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This paper presents an automatic optical equalizer based on a pair of in-house developed high efficiency, acousto-optic variable
optical attenuators (AO-VOAs). The system is polarization insensitive and presents a wide bandwidth compatible with coarse
wavelength division multiplexing (CWDM) requirements: 340 nm. The system operation is automatic and bidirectional and
equalization is obtained in one single iteration of algorithm loop.

1. Introduction

In the context of an increasing demand for wideband trans-
mission services, coarse wavelength division multiplexing is
tackling access network capacity maximization. From the
network management’s point of view, the number of optical
central offices has to be optimized for economic viability;
such an optimization is shown to be possible using optical
budget extension; with an amplification technique, the link
between the subscriber and central office can be extended
or the splitting ratio can be increased (i.e., the number of
users) [1, 2]. In this context, an intense activity is devoted
to the development of enabling optical technologies to meet
next generation distribution network challenges. A straight-
forward solution to increase the optical budget is to bring
optical amplification technique into play; erbium doped fiber
amplifier (EDFA), semiconductor optical amplifier (SOA),
and Raman type amplifiers have been successfully tuned up
to boost optical access networks [3–7]. However, the use of
optical amplification requires optical equalization [8].

This paper presents a dynamic optical equalization setup
that meets (for the first time to the best of our knowledge) the
operation requirements across the full CWDMband: 340 nm.
This system is faster than fiber-based/MEMS-based equaliz-
ers [8–13]; it is more compact than MEMS-based equalizers

[10–12] and even than other acousto-optic based systems [10].
The system operation is bidirectional and fully automatic and
the equalizer is able to adapt to all situations encountered
during usual optical network processes—adding or dropping
channels and input signal level variations. The operation
principle is based on the cascade of two acousto-optic (AO)
cells which are optimized for the modulation of near infrared
signals; a complete description of the AO cells design and
testing can be found in [14]. AO devices are known for their
wide tuning range and their fast response time (down to
the microsecond); they are naturally suited to multispectral
filtering. We focus our investigations here on an automatic
equalization function.

This paper is structured as follows. We first present the
equalizer characteristics and then illustrate the main experi-
mental results obtained from the equalizer. We conclude by
drawing some perspectives.

2. Equalizer Characteristics

The aim of the setup is to benefit frommodulation properties
of two cascaded tellurium dioxide AO-VOAs to perform an
automatic dynamic equalizer for CWDM signals. The main
performances are found in Table 1.
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Table 1: Equalizer main characteristics.

Equalizer
characteristics AO-VOA setup Recommendationsb

Bandwidth >340 nm /
Dynamic 20 dB 20 dB
Resolution 0.1 dB 0.2 dB
Response time ∼𝜇sa 30ms
Insertion loss 2 dB <6 dB
aCorrespond to AO-VOA response time; bReferences [15, 16].
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Figure 1: Cascaded AO-VOA cells principle; input and equalized
output spectra are shown for illustration, together with possible
combinations of rf. driving conditions of the cells to get an
equivalent equalization.

Acousto-optic devices have been proposed for the filter-
ing of WDM signals [17]. As reported, acousto-optic inter-
action is polarization dependent in anisotropic acousto-optic
crystals such asTeO

2
. On the contrary, in optical networks the

components have to process light without a specific polariza-
tion. Each of the two AO-VOAs used in our setup are polar-
ization sensitive, although the overall operation of the system
is polarization independent; the incident beamwith arbitrary
polarization is split in the first cell into two adjacent beams
with orthogonal polarizations, but the second AO cell, cut
from the same crystal, is placed symmetrically to the first one
to compensate exactly for the birefringence of the first crystal.
Moreover, the cells are designed to obtain simultaneous
diffraction by the same acoustic wave of both polarizations in
the +1 and −1 diffraction orders. These beams are blocked at
the output of both cells by diaphragms (Figure 1). As a result
of simultaneous diffraction, the transmitted beam is attenu-
ated with an efficiency being insensitive to the polarization of
the incoming light. Either of the two cells can independently
process any of the incoming optical signals. Several possible
driving conditions are illustrated in Figure 1, with all resulting
in the same overall equalization. From the cells design, a per-
fect bidirectional operation capability is possible.

The AO cells rf. tuning bandwidth for CWDM wave-
lengths is comprised between 41MHz and 55MHz (Figure 2).
The input and output facets are cut orthogonal to the incident
beam for a simple alignment with transmitted beam.They are
coated with antireflection layers; maximum reflectivity is less
than 0.6% in the CWDMband.The fiber-to-fiber loss is mea-
sured to be lower than 2 dB when the AO-VOAs are inserted
in a fiber gap composed of a pair of focusers. The filtering
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Figure 2: AO-VOA tuning characteristics; each dot corresponds to
a 20 nm spaced CWDM channel; most distant channels experimen-
tally tested are highlighted (1310 nm; 1570 nm).
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Figure 3: Experimental setup; LD: laser diode; Mux.: multiplexer;
rf.: rf. driving setup composed of two generators and two amplifiers;
OSA: optical spectrum analyzer.
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Figure 4: Typical diffraction efficiency of an AOTF plotted versus
rf. driving power. Cross: measured values at 1310 nm, dashed curve:
fitted function.

characteristics of the AO-VOAs are frequency dependent; the
passband Δ𝜆 of the cells is Δ𝜆 = 7.2 nm at 1270 nm and Δ𝜆 =
11.5 nm at 1610 nm, well adapted to the filtering of CWDM
channels. The rf. power for extinction is measured to be
comprised between 0.8W at 1310 nm and 1.85W at 1570 nm.
An experimental extinction ratio of at least 20 dB has been
measured for all carriers tested; we have kept this value as
the dynamic of the equalizer in Table 1, meeting the ITU rec-
ommendations [15, 16]. If needed, the activation of both cells
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Figure 5: Spectrum at the output of the equalizer; (a)multichannel operation: a single AO-VOA attenuates 4 channels; (b) dropping channels;
(c) adding a channel.

with a frequency corresponding to the same channel results
in 40 dB attenuation [18].

Interchannel interference is defined as the attenuation
obtained in neighbors channels (𝜆

𝑖±1
, 𝜆
𝑖±2
, . . .) when channel

𝜆
𝑖
is active.The worst case is the following situation. Channel
𝜆
𝑖
is attenuated at the maximum (not used in practice for an

equalization function) and you evaluate the unwanted atten-
uation resulting in channels 𝜆

𝑖±1
. The inter-channel interfer-

ence is no more than 0.5 dB, experimentally verified.

3. Equalization Results

The experimental configuration is shown in Figure 3. Four
CWDM lasers, spaced every 20 nm from 1510 nm to 1570 nm,

and one at 1310 nm are multiplexed into a single fiber (thus
covering almost the full CWDM band). The optical power
delivered by each laser diode is in the order of the mW. The
dynamic equalizer is composed of a modulation part (the
two cascaded AO-VOAs) and a feedback system; a 1% coupler
ensures signal tapping tomonitor optical power with an opti-
cal spectrum analyzer (OSA), and a computer processes OSA
signals and controls two rf. generators connected to ampli-
fiers driving the two AO-VOA transducers. One of the two rf.
generators is a four-channel direct digital synthesizer, all of its
channels are amplified separately and summed by a passive
combiner.

Thetransmissioncharacteristicsofbothacousto-opticcells
for each experimental channel have been fitted (Figure 4).
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A difference in the order of 0.1 dB is possible between the
experimental values and the fitted transfer functions. This is
in the order of the OSA resolution. With the fitted relations,
we can compute attenuation values in accordance with equal-
ization requirements.

The system is automated as follows. The OSA measures
the parameters of the transmitted light with periodic scans
over the entire CWDM band; that is, wavelength and optical
power of all peaks are found (𝜆

𝑖
and𝑃
𝑂𝑖
, 𝑖 refers to the number

of the channel). Then the computer determines optimal
driving conditions; interaction frequencies 𝑓

𝑖
are calculated

with the knowledge of peak wavelengths 𝜆
𝑖
from tuning char-

acteristics (Figure 2) and rf. driving powers 𝑝
𝑖
are calculated

from the fitted diffraction efficiency curves (Figure 4). Finally,
computed driving parameters are sent to the rf. generators.
All operations are repeated in a loop. It is worth mentioning
that the calculation of driving conditions at loop iteration
number 𝑛 also requires the knowledge of driving conditions
at iteration 𝑛−1 to be able to compute equalizer input optical
signals from output optical measurements.

Figure 5 depicts the response of the system to typical
equalization operation scenarios. First, we test themultichan-
nel leveling operation; a single cell is activated to obtain atten-
uation simultaneously on four channels, and up to 6 dB for all
channels is obtained (Figure 5(a)). For completeness, the
four-channel rf. generator was connected to the second AO-
VOA and the test was successfully repeated. The attenuation
value, 6 dB, is sufficient for operation in distribution networks
as higher fluctuations often arise from cascaded amplifier
setup, such as for long distance networks.

Then various scenarios, reproducing the most common
situations an equalizer has to deal with, are tested. As can
be seen in Figure 5, the equalizer performance is satisfactory.
Dropping channels is dealt with efficiently, Figure 5(b); note
that the output level after dropping channels is set to the
(new) minimum power of the remaining channels. Adding
channels is also dealt with efficiently, Figure 5(c). For all cases
tested, the system is able to equalize channels in one single
iteration of the loop.

4. Discussion

We now consider equalization of all CWDM channels. With
the experimental expense of adding a second four-channel rf.
generator, the system is able to attenuate by 6 dB eight inde-
pendent CWDM signals. The number of CWDM channels is
precisely eight with standard singlemode fiber [15, 16]. In this
case, there is a perfect match between the system capabilities
as described and CWDM equalization requirements. With
lowwater peak fiber, sixteen channels are expected to be oper-
ated. In this case, attenuation of all CWDM channels would
be possible but with a lower attenuation value: 4 dB. However,
an rf. transducers design optimization can improve driving
conditions.

As reported, a dynamic, automatic optical equalizer for
optical networks has been setup and tested. This is the first
demonstration of a dynamic equalizer able to operate over the
full CWDM band.The characteristics of the equalizer will be
useful in next generation CWDM networks.
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