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Abstract. We consider the relativistic Euler equations governing spherically symmet-
ric, perfect fluid flows on the outer domain of communication of Schwarzschild space-
time, and we introduce a version of the finite volume method which is formulated from
the geometric formulation (and thus takes the geometry into account at the discretiza-
tion level) and is well–balanced, in the sense that it preserves steady solutions to the
Euler equations on the curved geometry under consideration. In order to formulate
our method, we first derive a closed formula describing all steady and spherically sym-
metric solutions to the Euler equations posed on Schwarzschild spacetime. Second, we
describe a geometry-preserving, finite volume method which is based from the family
of steady solutions to the Euler system. Our scheme is second–order accurate and,
as required, preserves the family of steady solutions at the discrete level. Numerical
experiments are presented which demonstrate the efficiency and robustness of the pro-
posed method even for solutions containing shock waves and nonlinear interacting
wave patterns. As an application, we investigate the late–time asymptotics of per-
turbed steady solutions and demonstrate its convergence for late time toward another
steady solution, taking the overall effect of the perturbation into account.

AMS subject classifications: 76L05, 35L65.
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1 Introduction

The finite volume method is a versatile technique for scientific computing, which has
found many applications in physical and engineering sciences. In particular, it allows one
to approximate weak solutions (containing shock waves) to nonlinear hyperbolic systems
of balance laws such as, for instance, the Euler equations of compressible fluid dynamics.
In the present paper, we propose a geometry-preserving version of the finite volume
method for general balance laws of hyperbolic partial differential equations, and we
apply this method to the Euler equations for spherically symmetric, relativistic fluid flows
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posed on a curved spacetime and, for definiteness, the outer domain of communication
of Schwarzschild spacetime. The proposed method is second–order accurate (in smooth
regions of the flow), and well–balanced in the sense that steady solutions to the relativistic
fluid equations are preserved at the discrete level.

The balance laws of interest in the present work have the following general form.
Given a spacetime (M,g) with Lorentzian metric g and covariant derivative operator ∇,
we consider the class of balance laws

∇α

(
Tαβ(φ)

)
=0, (1.1)

where Tαβ(φ) represents the energy–momentum tensor of a set of (unknown) tensor fields
φ defined on M (the indices α,β ranging between 0 and 3). We use a standard notation for
the metric g= gαβdxαdxβ in coordinates (xα), and repeated indices are implicity summed
up. We lower (or raise) indices with the metric gαβ (or its inverse gαβ) so that, for instance,
uα= gαβuβ for a vector field uα.

In particular, we are interested in the relativistic Euler equations for perfect compress-
ible fluids, corresponding to φ=(ρ,uα) in (1.1) with

Tαβ(ρ,u)=(ρc2+p)uαuβ+pgαβ. (1.2)

Here, the scalar field ρ≥ 0 denotes the mass–energy density of the fluid and the vector
field uα its velocity, normalized so that uαuα=−1, while c>0 represents the light speed.
Moreover, the pressure function in (1.2) is given by an equation of state p= p(ρ) which
must satisfy the (hyperbolicity) condition p′(ρ)∈ (0,c) (for all ρ>0), so that the equations
(1.1) can be written in local coordinates as a system of nonlinear balance laws, which
is strictly hyperbolic for ρ > 0. In general, initially smooth solutions to (1.1)–(1.2) be-
come discontinuous in finite time and shock waves form and then propagate within the
spacetime.

A broad literature is available on the design of robust and accurate, shock–capturing
schemes for general hyperbolic systems posed on a flat geometry like the Minkowski
spacetime. In the present work, we intend to also take a curved background geometry into
account, by following recent work by the first author and his collaborators; cf. [2–5,15]. To
this end, we introduce a finite volume scheme which is based on the geometric formulation
(1.1), rather than on the corresponding partial differential equations in a specific local
coordinate chart. In order to achieve the well–balanced property, we extend the approach
in Russo et al. [23, 25, 26] and LeFloch et al. [14], and we introduce a discretization which
accurately takes into account the family of steady solutions to the balance laws and,
therefore, the geometric effects induced by the Lorentzian geometry (M,g). To implement
this strategy, it is necessary to first investigate the class of steady solutions to the Euler
system on the curved background under consideration.

Numerical relativity has undergone a tremendous development in recent years, and
the reader is referred to Martı́ and Müller [18] for a review of numerical methods de-
veloped first for special relativity, and to Banyuls et al. [7], Font [11], and Alcubierre [1]
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for a review in the context of general relativity. For spherically symmetric problems,
see especially Novak and Ibáǹez [20], Papadopoulos and Font [21, 22], and Radice and
Rezzolla [24]. Various astrophysical applications have been successfully dealt with in
recent years, including the evolution of neutron stars and the merging of black holes.
For background on general relativity, we refer the reader to [27] and, for theoretical and
numerical tools concerning nonlinear hyperbolic equations and their discretization, we
refer to [8, 13] and [6, 17], respectively.

An outline of this paper is as follows. In Section 2, we introduce a version of the
finite volume method, which we state on a curved spacetime and for the general balance
laws (1.1). In Section 3, we consider the relativistic Euler equations when the background
is chosen to be the outer domain of communication of Schwarzschild spacetime, and
we determine all steady solutions to (1.1)–(1.2) in this context. Next, in Section 4, we
introduce a finite volume method for the Euler system, which is well-balanced and
second–order accurate. Finally, in Section 5, various numerical tests are presented, which
demonstrate the efficiency of the proposed scheme; as an application, we study the late–
time asymptotics of steady solutions under perturbation. Section 6 contains concluding
remarks, especially about self-gravitating matter in spherical symmetry.

2 The geometry-preserving finite volume method on a curved
spacetime

2.1 Spacetime foliations by spacelike hypersurfaces

We begin by presenting a framework based on a general four–dimensional spacetime
(M,g), that is, a manifold (possibly with boundary) endowed with a Lorentzian metric
g with signature (−,+,+,+). We denote by ∇ the spacetime Levi–Civita connection
associated with this metric. As is customary, we assume that M admits a foliation{
Ht

}
t∈[0,∞)

by oriented spacelike hypersurfaces such that the parameter t:M→R+ provides

us with a global time function, satisfying dt,0 onM. This allows us to distinguish between
future-oriented (t increasing) and past–oriented (t decreasing) timelike directions on M.
By definition, we thus have M=

⋃
t≥0Ht, and M is topologically diffeomorphic to R+×H0

while its boundary is the union of the initial sliceH0 and a boundary R+×∂H0 determined
from ∂H0, i.e.

M∪∂M=
⋃
t≥0

Ht, Ht=Ht∪∂Ht.

(Observe that the spatial slices may have a non–trivial boundary.)
Given local coordinates (xα) = (t,x j), in which Greek indices describe 0,...,3 while

Latin indices describe 1,2,3, we express the spacetime metric in the form g= gαβdxαdxβ,
and we denote by (gαβ) its inverse. The assumed (3+1)–decomposition of the spacetime
is standard in general relativity (cf., for instance, the textbooks [1, 27] as well as [7]) and
is determined by the time function t. We also choose coordinates (x j) on the initial slice
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H0 and propagate them in the spacetime along the vector field ∇t. This leads us to the
metric decomposition

ds2=−N2dt2+ g̃, (2.1)

where N = (−g(dt,dt))−1/2 > 0 is referred to as the lapse function and g̃= g̃t = gi jdxidx j

represents the induced Riemannian metric on the slices. Denoting by dVg and dVg̃t
the

volume forms associated with the Lorentzian and Riemannian metrics, respectively, we
can write

dVg=NdtdVg̃, B=
(
det g̃

)1/2
, NB=(detg)1/2. (2.2)

Let n=N∇t be the future directed, timelike unit normal to the slices and K be the
second fundamental form, defined by K(X,Y)=−g(∇Xn,Y) for all vectors X,Y tangent to
the hypersurface Ht, so that

Ki j=−
1

2N
∂0gi j

in local coordinates (t,x j) adapted to the foliation. We introduce also the Levi-Civita
connection ∇̃ of the slices (Ht, g̃t), given (for any tangent vector fields X,Y) by

∇̃YX=∇YX+K(X,Y)n.

Finally, the Christoffel symbols Γγαβ=
1
2 gγθ

(
∂αgβθ+∂βgαθ−∂θgαβ

)
of the spacetime metric

read

Γ0
0α=

∂αN
N

, Γ j
00=

1
2

g jk∂kN2,

Γ j
0i=

1
2

g jk∂0gik, Γ0
i j=

1
2N2∂0gi j, Γ j

jα=
∂αB

B
.

(2.3)

2.2 Spacetime formulation of balance laws

Consider now the general system of balance laws (1.1) and, by first assuming enough
regularity on the solutions, let us rewrite it in local coordinates adapted to the (3+
1)–decomposition (2.1) determined by the time function t. From the definition of the
covariant derivative, (1.1) is equivalent to

∂0T0β+∂ jT jβ+Γ0
00T0β+Γ j

j0Tβ0+Γ0
0 jT

jβ+Γ j
jkTkβ

+Γβ00T00+2Γβj0T j0+ΓβjkT jk=0

or, in view of the expressions of the Christoffel symbols (2.3),

∂0T00+∂ jT j0=−∂α(ln(BN3))T0α
−∂0(lnN)T00+

1
N

Ki jTi j,

∂0T0i+∂ jTi j=−∂α(ln(BN3))Tiα+
1
2

gik∂k(N2)T00

+2N gikK jkT j0
−Γi

jkT jk+2
∂0N
N

T0i+2
∂ jB
B

Ti j.
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After multiplication by the weight BN3, we obtain the following formulation of the balance
laws

∂0(BN3T00)+∂ j(BN3T0 j)=S0,

∂0(BN3Ti0)+∂ j(BN3Ti j)=Si,
(2.4)

with right-hand sides

S0=BN2∂0NT00
−

BN
2
∂0gkjTkj,

Si=
BN3

2
gik∂kN2T00

−BN3 gik∂0g jkT j0
−BN3 Γi

jkT jk

−T0i∂0(BN3)+2T0iBN2∂0N+2N3Ti j∂ jB.

In particular, plugging in (2.4) the expression of the matter tensor (1.2) yields the formu-
lation of the Euler equations on a curved spacetime:

∂0

(
BN3

(
(ρc2+p)u0u0

−
1

N2 p
))
+∂ j

(
BN3(ρc2+p)u0u j

)
=S0,

∂0

(
BN3(ρc2+p)u0ui

)
+∂ j

(
BN3

(
(ρc2+p)uiu j+pgi j

))
=Si,

(2.5)

which consist of four equations for the five unknowns (ρ,uα), satisfying the constraint
uαuα=−1.

Introducing local coordinates (xα)=(t,x j) and recalling the decomposition (2.2) of the
volume dVg, the formulation (2.5) can be recovered in the sense of distributions.

2.3 The geometry-preserving spacetime finite volume method

We are now in a position to introduce the geometric formulation of the finite volume
method, which we design directly from the covariant form (1.1) of the balance laws,
rather than introducing first coordinates and then a discretization.

First of all, we introduce a triangulation of the spacetime, say

M=
⋃
K∈T

K,

made of finitely many open sets K, which are assumed to satisfy the following conditions:

• The boundary ∂K=
⋃

e⊂∂K e is piecewise smooth and contains two spacelike faces
(i.e., having an induced metric of Riemannian type) denoted by e+K and e−K, and
timelike (or “vertical”) faces (i.e. having an induced metric of Lorentzian type), the
latter faces being denoted by

e0
∈∂0K=∂K\

{
e+K ,e−K

}
.
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• The intersection K∩K
′

of two distinct elements is a common face of K and K′, or else
is a smooth submanifold with dimension at most 2.

We then adopt the following notation:

• Along the timelike faces e±K, we introduce the outgoing unit normal vector field
denoted by nK.

• |K|,|e+K |,|e
−

K|,|e
0
| denote the Lebesgue measure of the sets K,e+K ,e−K,e0, respectively,

which is defined from the Lorentzian metric or the induced metric on these hyper-
surfaces.

Furthermore, when the spacetime is endowed with a foliation by spacelike hypersur-
faces, say M∪∂M=

⋃
t≥0Ht, associated with a time function t : M

⋃
∂M→ [0,+∞) we say

that the triangulation

M∪∂M=
⋃
K∈T

K,

is compatible with the time function t if it is determined from a sequence of discrete times

t0, t1, t2,...

and a triangulation T′ of the initial three–dimensional slice H0, say

H0=
⋃
K∈T′

K
′

,

in such a way that the boundaries of the elements K
′

are transported to the whole space-
time along the vector field ∂t associated with the time function so that all the vertical faces
are parallel to this vector field. This property makes it clearer to advance the numerical
solution forward in time, and is assumed from now on.

The finite volume method is then based on the following general weak form of the
system of balance laws. Recall that solutions to (nonlinear hyperbolic) balance laws
are generally discontinuous, and these equations must be understood in the sense of
distributions. Hence, we seek here for weak solutions for which (1.1) is understood in the
averaged sense ∫

M

π(X)
αβ TαβdVg=0, (2.6)

in which Xα is a test-field (i.e. is smooth and compactly supported in M) and π(X) denotes
its deformation tensor defined by

π(X)
αβ =

1
2

(
∇αXβ+∇βXα

)
. (2.7)
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The finite volume method is based on the above integral formula, except that we must
now integrate over an arbitrary spacetime element K∈T. Given any smooth vector field
X, which no longer needs to be compactly supported, we write∫

e+K

TβαXαnK,βdVe+K

=

∫
e−K

TβαXαnK,βdVe−K
−

∑
e0∈∂0K

∫
e0

TβαXαnK,βdVe0+

∫
K
π(X)
αβ TαβdVg,

in which obvious notation has been used for the induced volume form along each bound-
ary component of K. The approximation scheme is now defined from this general identity,
by choosing X to be either the vector ∂t associated with the time function, or vector fields
tangent to the spacelike hypersurfaces.

Under our assumptions, the normal nK,β along the spacelike sides has components
(−N,0,0,0), hence the above equation becomes∫

e+K

T0αXαNdVe+K

=

∫
e−K

T0αXαNdVe−K
−

∑
e0∈∂0K

∫
e0

TβαXαnK,βdVe0+

∫
K
π(X)
αβ TαβdVg.

Finally, in specifically chosen coordinates, we can choose covector fields with constant
components, say X(0)=(1,0,...), X(1)=(0,1,0,...), etc., and we can introduce the source-
terms

Sα=π(X(α))
βγ Tβγ,

which allows us to express the following averaged balance laws (α=0,1,...)∫
e+K

T0αNdVe+K
=

∫
e−K

T0αNdVe−K
−

∑
e0∈∂0K

∫
e0

TαβnK,βdVe0+

∫
K

SαdVg. (2.8)

The geometry-preserving version of the finite volume method is based on the integral
identity (2.8). The solution is represented, at every discrete time tn and within each

spacelike hypersurface (say, Htn) by constant states T
0•
e−K
=

(
T

0α
e−K

)
. The constant states T

0•
e+K

on the “next” hypersurface (that is, Htn+1) are then determined as follows. Along each
vertical face e0

K of an element K, we a priori fix a family of numerical flux functions, say,

Fα
e0

K

(
T

0•
e−K

,T
0•
e−K′

)
(with K′ defined by K∩K′= e0

K and K ,K′), for the approximation of the

vertical contribution, so that

TβαnK,β'Fα
e0

K

(
T

0•
e−K

,T
0•
e−K′

)
.
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The numerical fluxes are assumed to be locally Lipschitz continuous and satisfy standard
properties of consistency and conservation [3]. The finite volume scheme generates the

constants values T
0•
e+K

and reads (for α=0,1,...)

Ne+K
|e+K |T

0α
e+K
=Ne−K

|e−K|T
0α
e−K
−

∑
e0

K∈∂
0K

|e0
K|Fe0

K

(
T

0•
e−K

,T
0•
e−K′

)
+ |K|S

α
,

in which Ne±K
are consistent approximations of the lapse function on the corresponding

hypersurfaces and S
α

are consistent approximations of the source–terms. For instance,
under the symmetry assumption of main interest in this paper, we can work in the quotient
manifold which has spacetime dimension (1+1), and we need to introduce consistent

approximations of S
0
=Γ0

00T
00
+Γ0

01T
01

and S
1
=Γ1

01T
01
+Γ1

11T
11

.
Furthermore, a restriction on the time step is required for stability purposes. An

extension of this scheme will be introduced in Section 4 below in order to make it to
preserve steady state solutions at the discrete level.

3 Steady fluid flows on Schwarzschild spacetime

3.1 Steady solutions on a curved spacetime

Our first task is to investigate the properties of steady state solutions to the Euler equations
(2.5). Without imposing symmetry assumptions, it is clear that no analytical closed
formula could be derived for the solutions to

∂ j

(
BN3(ρc2+p)u0u j

)
=S0,

∂ j

(
BN3

(
(ρc2+p)uiu j+pgi j

))
=Si,

(3.1)

which is an (elliptic) system in the variables (x j). By imposing spherical symmetry (for
instance), this system reduces to a system of two ordinary differential equations, which,
in itself is already quite chalenging.

∂1

(
BN3(ρc2+p)u0u1

)
=S0,

∂1

(
BN3

(
(ρc2+p)(u1)2+pg11

))
=S1.

(3.2)

Furthermore, we point out that the solutions studied in the present section were first
introduced in the physics literature in a different gauge [12] and represent the steady state
accretion of matter in a Schwarzschild black hole geometry.
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3.2 Euler equations on Schwarzschild spacetime

We are now interested in the outer domain of communication of Schwarzschild spacetime,
which describes the exterior of a spherically symmetric black hole. The Schwarzschild
metric is a particular solution to the Einstein equations and, in the so-called Bondi coor-
dinates (t,r,θ,ϕ), reads

ds2=−
(
1−

2m
r

)
c2dt2+

(
1−

2m
r

)−1
dr2+r2

(
dθ2+sin2θdϕ2

)
, (3.3)

which is meaningful for r> 2m. The coefficient m represents the mass of a black hole
located at r = 0. This spacetime is spherically symmetric, that is, is invariant under
the group of rotations acting on the spacelike 2-spheres of constant t and r. It is static,
since the vector field ∂0 = ∂t is a timelike Killing vector and asymptotically converges
to the (asymptotically flat) Minkowski spacetime, when r→+∞. The expression (3.3)
represents the outer domain of communication, only, and a different coordinate choice
would be required to go through the horizon located the “boundary of the coordinates”
r=2m (around which the spacetime itself is actually regular).

From now on, for simplicity in the presentation we assume that the equation of state
is linear, i.e.

p(ρ)=σ2ρ, (3.4)

where the so-called sound speed σ is a constant. This is not an essential assumption,
however. We restrict attention to solutions depending on the radial variable r, only, and
such that the non-radial component of the velocity vanishes. In orther words, we have
(uα)=

(
u0(t,r),u1(t,r),0,0

)
and, as a consequence, the energy momentum tensor satisfies

T02=T03=T12=T13=T23=0.
The velocity uα is a unit vector, thus −1=−

(
1− 2m

r

)
(u0)2+

(
1− 2m

r

)−1
(u1)2 and, in terms

of the rescaled velocity component V= c
1− 2m

r

u1

u0 , we find

(u0)2=
c2

(c2−V2)
(
1− 2m

r

) , (u1)2=V2

(
1− 2m

r

)
(c2−V2)

.

We can thus express the Euler system in the form

∂0(BN3T00)+∂r(BN3T10)=S0,

∂0(BN3T01)+∂r(BN3T11)=S1,

in which
S0=0, BN3=sinθr(r−2m),

S1=T00 BN3

2
g11∂rN2

−BN3Γ1
j jT

j j+2N3T11∂rB.
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We thus arrive at

∂t
(
r(r−2m)T00

)
+∂r

(
r(r−2m)T01

)
=0,

∂t
(
r(r−2m)T01

)
+∂r

(
r(r−2m)T11

)
−3mT11+

c2m
r2 (r−2m)2 T00

−r(r−2m)2 T22
−rsin2(θ)(r−2m)2 T33=0,

whose coefficients are given by

T̃00=
(
1−

2m
r

)
T00=

c2ρ+p(ρ)V2/c2

c2−V2 c2, T̃01=T01=
c2ρ+p(ρ)

c2−V2 cV,

T̃11=
1(

1− 2m
r

) T11=
V2ρ+p(ρ)

c2−V2 c2,
(3.5)

and

T22=
p(ρ)

r2 , T33=
p(ρ)

r2 sin2θ
.

In conclusion, the Euler system on a Schwarzschild background takes the form

∂t
( r2

c2 T̃00
)
+∂r

(
r(r−2m)

c
T̃01

)
=0,

∂t

(
r(r−2m)

c
T̃01

)
+∂r

(
(r−2m)2T̃11

)
−3m

r−2m
r

T̃11

+m
r−2m

r
T̃00
−

2σ2

r
(r−2m)2 T̃00

−T̃11

c2−σ2 =0,

(3.6)

where we recall that σ is the sound speed.
For later use, we record here some additional formulas:

c2T00(1−
2m
r
)=

r
r−2m

T11+ρc2
−p,

ρ= T̃00 1−V2

1+σ2V2 ,

V=
1

2σ2
T̃00

T̃01

1+σ2
−

√
(1+σ2)2−4σ2

(
T̃01

T̃00

)2
,

(3.7)

and

T̃00 T̃11
−(T̃01)2=σ2c2ρ2, T̃00+T̃11=

(σ2+c2)+(V2+c2)

c2−V2 ,

T̃00
−T̃11=(c2

−σ2)ρ, (T̃11)2
−(T̃01)2=

σ4
−V2c2

c2−V2 ρ2c2.
(3.8)
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3.3 A closed formula for steady fluid solutions

We now derive a closed formula for smooth steady solutions ρ= ρ(r) and V =V(r) to
the Euler equations posed on a Schwarzschild spacetime. Various plots of solutions are
provided in Figures 3.1 to 3.4. We work in an interval r∈ (2m,R] for some fixed R>2m,
and we impose some boundary data at r=R

ρ(R)>0, V(R)∈ (−1,1).

The Euler equations reduce to the following system of ordinary differential equations:

d
dr

(
r(r−2m)

c
T̃01

)
=0, (3.9)

d
dr

(
r(r−2m)T̃11

)
−mT̃11+mT̃00

−2σ2(r−2m)
T̃00
−T̃11

c2−σ2 =0. (3.10)

The “first” equation (3.9), after integration over the interval [r,R], yields

A(r)= r(r−2m)
c2ρ+p(ρ(r))

c2−V(r)2 V(r)=A(R), r∈ (2m,R), (3.11)

where A(R) is determined by some boundary data prescribed at r=R. This implies that
if V(R)≷0, then V(r)≷0 for all r∈ (2m,R). By solving (3.11) in terms of V(r), we deduce

V=
−κρ±

√
(κρ)2+4c2A2

2A
, (3.12)

where κ=κ(r)= r(r−2m)(c2+σ2) is a function determined by the mass and the sound
speed denoted by σ.

By using our expressions (3.8), the equation (3.9) (after taking the square) is equivalent
to

d
dr

(
r2(r−2m)2

c2

(
T̃00 T̃11

−
σ2c2

(c2−σ2)2 (T̃
00
−T̃11)2

))
=0.

Hence, by introducing the following suitably weighted quantities

T̂00= r(r−2m)T̃00, T̂11= r(r−2m)T̃11, ε=
σc

c2−σ2 , µ=
2σ
c

,

the Euler system becomes

d
dr

( 1
c2

(
T̂00 T̂11

−ε2(T̂00
−T̂11)2

))
=0, (3.13)

d
dr

T̂11+
1
r

(
m

r−2m
−µε

)
(T̂00
−T̂11)=0. (3.14)



12

We can integrate the equation (3.13), as we did earlier, and with the new notation we
now have

T̂00 T̂11
−ε2(T̂00

−T̂11)2= c2A2,

where we recall that A=A(R)=A(r) is a constant. By setting Y= T̂11, this equation takes
the form

−ε2(T̂00
−Y)2+T̂00Y−c2A2=0,

which leads us to

T̂00=Y
(

1
2ε2 +1

)
∓

1
2ε2

√
Y2(1+4ε2)−4ε2c2A2. (3.15)

In addition, since the dominant energy condition (satisfied by the fluids under consider-
ation in (3.4)) imposes T00

≥T11, we must have T̂00
−Y≥0, that is,

Y∓
√

Y2(1+4ε2)−4ε2c2A2≥0,

which is a constraint on the values taken by Y. Using the definition of Y and the expression
(3.15) in the “second” Euler equation (3.14), we now find

dY
dr

+
1
r

(
m

r−2m
−µε

)
1

2ε2

(
Y∓

√
Y2(1+4ε2)−4ε2c2A2

)
=0. (3.16)

This differential equation in Y can be solved and we obtain

dY

Y∓
√

Y2(1+4ε2)−4ε2c2A2
=−

1
r

(
m

r−2m
−µε

)
1

2ε2 dr

and, after integration,∫ R

r

dY

Y∓
√

Y2(1+4ε2)−4ε2c2A2
=

1
4ε2

∫ R

r

(
1+2µε

r
−

1
(r−2m)

)
dr

= ln

(R
r

) 1+2µε
4ε2

( r−2m
R−2m

) 1
4ε2

= ln

 F(r)
F(R)

.

With the change of variable y2=Y2 Λ2=Y2 1+4ε2

4c2A2ε2 , the integrand simplifies:

ln
( F(r)
F(R)

)
=

∫ R

r

dy

y∓δ
√

y2−1

=

∫ R

r

d(coshX(y))
coshX(y)∓δsinhX(y)

=
1

(1∓δ)

∫ R

r

e2X(y)
−1

e2X(y)+ζ
dX,
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Figure 3.1. Steady solutions for three values of the radius r.

Figure 3.2. Two steady solutions Y= T̃11 for the radius r= .8
with ρ(R)=460 and V(R)= .001.
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Figure 3.3. Two steady solutions T̃11 for a fixed radius r= .8
with ρ(R)=460 and V(R)= .001.

where we have used the change of variable y= coshX(y) and set δ= (1+4ε2)1/2 and
ζ= 1±δ

1∓δ . We thus obtain

ln
( F(r)
F(R)

)
=

1
(1∓δ)

(
−X(y(r))+X(y(R))

)
−
ζ+1
(1∓δ)

∫ R

r

1
e2X(y)+ζ

dX

=
1

(1∓δ)

(
−X(y(r))+X(y(R))

)
−

ζ+1
2(1∓δ)

∫ R

r

1
W(W+ζ)

dW

with e2X(y)=W and, so by integration,

ln
( F(r)
F(R)

)
=
−1

1∓δ

(
X(y(r))−X(y(R))

)
−

1
1−δ2

ln
W(R)
W(r)

−ln
W(R)+ζ
W(r)+ζ


=
−1

1∓δ

(
X(y(r))−X(y(R))

)
+

1
1−δ2

2
(
X(y(r))−X(y(R))

)
+ln

e2X(y(R))+ζ

e2X(y(r))+ζ


=

(
−

1
1∓δ

+
2

1−δ2

)(
X(y(r))−X(y(R))

)
+

1
1−δ2

ln
e2X(y(R))+ 1±δ

1∓δ

e2X(y(r))+ 1±δ
1∓δ

.

Therefore, we have derived an algebraic relation for the function X=X(y(r)), that is,

H(y(r))=

 y(r)+
√

y(r)2−1

y(R)+
√

y(R)2−1


1∓δ y(R)+

√
y(R)2−1+ 1±δ

1∓δ

y(r)+
√

y(r)2−1+ 1±δ
1∓δ

−
 F(r)

F(R)


1−δ2

=0,

(3.17)
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(a) (b)

Figure 3.4. Steady solutions on Schwarzschild spacetime: (a) velocity (b) density
with ρ(R)=460, V(R)=0.001, σ=0.3, R=2, 2m=0.2.

where we recall that

ε=
σc

c2−σ2 , δ=(1+4ε2)1/2, ζ=
1±δ
1∓δ

, F(r)=
(

1
r

) 1+2µε
4ε2

(
r−2m

) 1
4ε2

,

Λ2=
1+4ε2

4c2A2ε2 , Y= r(r−2m)T11, y2=Y2 Λ2.

The change of variables is justified for y≥1.
In summary, given ρ(R)>0 and V(R)∈ (−1,1), there exist two steady solutions

y±= y±(r), r∈ (2m,R]

to the reduced Euler equation (3.17). We have derived an algebraic relation for these
solutions, specifically H(y(r))=0, so that y(r) can be computed by solving this equation
for each r, for instance by a fixed point technique. From the function y= y(r), it is then
straightforward to recover the physical variables. Namely, by using (3.15),

T̂00=Y
(

1
2ε2 +1

)
∓

1
2ε2

√
Y2(1+4ε2)−4ε2c2A2,

and T̃00
−T̃11 =(c2

−σ2)ρ, we obtain the expression of the density ρ=ρ(r) and, next, for
the velocity V=V(r) from (3.12), that is,

V=
−κρ±

√
κ2ρ2+4c2A(R)2

2A(R)
.
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4 Well–balanced approximations on Schwarzschild spacetime

4.1 Finite volume method

We express the Euler equations on Schwarzschild spacetime in the form of a hyperbolic
system of balance laws, that is,

∂tU+∂rF(U,r)=S(U,r), r>2m, (4.1)

with, in view of (3.5)-(3.6),

U=

(
U0

U1

)
=

 r2 c2ρ+p(ρ)V2/c2

c2−V2

r(r−2m)
c2ρ+p(ρ)

c2−V2 V

,

F(U,r)=
(
F0(U,r)
F1(U,r)

)
=

r(r−2m)
c2ρ+p(ρ)

c2−V2 V

(r−2m)2 V2ρ+p(ρ)
c2−V2 c2

,

and

S(U,r)=
(
S0(U,r)
S1(U,r)

)
=

 0
r−2m

r(c2−V2)
ρ
((

3m(c2+σ2)−2σ2r
)
V2
−c2

(
m(c2+σ2)−2σ2r

)).

We apply the finite volume technique, presented in Section 2.3 for general systems
of balance laws, by working here with the (1+1)–dimensional quotient (by the group of
spatial symmetries) of the Schwarzschild spacetime. For this quotient metric g, we thus
have ds2=−c2

(
1− 2m

r

)
dt2+ g̃ with induced volume form

dVg̃t
=(g̃)1/2dr=

(
1−

2m
r

)−1/2
dr, ∆Vg̃t

=

∫ r j+1/2

r j−1/2

(
1−

2m
r

)−1/2
dr.

In agreement with Section 2.3 and by introducing the approximations

U
n
j '

1
∆r j

∫ r j+1/2

r j−1/2

U(r,tn)dVg̃tn
, S

n
j '

1
∆r j

∫ r j+1/2

r j−1/2

S(tn,r)dVg̃t
,

and

∆r j=∆Vg̃tn
=

∫ r j+1/2

r j−1/2

(
1−

2m
r

)−1/2
dr,

the finite volume scheme takes the form

U
n+1
j =U

n
j −

∆t
∆r j

(
F

n
j+1/2−F

n
j−1/2

)
+∆tS

n
j , (4.2)



17

in which F
n
j+1/2 are consistent approximations of the exact flux of the system (4.1).

As usual, the Courant–Friedrichs–Lewy (CFL) condition is imposed on the time step
in order to guarantee stability. Specifically, we set ∆t= tn+1−tn, which we assume to be
independent of n for simplicity, and impose the inequality

∆t
∆r

max|λ(U)|<1, (4.3)

where the maximum is taken over the (real) wave speeds λ(U) of the Euler system.

4.2 Taking the Schwarzschild geometry into account

In steady state solutions to (4.1), which by definition satisfy

∂rF(U,r)=S(U,r), (4.4)

the source terms exactly balance the flux terms. We will construct the well-balanced
version of the finite volume scheme introduced in the previous subsection by imposing
that the same property must hold at the discrete level of approximation for the family
of discrete steady states. For instance, cell–centered evaluation of the source terms,
generally, do not ensure the preservation of these discrete steady states. Therefore, we
look for an adapted discretization of the source-term which directly uses information from
the steady state equation and, more specifically, uses the characterization (3.17) exhibited
in Section 3, above. In turn, our scheme will satisfy a discrete version of the steady state
system (4.4).

Motivated by the work by Russo et al. [23, 25], the reconstruction scheme proposed
now takes the family of steady solutions into account for the numerical evaluation of the
intermediate states at which the numerical flux is computed. Specifically, recalling the
first Euler equations (in the form adopted in the present paper) contains no source-term,
we define the well–balanced finite volume scheme

U
0,n+1
j =U

0,n
j −

∆t
∆r j

(
F

0,n
j+1/2−F

0,n
j−1/2

)
,

U
1,n+1
j =U

1,n
j −

∆t
∆r j

(
F

1,n
j+1/2−F

1,n
j−1/2

)
+∆tS

1,n
j ,

(4.5)

by substituting our closed expression of the family of steady solutions. Clearly, the first
equation is in a conservation form and does not need any well-balanced correction, so we
concentrate on the second equation.

First of all, we approximate the solution in each cell by a steady solution and, under
this approximation and by using integration by parts, we can then transform the source
term for the second Euler equation (cf. the expression (3.6)), as follows (for exact steady
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solutions):

1
∆Vg̃t

∫ r j+1/2

r j−1/2

S1
j dVg̃t

=
1

∆Vg̃t

∫ r j+1/2

r j−1/2

3m
r−2m

r
T̃11
−m

r−2m
r

T̃00+
2σ2

r
(r−2m)2 T̃00

−T̃11

c2−σ2

dVg̃t

=
1

∆r j

∫ r j+1/2

r j−1/2

∂r
(
(r−2m)2T̃11

)(
1−

2m
r

)−1/2
dr

=
1

∆r j

(
r1/2(r−2m)3/2T̃11

)∣∣∣∣r j+1/2−

r j−1/2+

+
m

∆r j

∫ r j+1/2

r j−1/2

T̃11dVg̃t
.

This identity, valid for exact steady solutions, motivates us to propose the following
approximation for the source term

S
1,n
j =

1
∆r j

(
r1/2(r−2m)3/2T̃

11,n

j+1/2−−r1/2(r−2m)3/2T̃
11,n

j−1/2+

)
+

m
∆

∫ r j+1/2−

r j−1/2+

T̃11,n
(
1−

2m
r

)−1/2
dr.

(4.6)

Of course, in order to be able to make use of the above definition, it remains, on one hand,

to introduce suitable approximations T̃
11,n

j+1/2− and T̃
11,n

j−1/2+ (consistent with the values
taken by the “true” solution) at the interfaces between the cells and, on the other hand,
to evaluate the integral term above.

Consider first the latter issue, we propose here to use Simpson’s rule, and we replace
the integral term by the following explicit expression

m
∆Vg̃t

∫ r j+1/2−

r j−1/2+

T̃11,ndVg̃t
≈

m
6

(
T̃

11,n

j−1/2++4T̃
11,n

j +T̃
11,n

j+1/2−

)
. (4.7)

Observe next that, since we have introduced new states at the interfaces between the
cells, it is natural (and actually necessary in order to achieve the weel-balanced property)
to compute the numerical flux (of the second Euler equation) in terms of these interfaces
value. In other words, we write (at j+1/2, say, and with similar formulas at j−1/2)

F
0
j+1/2=F

0(
U

1
j+1/2−,U

1
j+1/2+

)
,

F
1
j+1/2=F

1(
U

0
j+1/2−,U

1
j+1/2−,U

0
j+1/2+,U

1
j+1/2+

)
,

(4.8)

where we are taking in to account the particular dependency of the flux of the Euler
system. By taking the Schwarzschild geometry into account, we can write (with obvious
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notation)

U
1,n
j+1/2−= r j+1/2(r j+1/2−2m)T̃

01,n

j+1/2−,

U
1,n
j+1/2+= r j+1/2(r j+1/2−2m)T̃

01,n

j+1/2+,

It now remains to compute the states at the interfaces. First of all, recalling that, for
exact steady solutions, the expression r(r−2m)T01 is a constant, we naturally determined

the “reconstructed” states T̃
01,n

j±1/2∓ and T̃
01,n

j±1/2∓ at the interfaces (by interpolation from the
states within the cells) by setting

T̃
01,n

j+1/2+=
(r j+∆r j)(r j+∆r j−2m)

r j+1/2(r j+1/2−2m)
T̃

01,n

j+1 ,

T̃
01,n

j+1/2−=
r j(r j−2m)

r j+1/2(r j+1/2−2m)
T̃

01,n

j ,

T̃
01,n

j−1/2+=
r j(r j−2m)

r j−1/2(r j−1/2−2m)
T̃

01,n

j ,

T̃
01,n

j−1/2−=
(r j−∆r j)(r j−∆r j−2m)

r j−1/2(r j−1/2−2m)
T̃

01,n

j−1 .

On the other hand, the “reconstruction” of the interface states T̃
11,n

j±1/2∓ and T̃
11,n

j±1/2∓ is
more delicate and requires the full algebraic relation (3.17), which provides us with
a complete characterization of steady solutions. This characterization is based on the
function H=H(y) discovered in Section 3 and, therefore, in each computational cell we
now impose the two relations (with obvious notation for the quantities yn

j , yn
j−1/2+, and

yn
j+1/2−)

H(yn
j+1/2−)=H(yn

j )=H(yn
j−1/2+),

in which the value yn
j is explicitly known from the states in the cell j, while the unknowns

yn
j−1/2+ and yn

j+1/2− at the interfaces are obtained by (numerically) solving the above
algebraic equations (by a fixed point technique). Thanks to the relation (3.15), we can

now determine all of the interface values T̃
00,n

j±1/2∓ and T̃
00,n

j±1/2∓. Finally, from the identity
(3.8), we can also compute the mass energy density states ρn

j±1/2∓ as well as the velocity

components V
n
j±1/2∓, and V

n
j±1/2∓. We have now completed the design of our well-

balanced scheme (at the first–order of accuracy).
In summary, the above construction relying on steady solutions in order to define the

interface states for the evaluation of the numerical fluxes, it can be checked that steady
solutions are exactly preserved at the discrete level of approximation. On the other hand,
the consistency property of the original scheme (ensuring that limits of the scheme do
satisfy the Euler equations in the sense of distributions) also holds.
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4.3 Second–order accuracy

To arrive at a second–order scheme, we follow Nessyahu and Tadmor [19] and introduce
a predictor–corrector scheme, as follows:

U
n+1/2
j =U

n
j −

∆t
2∆r

F
′

j,

U
n+1
j+1/2=

1
2

(
U

n+1
j +U

n
j+1

)
+

1
8
(U
′

j−U
′

j+1)−
∆t
∆r

(
F
(
U

n+1/2
j+1

)
−F

(
U

n+1/2
j

))
.

The states U
′

j,F
′

j represent first–order approximations of the space derivatives (of the field
and flux variables) at the point r j and can be computed in several ways. A standard
choice (which is used in this paper) is given by

U
′

j=M
(
U

n
j+1−U

n
j ,U

n
j −U

n
j−1

)
,

F
′

j=M
(
F

n
j+1−F

n
j ,F

n
j −F

n
j−1

)
,

where M(U,W) is the min-mod limiter (which we apply composent-wise)

M(U,W)=

sgn(U)min(|U|,|W|), sgn(U)=sgn(W),
0, otherwise.

5 Numerical experiments and applications

5.1 Comparison between several schemes

In the following numerical experiments, we investigate the proposed scheme for the
computation of weak solutions to the Euler equations on Schwarzschild spacetime. We
work within the exterior domain of communication r ∈ (2m,R) limited by the horizon
r=2m and a sphere with radius R>2m. In all tests, the sound speed is taken to be σ=0.3,
the light speed is unit, the upper space bound R=2, and the mass parameter is m=0.1.
More precisely, our computations take place in an interval r∈ (r0,R), with r0>2m, so that
we stay away from the horizon, on which the Euler equations (in the chosen coordinates)
are singular. In every test, we treat the boundaries at r=r0 and r=R by solving a Riemann
problem between the boundary data (determined from the given initial data) and the
current numerical values at the boundaries, and we use the flux of the Riemann solutions,
which is the Godunov scheme at the boundary [9, 10].

We begin by illustrating the interest of the well–balanced property and we compare
together two schemes, the proposed well-balanced one as well as a “naive discretization”
(cf. next paragraph) of the right–hand sides of the Euler equations. Throughout, we also
plot the exact (or asymptotic) solution when available. The “naive discretization” of the
right–hand sides of the Euler equations is defined by replacing the discretiation of the
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source S
n
j in (4.2) by an evaluation computed from the state U

n
j , that is, for the naive

version, only, S
n
j reads 0
r j−2m

r j (c2−(Vn
j )

2)
ρn

j

((
3m(c2+σ2)−2σ2r j

)
(Vn

j )
2
−c2

(
m(c2+σ2)−2σ2r j

)).

The numerical results are plotted in Figures 5.1.1 and 5.1.2, where we have chosen
initial data made of a perturbation of a steady solution. This solution is determined from
the value of the velocity V(R)=0.001 and the density ρ(R)=460 at the end point of the
interval (r0,R). A sine perturbation is added to the steady solution, so that a genuine
evolution in time now takes place and we work in the interval r0=0.5<r<R=2. We use
the space mesh size ∆r=0.025 and a CFL number equal to 0.9.

Figure 5.1.1 (a) represents the steady solution (velocity component) together with its
perburbation which serves as our initial data. Figure 5.1.1 (b) represents the steady solu-
tion together with the numerical solutions with our two schemes. Observe that the well-
balanced scheme produces a solution which is closer to the steady solution and oscillates
about it, while the standard scheme deviates significantly from it. Figure 5.1.1 (c) repre-
sents the same solutions, but at a much later time: we now observe that the well–balanced
numerical solution slightly oscillates about the steady solution, while the standard numer-
ical solution is clearly completely wrong. Figure 5.1.1 (d) represents the time–asymptotic
behavior, and we observe that the well-balanced scheme has re-converged to the original
steady solution, the perturbations having cancelled out asymptotically, while again the
standard scheme has generated a completely wrong solution.

Figure 5.1.2, instead of the physical variables (like the velocity above), shows the
nonlinear expression r(r−2m)T̃01, which is known to be constant for steady solutions.
Figure 5.1.2 (a) represents this function for the steady solution (which is thus a constant)
and for the well–balanced scheme after N = 500 and N = 1000 iterations, respectively.
Figure 5.1.2 (b) is a plot of the relative error for the same quantity. Again, we observe that
the well–balanced scheme produces a quite satisfactory result with 0.5% at the end point
r=R of the interval. The accuracy is better near the horizon but grows with r. (A further
correction of the scheme may be found useful to improve the accuracy for large radius r.)

5.2 Propagation of a shock/rarefaction pattern

We study here initial data containing a shock separating two steady solutions. As we
evolve such initial data, the profile of the solution changes and additional waves arise.
The initial jump we choose being arbitrary, a full solution to the Riemann problem is
generated and both shocks and rarefactions may occur. The two steady solutions are
defined as follows: the left–hand steady solution has the velocity V(R)= 0.001 and the
density ρ(R)= 460, while V(R)= 0.004 and ρ(R)= 480 for the right–hand solution. As
in the first test, we work in the interval r0 = 0.5< r<R= 2. We use the space mesh size
∆r=0.025 and a CFL number equal to 0.9.
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(a) Initial data and perturbation (velocity) (b) Intermediate time

(c) Later time (d) Asymptotic behavior

Figure 5.1.1. Numerical solutions with the standard and well–balanced schemes.

Figure 5.2.1 (a) represents the initial discontinuity separating the two steady solutions,
while the other three plots in Figure 5.2.1 (b), (c), (d) show the numerical solution given by
the standard and the well-balanced schemes. We observe that the well–balanced scheme
produces a sharper solution with a jump of the same magnitude as the initial jump,
while the standard scheme has generated a “spike” of much larger amplitude. Yet, this
unphysical spike is diminishing as time evolves and gets back closer to the amplitude of
the well-balanced numerical solution.

5.3 Late–time asymptotic stability of steady solutions

We have now validated our well–balanced scheme and this motivates us to now apply
it in order to study the nonlinear stability of a given steady solution. The initial data of
interest here are defined by adding a compactly supported perturbation. The velocity
and density at the right–hand point of the spatial interval are chosen to be V(R)=0.001
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(a) r(r−2m)T̃01 asymptotic values
(b) L1 error between the numerical

and asymptotic solutions

Figure 5.1.2. Asymptotic solution with the well–balanced scheme.

and ρ(R) = 460, respectively. We now work in the interval r0 = 1.2< r<R= 2, and we
use the space mesh size ∆r=0.035 and a CFL number equal to 0.9. The time-asymptotic
solution correspond to the data ρR=528.0 and vR=0.0011.

The numerical results are plotted in Figure 5.3. Observe that the initial discontinuous
perturbation evolves, gets smoothed out, and spreads in both directions. In particular, in
Figure 5.3 (a) and (b), we compare the numerical solutions for very large times with the
initial steady solution, as well as with the steady solution determined from the values
V(R) and ρ(R) of the numerical solution. Hence, we have demonstrated numerically that
solutions converge to steady solutions and, in the present test, the initial perturbation has
the effect of modifying the steady solution of reference.

We observed numerically that the solution reaches another steady state, which we
plot on the same figure, for the sake of comparison. The late-asymptotic solution is found
to be ρ(R)'528.0 and v(R)'0.0011. Furthermore, in Figure 5.4, we have computed the
relative numerical error in a log-log scale in terms of the ratio ∆r. The convergence rate
for the first scheme was found to be a1=0.83, while a2=1.43 for the second scheme.

6 Concluding remarks

We have presented a well-balanced scheme for relativistic hydrodynamics posed on a
fixed background spacetime and, especially, Schwarzschild spacetime. For simplicity, we
assumed that the equation of state is given by a linear relationship between the mass-
energy density and the pressure. The generalization to other pressure laws is possible;
it would lead to “highly nonlinear” algebraic expressions, but would not bring any new
difficulty for the purpose of this paper.
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(a) Initial velocity (b)

(c) (d)

Figure 5.2.1. Propagation of a shock/rarefaction pattern (two schemes).

To encompass other backgrounds (for instance, Schwarzschild-de Sitter spacetime,
with cosmological constant included), the analysis in Section 3 should be revisited. An
analogue characterization of steady solutions could be derived without additional con-
ceptual difficulties, so that our method appears to be relevant for a class of background
black hole spacetimes.

Although the proposed finite volume method is currently restricted to problems in-
volving one spatial variable, it is of genuine interest for numerical relativity and provides
a new tool in order to investigate the evolution of self-interacting matter under symmetry
conditions. Indeed, a suitable extension of our method should allow us to deal with the
coupled Einstein-Euler system, in which the metric itself is an unknown of the problem.
This strategy has now been applied to the Einstein equations for spherically symmetric
spacetimes and should also be useful to investigate T2–symmetric matter spacetimes (ad-
mitting, by definition, two commuting Killing fields). Specifically, our approach should
allow for a study of the spherically symmetric, self–gravitational collapse of compressible
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(a) Initial data and perturbation (velocity) (b) t = 0.01

(c) t = 0.05 (d) t = 0.08

(e) t = 0.5 (f) t = 1.55

Figure 5.3. Late–time behavior of a perturbed steady solution.
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Figure 5.4. Data points and fitted regression lines for the first and second order schemes
with a1=0.83, a2=1.43.

fluids (investigated earlier by Novak and Ibanez [20] and Papadopoulos and Font [22] in
a different gauge) and for the application of the proposed finite volume technique to the
formation of trapped surfaces.

The treatment of the full Einstein system without symmetry assumptions is currently
out of the scope of the existing techniques. An intermediate goal will be to encompass gen-
eral fluid equations (without symmetry and with general pressure laws) and arbitrarily
curved four-dimensional background geometries (satisfying Einstein equations).

Acknowledgments

The authors are very grateful to J.A. Font, J. Novak, and G. Russo for their comments on a
preliminary version of this paper. The first author was supported by the Centre National
de la Recherche Scientifique. The authors were supported by the Agence Nationale de la
Recherche through the grants ANR 2006-2–134423 and ANR SIMI-1-003-01.

References

[1] M. Alcubierre, Introduction to 3+1 numerical relativity, Inter. Series Mono. Physics, Vol. 140,
Oxford Univ. Press, 2008.

[2] P. Amorim, M. Ben-Artzi and P.G. LeFloch, Hyperbolic conservation laws on manifolds:
Total variation estimates and finite volume method, Meth. Appl. Analysis 12 (2005), 291–324.



27

[3] P. Amorim, P.G. LeFloch, and B. Okutmustur, Finite volume schemes on Lorentzian mani-
folds, Comm. Math. Sc. 6 (2008), 1059–1086.

[4] M. Ben-Artzi, J. Falcovitz, and P.G. LeFloch, Hyperbolic conservation laws on the sphere.
A geometry-compatible finite volume scheme, J. Comput. Phys. 228 (2009), 5650–5668.

[5] M. Ben-Artzi and P.G. LeFloch, The well posedness theory for geometry compatible hyper-
bolic conservation laws on manifolds, Ann. Inst. H. Poincaré Anal. Nonlinéaire 24 (2007),
989-1008.

[6] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws
and well balanced schemes for sources, Birkhäuser, Verlag, Bäsel, 2004.
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