') 0[(ﬂ%5::(611)]dq1’
0
Ja jQ_;“)(ql)a[‘”%Z(“”dqh
IS = 11 QZ(%)% (8[41“/?;3((13)] )dq?n
07 _ IQJ*m(q )8%1 <8[61”Q8<ql( )] )dq17
0
JS;;I _ jQ;(z)(ql)a%l (8[4’%&(@1)] )dql.
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