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Introduction.

We study Cauchy (and inverse Cauchy) problem for equation

∂f

∂t
+ ϕ(f)

∂f

∂x
= 0, x ∈ R, t ≥ 0 (∗)

with initial data f(x, 0) = f0(x). The most natural (not equivalent) definitions for solu-

tions of problem (*) consists in the existence of solutions f
def
= fε(x, t) for equations

∂f

∂t
+ ϕ(f)

∂f

∂x
= ε

∂2f

∂x2
, ε > 0, x ∈ R, (1a) or

df

dt
+ ϕ(f)

f(x, t)− f(x− ε, t)

ε
= 0, x ∈ R, (1b)

with property

fε(x, 0) = f0(x), ε ≥ 0, (2)

such that fε(x, t) → f0(x, t), when ε→ +0.
Equation (1a) with linear f 7→ ϕ(f) was introduced at first by Riemann (1860) (for

ε = +0) and later by Bateman (1915), Burgers (1939) and Hopf (1950) (for ε > 0) as the
simplest approximation to the equations of fluid dynamics.

Equation (1a) for general ϕ(f) was introduced later in a very different models: dis-
placements of oil by water (Buckley, Leverett, 1942), consolidation of wet soil (Florin,
1948), the road trafic (Lighthill, Whitham, 1955) etc. Equation (1b) was introduced by
Polterovich, Henkin, 1988, for description of a Schumpeterian evolution of industry. In
physical applications of (1a) the main interest has the inviscid case, when ε = +0, but the
application of (1a) in the transport flow theory and of (1b) in Schumpeterian dynamics
the main interest presents the viscid case, when ε > 0.

It is important to remark that behavior of solutions of (1b) with ε = +0 is not the
same as the behavior of solutions of (1a) with ε = +0, in spite that for ε = 0 the both
equations (1a), (1b) look identical.

In fact, equation (1b) is a semi-discrete approximation of the non conservative equation

∂f

∂t
+ ϕ(f)

∂f

∂x
=
ε

2
ϕ(f)

∂2f

∂x2
.

Assumption 1.

Let α− < α+, f0(x) be real-valued function of bounded variation on R such that
f0(x) = α±, if ±x ≥ ±x±, x− < x+. Let ϕ(f) be a positive, continuous differentiable
function of real variable f such that ϕ′(f) has only isolated zeros.

Theorem ([5], [19], [10], [11]).
Under assumption 1 and ∀ε > 0 the following general properties of Cauchy problems

(1a,b) are valid.
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a) Cauchy problem (1a), (2) has a unique (weak) solution f(x, t), x ∈ R, t ∈ R+. This
solution satisfies Rankine-Hugoniot conservation laws for t ≥ 0:

f(x, t) → α±, if x→ ±∞, and

d

dt

[

0
∫

−∞

(α− − f(x, t))dx+

∞
∫

0

(α+ − f(x, t))dx =

α+
∫

α−

ϕ(y)dy.

Moreover, if the initial data f0(x) is nondecreasing in x then f(x, t) is nondecreasing
in x∀ t ≥ 0.

b) Cauchy problem (1b), (2) has a unique (weak) solution f(x, t), x ∈ R, t ∈ R+. This
solution satisfies the following conservation laws for t ≥ 0 and θ ∈ [0, 1):

f(kε+ θε, t) → α±, if k → ±∞, k ∈ Z, and

d

dt

[

0
∑

−∞

α−
∫

f(kε+θε,t)

dy

ϕ(y)
+

∞
∑

1

α+
∫

f(kε+θε,t)

dy

ϕ(y)

]

=
1

ε
(α+ − α−).

Moreover, if for some θ ∈ [0, 1) the initial data f0(kε+θε, t) is nondecreasing in k ∈ Z,
then f(kε+ θε, t) is nondecreasing in k ∈ Z with the same θ.

Put

ψ(u) = −
u
∫

α−

ϕ(y)dy, u ∈ [α−, α+], for (1.a), (3a)

ψ(u) =

u
∫

α−

dy

ϕ(y)
, u ∈ [α−, α+], for (1.b), (3b)

Let us introduce respectively for (3a) and for (3b) the concave function ψ̂(u) as the
upper bound of the convex hull of the set

{(u, v) : v ≤ ψ(u), u ∈ [α−, α+]}.

Assumption 2. Suppose that for (3a) and respectively for (3b) the set

S = {u ∈ [α−, α+] : ψ(u) < ψ̂(u)} has the following form

S = (α−
0 , α

+
0 ) ∪ (α−

1 , α
+
1 ) ∪ . . . (α−

L , α
+
L ), where

α− = α−
0 < α+

0 < α−
1 < α+

1 < . . . < α−
L−1 < α+

L−1 < α−
L < α+

L = α+.
(4a, b)

Let

cl =
1

α+
l − α−

l

α+

l
∫

α−

l

ϕ(y)dy, for (1a), l = 0, . . . , L, (5a)

cl = (α+
l − α−

l )

(

α+

l
∫

α−

l

dy

ϕ(y)

)−1

, for (1b), l = 0, . . . , L. (5b)
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Assumptions 1, 2 and notation (5a,b) imply the following important inequalities (for (1a))
and respectively for (1b):

ϕ(α+
l ) ≤ cl ≤ ϕ(α−

l ), l = 0, . . . , L,

cl = ϕ(α−
l ), l = 1, . . . , L,

cl = ϕ(α+
l ), l = 0, . . . , L− 1.

(6)

Let us remark that the inequalities above are, in fact, equalities except for the cases
l = 0 and l = L.

Motivated by models of fluid mechanics Gelfand, [5], had formulated the following
problem:

∀ε ≥ 0 to find asymptotic (t → ∞) of solution f(x, t) of equation (1a) with initial
condition (2).

Gelfand had found solution of this problem for the case ε = +0 with special (Riemann
type) initial conditions

f(x, 0) =

{

α−, if x < x0
α+, if x > x0

and had noted that it would be interesting to prove that the main term of the asymptotic
(t→ ∞) of f(x, t), satisfying (1a),(2), coincides with the solution of (1a), (2) with ε = +0.

Motivated by models of economical development similar problems were considered
later [11], [12] for equation (1b).

Theorem. (Gelfand, 1959).
Under assumptions 1, 2, solution of (1a) with ε = +0 with initial condition (2):

f(x, 0) = α±, if ±(x− x0) > 0, has the following form:

f(x, t) =







α−, if x− x0 < c0t
α+, if x− x0 ≥ cLt

ϕ(−1)
(

x−x0

t

)

, if clt ≤ x− x0 < cl+1t, 0 ≤ l < L.

The Gelfand problem for (1a), (2) with ε ≥ 0 and with monotonic ϕ(f) was solved by
Iljin and Oleinik [16].

Theorem (Iljin, Oleinik, 1960).
Let under assumptions 1, 2 f be solution of (1a), (2), ε = +0 and ϕ′(f) < 0. Then

∃ t0 > 0 such that

f(x, t) =

{

α−, if x < ct+ x0
α+, if x > ct+ x0, t ≥ t0

where shift parameter x0 is determined by Maxwell formula:

x0
∫

−∞

(f0(x)− α−)dx+

∞
∫

x0

(f0(x)− α+)dx = 0,
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and c is determined by Rankine-Hugoniot formula

c =
1

α+ − α−

α+
∫

α−

ϕ(y)dy.

For semi-discrete initial problem (1b), (2) with ε ≥ 0 the analogues of the Iljin-Oleinik
results had been obtained in [11].

The following result of Kruzhkov and Petrosjan [17] gives solution of Gelfand problem
for equation (1a) with ε = +0 and with nondecreasing initial data (2).

Theorem (Kruzhkov, Petrosjan, 1987).
Let under assumptions 1, 2, f(x, t) be solution of the Cauchy problem (1a), (2) with

ε = +0 and with nondecreasing initial data function f0(x). Let f̃(x, t) be solution of the

Cauchy problem (1a), (2) with ε = +0, where the function ϕ
def
= −ψ′ is replaced by the

function ϕ̃ = −ψ̂′ and the initial function f0(x) is replaced by the function

f̃0(x) = u1χ(−∞,x1)(x) + u2χ(x1,x2)(x) + . . .+ umχ(xm−1,+∞)(x),

where

xi =
F ∗
0 (ui+1)− F ∗

0 (ui)

ui+1 − ui
, i = 1, . . . ,m− 1,m = 2L+ 2,

u1 = α−
0 , u2 = α+

0 , . . . , um−1 = α−
L , um = α+

L ,

F0(y) =

y
∫

0

f0(x)dx, F ∗
0 (p) = sup

p∈R
{py − F0(y)},

χ(a,b) is the characteristic function of (a, b) ⊂ R.

Then ‖f(·, t)− f̃(·, t)‖L1(R) → 0, t→ ∞ and the asymptotic locations

{clt+ dl, l = 0, 1, . . . , L} of shock waves for f(x, t) coincide with the asymptotic locations
of shock waves for f̃(x, t), and so the shifts dl, l = 0, . . . , L, can be found explicitly.

Remark 1.

The proof of Theorem in [17] is based on the explicit formula of E.Hopf [15] and
M.Bardi, L.C.Evans [2] for the solutions of (1a), (2) with ε = +0 and nondecreasing initial
data f0(x)

f(x, t) =
∂

∂x
sup
p∈R

I(t, x, p),

where

I(t, x, p) = (px+ ψ(p)t)− sup
y∈R

(py − F0(y)), F0(y) =

y
∫

0

f0(x)dx.

Remark 2.
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N.S.Petrosjan [20] had announced that under assumption 1 the result of [17] is still
valid for piecewise smooth solutions of the problem (1a), (2) with not necessary monotonic
initial data f0(x) with the property f0(x) ∈ (α−, α+) ∀ x ∈ (x−, x+).

Assumption 3. Let for (1a) and respectively for (1b) the following inequalities be
valid

ϕ′(α−
l ) 6= 0, l = 1, . . . , L,

ϕ′(α+
l ) 6= 0, l = 0, 1, . . . , L− 1,

ϕ(α−
0 ) 6= c0, if α−

0 < α+
0 ,

ϕ(α+
L ) 6= cL, if α−

L < α+
L .

By developing of [17] and of [7], we obtain here the following

Main theorem.

i) Under the assumptions 1, 2, 3, the solutions f(x, t) of the Cauchy-Gelfand problem
(1a,b), (2) with ε = +0 have the following asymptotic structure

‖f(·, t)− f̃(·, t)‖L1(R) → 0, t→ ∞,

f̃(x, t) =







α−, if x < c0t+ d0
ϕ(−1)(x/t), if clt+ dl ≤ x < cl+1t+ dl+1, l = 0, 1, . . . , L− 1

α+, if x ≥ cLt+ dL,

where parameters {cl} determined by (5a) (respectively by (5b)), parameters {dl} are
determined by the respective equations (1a,b) and initial data (2a, 2b).

ii) Moreover, ∃ t∗ ≥ 0 such that parameters {dl} for problem (1a), (2a) are determined
for t ≥ t∗ by Maxwell type formulas

clt+dl(t)
∫

x=y−

l
(t)

(f(x, t)− α−
l )dx+

y+

l
(t)

∫

x=clt+dl(t)

(f(x, t)− α+
l )dx = 0,

f(y−l (t), t) = α−
l , f(y+l (t), t) = α+

l , where dl(t) = dl(t
∗) if t ≥ t∗,

and parameters {dl} for problem (1b), (2b) are determined for t ≥ t∗ by formulas

clt+dl(t)
∫

x=y−

l
(t)

[Ψ(f(x, t))−Ψ(α−
l )]dx+

y+

l
(t)

∫

x=clt+dl(t)

[Ψ(f(x, t))−Ψ(α+
l )]dx = 0,

where Ψ(f) =

f
∫

α−

dy

ϕ(y)
, dl(t) = dl(t

∗) if t ≥ t∗.

The crucial statement of main theorem consists in the equalities dl(t)
!
= dl(t

∗), if
t ≥ t∗.
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Remark 3.

Theorem of Kruzhkov, Petrosjan [17] is the corollary of main theorem, because for
nondecreasing initial data parameter t∗ in the part ii) of main theorem can be taken by
zero.

Remark 4.

Early T.-P.Liu [18] and A.V.Gasnikov [4] had obtained (only under assumption 1)
a rough versions of part i) of main theorem with shift functions dl(t) = o(t) instead of
constant shifts dl.

1. Comparison result.

For the proof of the main theorem we need the following comparison result developing
Proposition 1 from [6].

Theorem 1.

Under the assumptions 1-3 and definitions (3a,b)-(5a,b) ∀ solution f = fε(x, t) of
(1b), (2) (respectively (1a), (2)) ∃ t0 > 0 such that
∀t ≥ t0, ∀ε > 0 and for γ > 0, bl > O(1/γ), l = 0, . . . , L, the following estimate is valid:

ϕ(−1)
(x− γ

√
εt

t

)

≤ fε(x, t) ≤ ϕ(−1)
(x+ γ

√
εt

t

)

, (1.1)

for x ∈ [clt+ bl
√
εt, cl+1t− bl+1

√
εt].

For the proof of Theorem 1 we can not just apply rescaling of corresponding Proposi-
tion 1 from [6], because now we must take into account that under conditions of Theorem
1 initial function f0(x) = f(x, 0) is independent of ε > 0. So, we will follow the scheme of
the proof of Proposition 1 from [6], precising the dependence of all parameters on ε > 0.
We will give detailed proof only for the case of equation (1b), (2) with ε > 0, L = 1,

ϕ(α−
0 ) > c0 = ϕ(α+

0 ), ϕ(α−
1 ) = c1 > ϕ(α+

1 ).

The following statement generalizes essentially Proposition 1 of [8].

Lemma 1. Under assumptions of Theorem 1, let L = 1; α−
0 < α+

0 < α−
1 < α+

1 ; and
let c0, c1 be the parameters defined by (3b), (4b), (5b). Put

∆xf(x, t) =
fε(x, t)− fε(x− ε, t)

ε
.

Let f̃l(x − clt) be travelling wave solutions of (1b) such that f̃l(x) → α±
l , l = 0, 1, x →

±∞ and f̃l(0) =
α−

l
+α+

l

2 (see Prop. 0 in [6]). Consider the following functions f±(x, t),

depending also on parameters {α±
l }, {cl}, l = 0, 1, positive small parameters γ and δ and

positive bounded functions b±0 (t), b
±
1 (t):

f−(x, t) =



















f−0 (x, t) = f̃0
(

x−c0t
ε

)

,−∞ < x < c0t+ b−0
√
εt,

f−01(x, t) = ϕ(−1)
(

x−γ
√
εt

t

)

− c0ε

ϕ′(α+

0
)(x−c0t)

,

where c0t+ b−0
√
εt ≤ x ≤ c1t+ b−1

√
εt,

f−1 (x, t) = f̃1
(x−c1t−(2

√
c1+γ+2δ)

√
εt

ε

)

, c1t+ b−1
√
εt < x < +∞.

(1.2)
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f+(x, t) =



























f+0 (x, t) = f̃0
(x−c0t+(2

√
c0+γ+2δ)

√
εt

ε

)

,

where −∞ < x < c0t− b+0
√
εt,

f+0,1(x, t) = ϕ(−1)
(

x+γ
√
εt

t

)

+ c1ε

ϕ′(α−

1
)(c1t−x)

,

where c0t− b+0
√
εt ≤ x ≤ c1t− b+1

√
εt,

f+1 (x, t) = f̃1
(

x−c1t
ε

)

, c1t− b+1
√
εt < x < +∞.

(1.3)

Then the following statements are valid:
i) ∀γ, δ > 0 ∃ functions

b−0 (t) = γ + o(1),

b−1 (t) = γ +
√
c1 + δ +

√

δ2 + 2δ
√
c1 + o(1),

b+0 (t) = γ +
√
c0 + δ +

√

δ2 + 2δ
√
c0 + o(1),

b+1 (t) = γ + o(1),

satisfying for t ≥ t̃0ε = t0 and θ ∈ [0, 1] relations:

f−0 (c0t+ b−0
√
εt, t) = f−01(c0t+ b−0

√
εt, t)

∆xf
−
0 (c0t+ b−0

√
εt+ εθ, t) < ∆xf

−
01(c0t+ b−0

√
εt+ εθ, t)

f−01(c1t+ b−1
√
εt, t) = f−1 (c1t+ b−1

√
εt, t)

∆xf
−
01(c1t+ b−1

√
εt+ εθ, t) < ∆xf

−
1 (c1t+ b−1

√
εt+ εθ, t);

(1.4)

f+0 (c0t− b+0
√
εt, t) = f+01(c0t− b+0

√
εt, t)

∆xf
+
0 (c0t− b+0

√
εt+ εθ, t) > ∆xf

+
01(c0t− b+0

√
εt+ εθ, t)

f+01(c1t− b+1
√
εt, t) = f+1 (c1t− b+1

√
εt, t)

∆xf
+
01(c1t− b+1

√
εt+ εθ, t) > ∆xf

+
1 (c1t− b+1

√
εt+ εθ, t).

(1.5)

ii) ∀γ, δ > 0 and with b±0 , b
±
1 from i) ∃ t̃0 > 0 such that the functions f∓(x, t),

x ∈ R, t ≥ t̃0ε, are sub(super)solutions for (1b), i.e.

±
[

df±

dt
+ ϕ(f±)

(f±(x, t)− f±(x− ε, t)

ε

)

]

≥ 0. (1.6)

Complement. Lemma 1 is also valid for equation (1a) if in definitions of f±01(x, t)

numerators c0, c1 are replaced by 2, the differences ∆xf
∓
0 , ∆xf

∓
1 by derivatives

∂f∓

0

∂x ,
∂f∓

01

∂x ,
∂f∓

1

∂x and inequality (1.6) in ii) by inequality

±
[

∂f±

∂t
+ ϕ(f±)

∂f±

∂x
− ε

∂2f±

∂x2

]

≥ 0.
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Proof.
Lemma 1 of this paper follows from Lemma 1 of [6], by simple rescaling

t̃→ t

ε
, x̃→ x

ε
, t̃0 → t0

ε
.

Lemma 1 is proved.

Let further function f 7→ ϕ(f) be extended outside [α−, α+] keeping assumption 1
and the condition ϕ′(f) < 0, if f ≤ α− or f ≥ α+.

By results of [5], [19], [11], (see Prop. 0 in [6]) ∀ small σ > 0 ∃ travelling type
sub(super)solutions of (1b) (resp. of (1a)) of the form

f̃∓l,σ
(x

ε
− c∓l,σ

t

ε
∓ d(

t

ε
)
)

(1.7)

with overfalls [α−
l ∓(−1)lσ, α+

l ±(−1)lσ] and f̃∓l,σ(0) =
1
2 (α

−
l +α

+
l ), l = 0, 1. For parameters

c∓l,σ we have c∓l,σ = cl(1±O+(σ)).

Let us replace in the definitions of f∓(x, t) in the statement of Lemma 1 the travelling
waves f̃l(x− clt), l = 0, 1, by σ-modified travelling sub(super)solutions (1.7) and rare type
functions f∓01(x, t) by the σ-modified rare type sub(super)solutions for (1b) (resp. (1a)) of
the form

f−01,σ(x, t) = ϕ(−1)
(x− γ

√
εt

t

)

−
c−0,σε

ϕ′(α+−
0 )(x− c−0,σt)

,

f+01,σ(x, t) = ϕ(−1)
(x+ γ

√
εt

t

)

+
c+1,σε

ϕ′(α−+
1 )(c+1,σt− x)

.

(1.8)

Lemma 2.

Let f∓σ (x, t) be functions of the form (1.2), (1.3), where parameters α±
l , cl, b

±
l , l = 0, 1,

are replaced by the σ-modified parameters:

α−∓
l,σ = α−

l ∓ (−1)lσ, α+∓
l,σ = α+

l ± (−1)lσ,

b∓l,σ = b∓l ±O+(σ),

c∓l,σ = cl(1±O+(σ)).

(1.9)

Put σ( tε ) =
ε
t and d( tε ) = ρ(ln t

ε ), ρ ≥ ρ0. Then functions f∓σ (x, t) satisfy σ- modified
relations i), ii) from Lemma 1, if parameter t̃0 = t0

ε are big enough.

Proof. σ- modified relation i) for f∓σ (x, t) follows from non-modified relations (1.4),
(1.5), taking into account that modified parameters (1.9) coinside with non-modified pa-
rameters up to O( εt ). Taking parameter t̃0 = t0

ε big enough permits to keep sense of strict
inequalities in modified relations (1.4), (1.5), i.e. in i). σ- modified relation ii) follows from
σ-modified relation i), from non-modified estimates (1.6) and from estimates of derivatives

∂

∂t
d(
t

ε
) > 0,

∂

∂t
σ(
t

ε
) < 0
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permitting to keep sence of σ-modified inequalities (1.6), if parameter t̃0 = t0
ε is big enough.

Lemma 3.

Let f = f(x, t) be solution of (1b), (2) (resp. (1a),(2)) with L = 1. Let σ( tε ) = ε
t ,

d( tε ) = ρ(ln t
ε ). If parameters t̃0 = t0

ε and ρ are big enough, then function f(x, t) satisfies
∀ c > c1 the following inequalities:

f−σ (x, t) < f(x, t) < f+σ (x, t), x ≤ 0, t ≥ t0,

f−σ (ct, t) < f(ct, t) < f+σ (ct, t), x = ct, t ≥ t0.
(1.10)

Proof.
For proving (1.10) it is sufficient to prove inequalities

f−σ (x, t) < α−
0 , f+σ (x, t) > α−

0 , if x ≤ 0, t ≥ t̃0ε, (1.11)

f−σ (ct, t) < α−
1 , f+σ (ct, t) > α−

1 , if t ≥ t̃0ε. (1.12)

If x ≤ 0 and parameters t̃0 = t0
ε and ρ are big enough, then definitions above imply

existence of λ0 > 0 independent of ε such that

f−σ (x, t) = f̃−0,σ
(x

ε
− c−0,σ

t

ε
− d(

t

ε
)
)

≤ f̃−0,σ
(

−c−0,σ
t

ε
− ρ ln

t

ε

)

≤

α−
0 − σ +O

(

exp
[(

−λ0c0
t

ε
− λ0ρ ln

t

ε

)])

≤

α−
0 − ε

t
+O

(

exp
[(

−λ0c0
t

ε

])

O
(

(
ε

t0
)ρλ0

)

< α−
0 ,

if ρ >
1

λ0
and t̃0 =

t0
ε
− big enough.

Note, that by estimate (6.3) from [13], parameter λ0 can be chosen up to O( εt ) equal
to solution λ0 of the equation

λ0 = ϕ(α−
0 )ψ(α

−
0 , α

+
0 )(1− e−λ0),

where

ψ(α−
0 , α

+
0 ) =

1

α+
0 − α−

0

α+

0
∫

α−

0

dy

ϕ(y)
.

For f+σ (x, t), x ≤ 0, estimate follows more easily

f+σ (x, t) = f̃+0,σ
(x

ε
− c+0,σ

t

ε
+ (2

√

c+0,σ + γ + 2δ)(
t

ε
)1/2 + d(

t

ε
)
)

≥ α−
0 + σ > α−

0 ,

if t̃0 big enough.
Inequalities (1.11) are proved.
Let us prove (1.12) by the similar way.
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For c > c1, x = ct and t̃0 = t0
ε we have

f−σ (ct, t) = f̃−1,σ
(x

ε
− c−1,σ

t

ε
− d(

t

ε
)
)

< α+
1 − σ < α+

1 ,

f+σ (ct, t) = f̃+1,σ
(

c
t

ε
− c+1,σ

t

ε
+ d(

t

ε
)
)

= f̃+1,σ
(

c
t

ε
− c1

(

1−O(
ε

t
)
) t

ε
+ ρ ln

t

ε

)

≥

α+
1 + σ −O

(

exp
[

(−λ1(c− c1)
t

ε
+ λ1ρ ln

ε

t

])

≥

α+
1 +

ε

t
−O

(

exp
[

(−λ1(c− c1)
t

ε

])

O
(

(
ε

t
)ρλ1

)

> α+
1 ,

if ρ > 1
λ1

and t̃0 = t0
ε big enough.

Inequalities (1.12) are proved.
Lemma 3 is proved.

Lemma 4.

Under conditions of Lemmas 1,2 ∃ T > 0 (independent of ε > 0) such that for t ≥ T
function f = fε(x, t) satisfies inequalities

f−σ (x, t+ T ) < fε(x, t) < f+σ (x, t− T ), x ∈ R. (1.13)

Proof.
From Lemma 3 and from results of [22] (section 2) it follows the existence of T > 0

such that initial values f(x, t0) = f0(x) satisfy (1.13) with t0 = T .
From this and comparison principle for solutions of (1b) (see Lemma 7.3 in [13]) we

deduce inequality (1.13) for t ≥ t0 = T with T and t̃0 big enough. Lemma 4 is proved.

Proof of Theorem 1.
From σ- modified versions (1.8) of (1.2), (1.3) for f∓(x, t) we have

f−01,σ(x, t) = ϕ(−1)
(x− γ

√
εt

t

)

−
c−0,σε

ϕ′(α+−
0 )(x− c−0,σt)

,

if c−0,σt+ b−0,σ
√
εt ≤ x ≤ c−1,σt+ b−1,σ

√
εt,

where
c−0,σ = ϕ(α+−

0 ) = c0(1 +O+(
ε

t
)), c0 = ϕ(α+

0 ),

c−1,σ = ϕ(α−+
1 ) = c1(1 +O+(

ε

t
)), c1 = ϕ(α−

1 ),

b−1 = γ +
√
c1 + δ +

√

δ2 + 2δ
√
c1 + o(1),

b−0,σ = b−0 +O+(
ε

t
), b−0 = γ + o(1), b−1,σ = b−1 +O+(

ε

t
).

f+01,σ(x, t) = ϕ(−1)
(x+ γ

√
εt

t

)

+
c+1,σε

ϕ′(α−+
1 )(c+1,σt− x)

,

if c+0,σt− b+0,σ
√
εt ≤ x ≤ c+1,σt− b+1,σ

√
εt,
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where
c+0,σ = c0(1−O+(

ε

t
)), c+1,σ = c1(1−O+(

ε

t
)),

b+0,σ = b+0 −O+(
ε

t
); b+0 = γ +

√
c0 + δ +

√

δ2 + 2δ
√
c0;

b+1,σ = b+1 −O+(
ε

t
); b+1 = γ + o(1).

Let γ̃ = γ + Γ be such that

ϕ(−1)
(x− γ̃

√
εt

t

)

≤ ϕ(−1)
(x− γ

√
εt

t

)

−
c−0,σε

ϕ′(α+−
0 )(x− c−0,σt)

and

ϕ(−1)
(x+ γ

√
εt

t

)

+
c+0,σε

ϕ′(α−+
1 )(c+1,σt− x)

≤ ϕ(−1)
(x+ γ̃

√
εt

t

)

,

(1.14)

where
c−0,σt+ b−0,σ

√
εt ≤ x ≤ c+1,σt− b+1,σ

√
εt (1.15)

To obtain (1.14) we must have under condition (1.15) the following inequalities for
Γ > 0:

− 1

(supϕ′)

Γ
√
εt

t
≤ −

c−0,σε

ϕ′(α+−
0 )(x− c−0,σt)

and

c+0,σε

ϕ′(α−+
1 )(c+1,σt− x)

≤ 1

(supϕ′)

Γ
√
εt

t
,

(1.16)

where

ϕ′ = ϕ′(x

t
± (γ + θΓ)

√

ε

t

)

, θ ∈ [0, 1], t ≥ t0.

From (1.15) and (1.16) we obtain the following condition for parameter Γ:

Γ

(supϕ′)
>

c−0,σ

ϕ′(α+−
0 )b−0,σ

and

Γ

(supϕ′)
≥

c+0,σ

ϕ′(α−+
0 )b+1,σ

.

(1.17)

To satisfy (1.17) it is sufficient to take Γ such that

Γ > (supϕ′)
c−0,σ

ϕ′(α+−
0 )b−0,σ

and

Γ > (supϕ′)
c+0,σ

ϕ′(α−+
0 )b+1,σ

.

From Lemma 4 and inequalities (1.14), (1.15) for t ≥ T and

12



x ∈ [c0t+ b0
√
εt, c1t− b1

√
εt] we obtain

ϕ(−1)
(x− γ̃

√

ε(t+ T )

t+ T

)

≤ fε(x, t) ≤ ϕ(−1)
(x+ γ̃

√

ε(t− T )

t− T

)

, (1.18)

where b0 > γ + o(1), b1 > γ +O(1), γ̃ = γ +O
(

1
b0

)

.
Theorem 1 is proved.

2. Vanishing viscosity method for Cauchy-Gelfand problem.

Theorem 1, incorporated in the proof of Proposition 2 from [7], implies the following
improved version of this proposition as well as of Theorem 2 of [9].

Theorem 2.

Let under assumptions and notations of Theorem 1, b̃l > bl > O(1/γ), l = 0, . . . , L,

γ > 0. Then ∃ t0 > 0 such that ∀ t ≥ t0 and ε > 0 the difference ∆f = f(x,t)−f(x−ε,t)
ε for

a solution f = fε(x, t) of (1b), (2) and the derivative ∂f
∂x (x, t) for a solution f = fε(x, t) of

(1a), (2) satisfy the following estimates

(

∆f
∂f
∂x

)

=
1

ϕ′(α+
l ) · t

+O
( γ

ϕ′(α+
l ) · t

)

(2.1)

for x ∈ [clt+ bl
√
εt, clt+ b̃l

√
εt], l = 0, . . . , L− 1, t ≥ t0, and

(

∆f
∂f
∂x

)

=
1

ϕ′(α−
l ) · t

+O
( γ

ϕ′(α−
l ) · t

)

(2.2)

for x ∈ [clt− b̃l
√
εt, clt− bl

√
εt], l = 1, . . . , L, t ≥ t0.

Corollary.

Under conditions of Theorem 2 ∃γ0 > 0 small enough and ∃ t0 > 0 big enough
such that for t ≥ t0, γ ≤ γ0 and ε > 0 functions x → fε(x, t) from (1a,b), (2) are
increasing functions on the intervals x ∈ [clt + bl

√
εt, clt + b̃l

√
εt], l = 0, . . . , L − 1, and

x ∈ [clt− b̃l
√
εt, clt− bl

√
εt], l = 1, . . . , L.

From theorem 1 and from corollary of theorem 2 ∀ε > 0 and for big enough t0 > 0 and
Γ > 0 we deduce existence of functions t 7→ y±l (t, ε), l = 0, . . . , L, t ≥ t0, with properties

fε(y
+
0 , t) = α+

0 +

√

εΓ

t
, fε(y

−
L , t) = α−

L −
√

εΓ

t
,

fε(y
±
l , t) = α±

l ±
√

εΓ

t
, l = 1, . . . , L− 1,

α−
0 < fε(x, t) < α+

0 +

√

εΓ

t
, if x < y+0 (t, ε),

α−
L −

√

εΓ

t
< fε(x, t) < α+

L , if x > y−L (t, ε),

α−
l −

√

εΓ

t
< fε(x, t) < α+

l +

√

εΓ

t
, l = 1, . . . , L− 1, if y−l (t, ε) < x < y+l (t, ε).
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This implies correctness of the following definition of Maxwell type shift-functions
dl(t, ε) for solutions of (1a,b), (2) with ε > 0.

Definition 1.

Under assumptions and notations of Theorem 1 for Cauchy problem (1a), (2) ∀ t0 > 0
and Γ > 0 big enough ∃! well defined functions dl(t, ε) and y±l (t, ε), l = 0, . . . , L, t ≥ t0,
ε > 0 such that

c0t+d0(t,ε)
∫

−∞

(fε(x, t)− α−
0 )dx+

y+

0
(t,ε)
∫

c0t+d0(t,ε)

(fε(x, t)− α+
0 −

√

εΓ

t
)dx = 0,

fε(y
+
0 , t) = α+

0 +

√

εΓ

t
,

(2.3)

clt+dl(t,ε)
∫

y−

l
(t,ε)

(fε(x, t)− α−
l +

√

εΓ

t
)dx+

y+

l
(t,ε)
∫

clt+dl(t,ε)

(fε(x, t)− α+
l −

√

εΓ

t
)dx = 0,

fε(y
±
l , t) = α±

l ±
√

εΓ

t
, l = 1, . . . , L− 1,

(2.4)

cLt+dL(t,ε)
∫

y−

L
(t,ε)

(fε(x, t)− α−
L +

√

εΓ

t
)dx+

∞
∫

cLt+dL(t,ε)

(fε(x, t)− α+
L )dx = 0,

fε(y
−
L , t) = α−

L −
√

εΓ

t
.

(2.5)

To define Maxwell type shift-functions for Cauchy problem (1b), (2) it is sufficient to
replace in definition 1 function fε(x, t) and parameters α±

l by functions Ψ(fε(x, t)) and

parameters Ψ(α±
l ), where Ψ(f) =

f
∫

α−

y
ϕ(y) .

Theorem 3.

Let Φ(f) be such that ϕ(f)∂f∂x = ∂Φ(f)
∂x . Then under notations of Theorem 1 and

definition 1 ∀ t ≥ t0 and ε > 0 the following formulas for Maxwell type shift-functions
dl(t, ε) for solutions of Cauchy problem (1a), (2) are valid:

(α+
l − α−

l + 2

√

εΓ

t
)
d

dt
(clt+ dl(t, ε)) = Φ(α+

l +

√

εΓ

t
)− Φ(α−

l −
√

εΓ

t
)−

ε(
∂fε
∂x

(y+l (t, ε), t)−
∂fε
∂x

(y−l (t, ε), t))−

1

t

√

εΓ

t

(y+l (t, ε) + y−l (t, ε)

2
− clt− dl(t, ε)

)

, if l = 1, . . . , L− 1,

(2.6)
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(α+
0 − α−

0 +

√

εΓ

t
)
d

dt
(c0t+ d0(t, ε)) = Φ(α+

0 +

√

εΓ

t
)− Φ(α−

0 )−

ε(
∂fε
∂x

(y+0 (t, ε), t)−
1

2t

√

εΓ

t
(y+0 (t, ε)− c0t− d0(t, ε)), if l = 0,

(2.7)

(α+
L − α−

L +

√

εΓ

t
)
d

dt
(cLt+ dL(t, ε)) = Φ(α+

L )− Φ(α−
L −

√

εΓ

t
)+

ε(
∂fε
∂x

(y−L (t, ε)−
1

2t

√

ε

t
(y−L − cLt− dL(t, ε)), if l = L.

(2.8)

Proof.
Let us consider firstly the case l = 1, . . . , L − 1. Derivation of equality (2.4) from

definition 1 gives equality

d

dt
(clt+ dl(t, ε))(fε(clt+ dl(t, ε), t)− α−

l +

√

εΓ

t
)−

d

dt
(clt+ dl(t, ε))(fε(clt+ dl(t, ε), t)− α+

l −
√

εΓ

t
)+

y+

l
(t,ε)
∫

y−

l
(t,ε)

∂fε(x, t)

∂t
dx+ 2

(

clt+ dl −
y−l + y+l

2

) d

dt

√

εΓ

t
= 0.

This equality and equation (1a) imply

(α+
l − α−

l + 2

√

εΓ

t
)
d

dt
(clt+ dl(t, ε))+

y+

l
(t,ε)
∫

y−

l
(t,ε)

(

ε
∂2fε
∂x2

− ϕ(f)
∂fε
∂x

)

dx− 1

t

√

εΓ

t

(

clt+ dl −
y−l + y+l

2

)

= 0.

Using equality ϕ(f)∂f∂x = ∂Φ(f)
∂x , we obtain further

(α+
l − α−

l + 2

√

εΓ

t
)
d

dt
(clt+ dl(t, ε)) = −ε

(∂fε
∂x

(y+l , t)−
∂fε
∂x

(y−l , t)
)

+

Φ(fε(y
+
l , t))− Φ(fε(y

−
l , t))−

1

t

√

εΓ

t

(y+l + y−l
2

− clt− dl
)

.

This gives (2.6), taking into account equality

fε(y
±
l , t) = α±

l ±
√

εΓ

t
.
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If l = 0 then derivation of (2.3) implies

d

dt
(c0t+ d0(t, ε))(fε(c0t+ d0(t, ε), t)− α−

0 )−

d

dt
(c0t+ d0(t, ε))(fε(c0t+ d0(t, ε), t)− α+

0 −
√

εΓ

t
)+

y+

0
(t,ε)
∫

−∞

∂fε(x, t)

∂t
dx+ (c0t+ d0(t, ε)− y+0 )

d

dt

√

εΓ

t
= 0.

Using (1a) we have further

(α+
0 − α−

0 +

√

εΓ

t
)
d

dt
(c0t+ d0(t, ε)) +

y+

0
∫

−∞

(

ε
∂2fε
∂x2

− ϕ(f)
∂fε
∂x

)

dx−

√
εΓ

2t3/2
(c0t+ d0(t)− y+0 ) = 0.

Finally,

(α+
0 − α−

0 +

√

εΓ

t
)
d

dt
(c0t+ d0(t, ε)) = −ε

(∂fε
∂x

(y+0 , t)− 0
)

+

Φ(fε(y
−
0 ))− Φ(fε(−∞))−

√
εΓ

2t3/2
(y+0 − c0t+ d0(t)).

This gives (2.7). Equality (2.8) can be proved by a similar way.
Theorem 3 is proved.

Remark 5.

Result similar to Theorem 3 is valid also for shift-functions for Cauchy problem (1b),
(2).

From Theorems 1, 2, 3 we can deduce the following.

Theorem 4.

Under assumptions and notations of Theorem 1 and definition 1 Maxwell type shift-
functions dl(t, ε) for solutions of Cauchy problem (1a,b), (2) have the following small
viscosity estimate:

d

dt
dl(t, ε) = O(

√

ε/t), ε > 0, t ≥ t0, l = 0, . . . , L. (2.9)

Proof (for problem (1a), (2)).
Let us consider the case l = 1, . . . , L − 1. In order to obtain estimate (2.9) for this

case we must estimate all terms of (2.6). For these estimates we note that equalities

fε(y
±
l , t) = α±

l ±
√

εΓ
t and Theorem 1 for Γ big enough imply the following inequality

clt− Γ
√
εt ≤ y−l ≤ y+l ≤ clt+ Γ

√
εt, t ≥ t0. (2.10)
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Using (2.10) and Theorem 2 we obtain the following equality

ε
(∂fε
∂x

(y+l (t, ε), t)−
∂fε
∂x

(y−l (t, ε), t)
)

=

ε

t

( 1

ϕ′(α+
l )

− 1

ϕ′(α−
l )

)(

1 +O
( γ

ϕ′(α+
l )t

+
γ

ϕ′(α−
l )t

))

.
(2.11)

Definition 1 and (2.10) imply inequality

1

t

√

εΓ

t

(y+l (t, ε) + y−l (t, ε)

2
− clt− dl(t, ε)

)

= O
(1

t

√

ε/t
√
εt
)

= O(ε/t). (2.12)

Formula (5a) gives equality

(α+
l − α−

l )cl = Φ(α+
l )− Φ(α−

l ). (2.13)

Using (2.13), we obtain

(α+
l − α−

l + 2

√

εΓ

t
)
d

dt
(clt+ dl(t, ε))− Φ(α+

l +

√

εΓ

t
) + Φ(α−

l −
√

εΓ

t
) =

d

dt
dl(t, ε) +O(

√

ε/t).

(2.14)

Finally, (2.11), (2.12), (2.14) imply (2.9). The cases l = 0 and l = L can be obtained
by a similar way.

Theorem 4 is proved.

Corollary.

Under conditions of Theorem 1 ∀ t ≥ t0

∃ lim
ε→0

dl(t, ε) = dl(t, 0) = dl(t0, 0), l = 0, . . . , L.

Proof of the main theorem.
The first statement of the main theorem was obtained in [7], theorem 1. The second

statement of the main theorem follows directly from the first statement and corollary of
Theorem 4.

Remark 6.

Note that in [7] in the proof of theorem 1 there are misprints, which we correct here:
”From (10) and (11) of [7], Proposition 3 with A = ( εt )

1/4 we obtain

dA

dt
= −ε

4

A

t
,

∂

∂A
dl(

t

ε
, A) =

{

O( 1
A ), if A ≥

√

ε
t

O(
√

t
ε ), if A ≤

√

ε
t .
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d

dt
dl(

t

ε
, (
ε

t
)1/4) = O(

ε

t
) +O(

ε

t
)3/4).

This gives property (28) in [7] and as a consequence a strong version of theorem 1 in
[7].”
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