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We obtain the precise asymptotic (t → ∞) for solution f (x, t) of Cauchy-Gelfand problem for quasilinear conservation law ∂f ∂t + ϕ(f ) ∂f ∂x = 0 with initial data of bounded variation f (x, 0) = f 0 (x). The main theorem develops results of T.-P. Liu (1981), Kruzhkov, Petrosjan (1987), Henkin, Shananin (2004), Henkin (2012). Proofs are based on vanishing viscosity method and localized Maxwell type conservation laws. The main application consists in the reconstruction of parameters of initial data responsible for location of inviscid shock waves in the solution f (x, t).

Introduction.

We study Cauchy (and inverse Cauchy) problem for equation

∂f ∂t + ϕ(f ) ∂f ∂x = 0, x ∈ R, t ≥ 0 ( * )
with initial data f (x, 0) = f 0 (x). The most natural (not equivalent) definitions for solutions of problem (*) consists in the existence of solutions

f def = f ε (x, t) for equations ∂f ∂t + ϕ(f ) ∂f ∂x = ε ∂ 2 f ∂x 2 , ε > 0, x ∈ R, (1a) 
or

df dt + ϕ(f ) f (x, t) -f (x -ε, t) ε = 0, x ∈ R, (1b) 
with property

f ε (x, 0) = f 0 (x), ε ≥ 0, (2) 
such that f ε (x, t) → f 0 (x, t), when ε → +0. Equation (1a) with linear f → ϕ(f ) was introduced at first by Riemann (1860) (for ε = +0) and later by Bateman (1915), Burgers (1939) and Hopf (1950) (for ε > 0) as the simplest approximation to the equations of fluid dynamics.

Equation (1a) for general ϕ(f ) was introduced later in a very different models: displacements of oil by water (Buckley, Leverett, 1942), consolidation of wet soil (Florin, 1948), the road trafic (Lighthill, Whitham, 1955) etc. Equation (1b) was introduced by Polterovich, Henkin, 1988, for description of a Schumpeterian evolution of industry. In physical applications of (1a) the main interest has the inviscid case, when ε = +0, but the application of (1a) in the transport flow theory and of (1b) in Schumpeterian dynamics the main interest presents the viscid case, when ε > 0.

It is important to remark that behavior of solutions of (1b) with ε = +0 is not the same as the behavior of solutions of (1a) with ε = +0, in spite that for ε = 0 the both equations (1a), (1b) look identical.

In fact, equation (1b) is a semi-discrete approximation of the non conservative equation

∂f ∂t + ϕ(f ) ∂f ∂x = ε 2 ϕ(f ) ∂ 2 f ∂x 2 .
Assumption 1. Let α -< α + , f 0 (x) be real-valued function of bounded variation on R such that f 0 (x) = α ± , if ±x ≥ ±x ± , x -< x + . Let ϕ(f ) be a positive, continuous differentiable function of real variable f such that ϕ ′ (f ) has only isolated zeros.

Theorem ( [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF], [START_REF] Oleinik | Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation[END_REF], [START_REF] Henkin | An evolutionnary model with interaction between development and adoption of new technologies[END_REF], [START_REF] Henkin | Schumpeterian dynamics as a nonlinear wave theory[END_REF]).

Under assumption 1 and ∀ε > 0 the following general properties of Cauchy problems (1a,b) are valid. a) Cauchy problem (1a), (2) has a unique (weak) solution f (x, t), x ∈ R, t ∈ R + . This solution satisfies Rankine-Hugoniot conservation laws for t ≥ 0: 2) has a unique (weak) solution f (x, t), x ∈ R, t ∈ R + . This solution satisfies the following conservation laws for t ≥ 0 and θ ∈ [0, 1):

f (x, t) → α ± , if x → ±∞, and 
d dt 0 -∞ (α --f (x, t))dx + ∞ 0 (α + -f (x, t))dx = α + α - ϕ(y)dy. Moreover, if the initial data f 0 (x) is nondecreasing in x then f (x, t) is nondecreasing in x∀ t ≥ 0. b) Cauchy problem (1b), (
f (kε + θε, t) → α ± , if k → ±∞, k ∈ Z, and 
d dt 0 -∞ α - f (kε+θε,t) dy ϕ(y) + ∞ 1 α + f (kε+θε,t) dy ϕ(y) = 1 ε (α + -α -).
Moreover, if for some θ ∈ [0, 1) the initial data

f 0 (kε+θε, t) is nondecreasing in k ∈ Z, then f (kε + θε, t) is nondecreasing in k ∈ Z with the same θ. Put ψ(u) = - u α - ϕ(y)dy, u ∈ [α -, α + ], for (1.a), (3a) 
ψ(u) = u α - dy ϕ(y) , u ∈ [α -, α + ], for (1.b), (3b) 
Let us introduce respectively for (3a) and for (3b) the concave function ψ(u) as the upper bound of the convex hull of the set

{(u, v) : v ≤ ψ(u), u ∈ [α -, α + ]}.
Assumption 2. Suppose that for (3a) and respectively for (3b) the set

S = {u ∈ [α -, α + ] : ψ(u) < ψ(u)} has the following form S = (α - 0 , α + 0 ) ∪ (α - 1 , α + 1 ) ∪ . . . (α - L , α + L ), where α -= α - 0 < α + 0 < α - 1 < α + 1 < . . . < α - L-1 < α + L-1 < α - L < α + L = α + . (4a, b) Let c l = 1 α + l -α - l α + l α - l ϕ(y)dy, for (1a), l = 0, . . . , L, (5a) 
c l = (α + l -α - l ) α + l α - l dy ϕ(y) -1
, for (1b), l = 0, . . . , L.

Assumptions 1, 2 and notation (5a,b) imply the following important inequalities (for (1a)) and respectively for (1b):

ϕ(α + l ) ≤ c l ≤ ϕ(α - l ), l = 0, . . . , L, c l = ϕ(α - l ), l = 1, . . . , L, c l = ϕ(α + l ), l = 0, . . . , L -1. (6) 
Let us remark that the inequalities above are, in fact, equalities except for the cases l = 0 and l = L.

Motivated by models of fluid mechanics Gelfand, [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF], had formulated the following problem:

∀ε ≥ 0 to find asymptotic (t → ∞) of solution f (x, t) of equation (1a) with initial condition (2).

Gelfand had found solution of this problem for the case ε = +0 with special (Riemann type) initial conditions

f (x, 0) = α -, if x < x 0 α + , if x > x 0
and had noted that it would be interesting to prove that the main term of the asymptotic (t → ∞) of f (x, t), satisfying (1a),(2), coincides with the solution of (1a), ( 2) with ε = +0. Motivated by models of economical development similar problems were considered later [START_REF] Henkin | Schumpeterian dynamics as a nonlinear wave theory[END_REF], [START_REF] Henkin | A difference-differential analogue of the Burgers equation: stability of the two-wave behaviour[END_REF] for equation (1b).

Theorem. (Gelfand, 1959). Under assumptions 1, 2, solution of (1a) with ε = +0 with initial condition (2): f (x, 0) = α ± , if ±(x -x 0 ) > 0, has the following form:

f (x, t) =    α -, if x -x 0 < c 0 t α + , if x -x 0 ≥ c L t ϕ (-1) x-x 0 t , if c l t ≤ x -x 0 < c l+1 t, 0 ≤ l < L.
The Gelfand problem for (1a), (2) with ε ≥ 0 and with monotonic ϕ(f ) was solved by Iljin and Oleinik [START_REF] Iljin | Asymptotic long-time behaviour of the Cauchy problem for some quasilinear equation[END_REF].

Theorem (Iljin, Oleinik, 1960). Let under assumptions 1, 2 f be solution of (1a), [START_REF] Bardi | On Hopf's formulas for solutions of Hamilton-Jacobi equations[END_REF]

, ε = +0 and ϕ ′ (f ) < 0. Then ∃ t 0 > 0 such that f (x, t) = α -, if x < ct + x 0 α + , if x > ct + x 0 , t ≥ t 0
where shift parameter x 0 is determined by Maxwell formula:

x 0 -∞ (f 0 (x) -α -)dx + ∞ x 0 (f 0 (x) -α + )dx = 0,
and c is determined by Rankine-Hugoniot formula

c = 1 α + -α - α + α - ϕ(y)dy.
For semi-discrete initial problem (1b), (2) with ε ≥ 0 the analogues of the Iljin-Oleinik results had been obtained in [START_REF] Henkin | Schumpeterian dynamics as a nonlinear wave theory[END_REF].

The following result of Kruzhkov and Petrosjan [START_REF] Kruzhkov | Asymptotic behavior of the solutions of the Cauchy problem for the non-linear first order equations[END_REF] gives solution of Gelfand problem for equation (1a) with ε = +0 and with nondecreasing initial data [START_REF] Bardi | On Hopf's formulas for solutions of Hamilton-Jacobi equations[END_REF].

Theorem (Kruzhkov, Petrosjan, 1987). Let under assumptions 1, 2, f (x, t) be solution of the Cauchy problem (1a), ( 2) with ε = +0 and with nondecreasing initial data function f 0 (x). Let f (x, t) be solution of the Cauchy problem (1a), ( 2) with ε = +0, where the function ϕ def = -ψ ′ is replaced by the function φ = -ψ′ and the initial function f 0 (x) is replaced by the function

f0 (x) = u 1 χ (-∞,x 1 ) (x) + u 2 χ (x 1 ,x 2 ) (x) + . . . + u m χ (x m-1 ,+∞) (x),
where

x i = F * 0 (u i+1 ) -F * 0 (u i ) u i+1 -u i , i = 1, . . . , m -1, m = 2L + 2, u 1 = α - 0 , u 2 = α + 0 , . . . , u m-1 = α - L , u m = α + L , F 0 (y) = y 0 f 0 (x)dx, F * 0 (p) = sup p∈R {py -F 0 (y)}, χ (a,b) is the characteristic function of (a, b) ⊂ R. Then f (•, t) -f (•, t) L 1 (R) → 0, t → ∞
and the asymptotic locations {c l t + d l , l = 0, 1, . . . , L} of shock waves for f (x, t) coincide with the asymptotic locations of shock waves for f (x, t), and so the shifts d l , l = 0, . . . , L, can be found explicitly.

Remark 1.

The proof of Theorem in [START_REF] Kruzhkov | Asymptotic behavior of the solutions of the Cauchy problem for the non-linear first order equations[END_REF] is based on the explicit formula of E.Hopf [START_REF] Hopf | Generalized solutions of non-linear equations of first order[END_REF] and M.Bardi, L.C.Evans [START_REF] Bardi | On Hopf's formulas for solutions of Hamilton-Jacobi equations[END_REF] for the solutions of (1a), ( 2) with ε = +0 and nondecreasing initial data f 0 (x)

f (x, t) = ∂ ∂x sup p∈R I(t, x, p),
where

I(t, x, p) = (px + ψ(p)t) -sup y∈R (py -F 0 (y)), F 0 (y) = y 0 f 0 (x)dx.
Remark 2.

N.S.Petrosjan [START_REF] Petrosjan | About asymptotics of solutions of the Cauchy problem for quasilinear equation of first order with nonconvex state function[END_REF] had announced that under assumption 1 the result of [START_REF] Kruzhkov | Asymptotic behavior of the solutions of the Cauchy problem for the non-linear first order equations[END_REF] is still valid for piecewise smooth solutions of the problem (1a), [START_REF] Bardi | On Hopf's formulas for solutions of Hamilton-Jacobi equations[END_REF] with not necessary monotonic initial data f 0 (x) with the property f 0 (x) ∈ (α -, α + ) ∀ x ∈ (x -, x + ). Assumption 3. Let for (1a) and respectively for (1b) the following inequalities be valid

ϕ ′ (α - l ) = 0, l = 1, . . . , L, ϕ ′ (α + l ) = 0, l = 0, 1, . . . , L -1, ϕ(α - 0 ) = c 0 , if α - 0 < α + 0 , ϕ(α + L ) = c L , if α - L < α + L .
By developing of [START_REF] Kruzhkov | Asymptotic behavior of the solutions of the Cauchy problem for the non-linear first order equations[END_REF] and of [START_REF] Henkin | Burgers type equations, Gelfand's problem and Schumpeterian dynamics[END_REF], we obtain here the following Main theorem. i) Under the assumptions 1, 2, 3, the solutions f (x, t) of the Cauchy-Gelfand problem (1a,b), ( 2) with ε = +0 have the following asymptotic structure

f (•, t) -f (•, t) L 1 (R) → 0, t → ∞, f (x, t) =    α -, if x < c 0 t + d 0 ϕ (-1) (x/t), if c l t + d l ≤ x < c l+1 t + d l+1 , l = 0, 1, . . . , L -1 α + , if x ≥ c L t + d L ,
where parameters {c l } determined by (5a) (respectively by (5b)), parameters {d l } are determined by the respective equations (1a,b) and initial data (2a, 2b). ii) Moreover, ∃ t * ≥ 0 such that parameters {d l } for problem (1a), (2a) are determined for t ≥ t * by Maxwell type formulas

c l t+d l (t) x=y - l (t) (f (x, t) -α - l )dx + y + l (t) x=c l t+d l (t) (f (x, t) -α + l )dx = 0, f (y - l (t), t) = α - l , f (y + l (t), t) = α + l , where d l (t) = d l (t * ) if t ≥ t * ,
and parameters {d l } for problem (1b), (2b) are determined for t ≥ t * by formulas

c l t+d l (t) x=y - l (t) [Ψ(f (x, t)) -Ψ(α - l )]dx + y + l (t) x=c l t+d l (t) [Ψ(f (x, t)) -Ψ(α + l )]dx = 0, where Ψ(f ) = f α - dy ϕ(y) , d l (t) = d l (t * ) if t ≥ t * .
The crucial statement of main theorem consists in the equalities d l (t)

! = d l (t * ), if t ≥ t * . Remark 3.
Theorem of Kruzhkov, Petrosjan [START_REF] Kruzhkov | Asymptotic behavior of the solutions of the Cauchy problem for the non-linear first order equations[END_REF] is the corollary of main theorem, because for nondecreasing initial data parameter t * in the part ii) of main theorem can be taken by zero.

Remark 4.

Early T.-P.Liu [START_REF] Liu | Admissible solutions of hyperbolic conservation laws[END_REF] and A.V.Gasnikov [START_REF] Gasnikov | Time asymptotic behavior of the solution of the initial Cachy problem for a conservation law with non-linear divirgent viscosity[END_REF] had obtained (only under assumption 1) a rough versions of part i) of main theorem with shift functions d l (t) = o(t) instead of constant shifts d l .

Comparison result.

For the proof of the main theorem we need the following comparison result developing Proposition 1 from [START_REF] Henkin | Asymptotic structure for solutions of the Cauchy problem for Burgers type equations[END_REF].

Theorem 1.

Under the assumptions 1-3 and definitions (3a,b)-(5a,b) ∀ solution f = f ε (x, t) of (1b), (2) (respectively (1a), ( 2)) ∃ t 0 > 0 such that ∀t ≥ t 0 , ∀ε > 0 and for γ > 0, b l > O(1/γ), l = 0, . . . , L, the following estimate is valid:

ϕ (-1) x -γ √ εt t ≤ f ε (x, t) ≤ ϕ (-1) x + γ √ εt t , (1.1) 
for x ∈ [c l t + b l √ εt, c l+1 t -b l+1 √ εt].
For the proof of Theorem 1 we can not just apply rescaling of corresponding Proposition 1 from [START_REF] Henkin | Asymptotic structure for solutions of the Cauchy problem for Burgers type equations[END_REF], because now we must take into account that under conditions of Theorem 1 initial function f 0 (x) = f (x, 0) is independent of ε > 0. So, we will follow the scheme of the proof of Proposition 1 from [START_REF] Henkin | Asymptotic structure for solutions of the Cauchy problem for Burgers type equations[END_REF], precising the dependence of all parameters on ε > 0. We will give detailed proof only for the case of equation (1b), [START_REF] Bardi | On Hopf's formulas for solutions of Hamilton-Jacobi equations[END_REF] 

with ε > 0, L = 1, ϕ(α - 0 ) > c 0 = ϕ(α + 0 ), ϕ(α - 1 ) = c 1 > ϕ(α + 1 ).
The following statement generalizes essentially Proposition 1 of [START_REF] Henkin | Asymptotic behaviour of solutions of the Cauchy problem for Burgers type equations[END_REF].

Lemma 1. Under assumptions of Theorem 1, let L = 1; α - 0 < α + 0 < α - 1 < α + 1 ; and let c 0 , c 1 be the parameters defined by (3b), (4b), (5b). Put

∆ x f (x, t) = f ε (x, t) -f ε (x -ε, t) ε .
Let fl (x -c l t) be travelling wave solutions of (1b) such that fl (x)

→ α ± l , l = 0, 1, x → ±∞ and fl (0) = α - l +α + l 2
(see Prop. 0 in [START_REF] Henkin | Asymptotic structure for solutions of the Cauchy problem for Burgers type equations[END_REF]). Consider the following functions f ± (x, t), depending also on parameters {α ± l }, {c l }, l = 0, 1, positive small parameters γ and δ and positive bounded functions b ± 0 (t), b ± 1 (t):

f -(x, t) =          f - 0 (x, t) = f0 x-c 0 t ε , -∞ < x < c 0 t + b - 0 √ εt, f - 01 (x, t) = ϕ (-1) x-γ √ εt t - c 0 ε ϕ ′ (α + 0 )(x-c 0 t) , where c 0 t + b - 0 √ εt ≤ x ≤ c 1 t + b - 1 √ εt, f - 1 (x, t) = f1 x-c 1 t-(2 √ c 1 +γ+2δ) √ εt ε , c 1 t + b - 1 √ εt < x < +∞.
(1.2)

f + (x, t) =              f + 0 (x, t) = f0 x-c 0 t+(2 √ c 0 +γ+2δ) √ εt ε , where -∞ < x < c 0 t -b + 0 √ εt, f + 0,1 (x, t) = ϕ (-1) x+γ √ εt t + c 1 ε ϕ ′ (α - 1 )(c 1 t-x) , where c 0 t -b + 0 √ εt ≤ x ≤ c 1 t -b + 1 √ εt, f + 1 (x, t) = f1 x-c 1 t ε , c 1 t -b + 1 √ εt < x < +∞. (1.3)
Then the following statements are valid:

i) ∀γ, δ > 0 ∃ functions b - 0 (t) = γ + o(1), b - 1 (t) = γ + √ c 1 + δ + δ 2 + 2δ √ c 1 + o(1), b + 0 (t) = γ + √ c 0 + δ + δ 2 + 2δ √ c 0 + o(1), b + 1 (t) = γ + o(1),
satisfying for t ≥ t0 ε = t 0 and θ ∈ [0, 1] relations:

f - 0 (c 0 t + b - 0 √ εt, t) = f - 01 (c 0 t + b - 0 √ εt, t) ∆ x f - 0 (c 0 t + b - 0 √ εt + εθ, t) < ∆ x f - 01 (c 0 t + b - 0 √ εt + εθ, t) f - 01 (c 1 t + b - 1 √ εt, t) = f - 1 (c 1 t + b - 1 √ εt, t) ∆ x f - 01 (c 1 t + b - 1 √ εt + εθ, t) < ∆ x f - 1 (c 1 t + b - 1 √ εt + εθ, t); (1.4) 
f + 0 (c 0 t -b + 0 √ εt, t) = f + 01 (c 0 t -b + 0 √ εt, t) ∆ x f + 0 (c 0 t -b + 0 √ εt + εθ, t) > ∆ x f + 01 (c 0 t -b + 0 √ εt + εθ, t) f + 01 (c 1 t -b + 1 √ εt, t) = f + 1 (c 1 t -b + 1 √ εt, t) ∆ x f + 01 (c 1 t -b + 1 √ εt + εθ, t) > ∆ x f + 1 (c 1 t -b + 1 √ εt + εθ, t). (1.5) 
ii) ∀γ, δ > 0 and with b ± 0 , b ± 1 from i) ∃ t0 > 0 such that the functions f ∓ (x, t), x ∈ R, t ≥ t0 ε, are sub(super)solutions for (1b), i.e.

± df ± dt + ϕ(f ± ) f ± (x, t) -f ± (x -ε, t) ε ≥ 0. (1.6)
Complement. Lemma 1 is also valid for equation (1a) if in definitions of f ± 01 (x, t) numerators c 0 , c 1 are replaced by 2, the differences ∆

x f ∓ 0 , ∆ x f ∓ 1 by derivatives ∂f ∓ 0 ∂x , ∂f ∓ 01 ∂x , ∂f ∓ 1
∂x and inequality (1.6) in ii) by inequality

± ∂f ± ∂t + ϕ(f ± ) ∂f ± ∂x -ε ∂ 2 f ± ∂x 2 ≥ 0.
Proof. Lemma 1 of this paper follows from Lemma 1 of [START_REF] Henkin | Asymptotic structure for solutions of the Cauchy problem for Burgers type equations[END_REF], by simple rescaling

t → t ε , x → x ε , t0 → t 0 ε .
Lemma 1 is proved.

Let further function f → ϕ(f ) be extended outside [α -, α + ] keeping assumption 1 and the condition ϕ

′ (f ) < 0, if f ≤ α -or f ≥ α + .
By results of [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF], [START_REF] Oleinik | Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation[END_REF], [START_REF] Henkin | Schumpeterian dynamics as a nonlinear wave theory[END_REF], (see Prop. 0 in [START_REF] Henkin | Asymptotic structure for solutions of the Cauchy problem for Burgers type equations[END_REF]) ∀ small σ > 0 ∃ travelling type sub(super)solutions of (1b) (resp. of (1a)) of the form

f ∓ l,σ x ε -c ∓ l,σ t ε ∓ d( t ε ) (1.7) with overfalls [α - l ∓(-1) l σ, α + l ±(-1) l σ] and f ∓ l,σ (0) = 1 2 (α - l +α + l ), l = 0, 1. For parameters c ∓ l,σ we have c ∓ l,σ = c l (1 ± O + (σ)
). Let us replace in the definitions of f ∓ (x, t) in the statement of Lemma 1 the travelling waves fl (x -c l t), l = 0, 1, by σ-modified travelling sub(super)solutions (1.7) and rare type functions f ∓ 01 (x, t) by the σ-modified rare type sub(super)solutions for (1b) (resp. (1a)) of the form

f - 01,σ (x, t) = ϕ (-1) x -γ √ εt t - c - 0,σ ε ϕ ′ (α +- 0 )(x -c - 0,σ t) , f + 01,σ (x, t) = ϕ (-1) x + γ √ εt t + c + 1,σ ε ϕ ′ (α -+ 1 )(c + 1,σ t -x)
.

(1.8)

Lemma 2.

Let f ∓ σ (x, t) be functions of the form (1.2), (1.3), where parameters α ± l , c l , b ± l , l = 0, 1, are replaced by the σ-modified parameters:

α -∓ l,σ = α - l ∓ (-1) l σ, α +∓ l,σ = α + l ± (-1) l σ, b ∓ l,σ = b ∓ l ± O + (σ), c ∓ l,σ = c l (1 ± O + (σ)). (1.9) Put σ( t ε ) = ε t and d( t ε ) = ρ(ln t ε ), ρ ≥ ρ 0 . Then functions f ∓ σ (x, t) satisfy σ-modified relations i), ii) from Lemma 1, if parameter t0 = t 0
ε are big enough. Proof. σ-modified relation i) for f ∓ σ (x, t) follows from non-modified relations (1.4), (1.5), taking into account that modified parameters (1.9) coinside with non-modified parameters up to O( ε t ). Taking parameter t0 = t 0 ε big enough permits to keep sense of strict inequalities in modified relations (1.4), (1.5), i.e. in i). σ-modified relation ii) follows from σ-modified relation i), from non-modified estimates (1.6) and from estimates of derivatives

∂ ∂t d( t ε ) > 0, ∂ ∂t σ( t ε ) < 0
permitting to keep sence of σ-modified inequalities (1.6), if parameter t0 = t 0 ε is big enough. Lemma 3. Let f = f (x, t) be solution of (1b), (2) (resp. (1a),( 2)

) with L = 1. Let σ( t ε ) = ε t , d( t ε ) = ρ(ln t ε ).
If parameters t0 = t 0 ε and ρ are big enough, then function f (x, t) satisfies ∀ c > c 1 the following inequalities:

f - σ (x, t) < f (x, t) < f + σ (x, t), x ≤ 0, t ≥ t 0 , f - σ (ct, t) < f (ct, t) < f + σ (ct, t), x = ct, t ≥ t 0 .
(1.10)

Proof.

For proving (1.10) it is sufficient to prove inequalities

f - σ (x, t) < α - 0 , f + σ (x, t) > α - 0 , if x ≤ 0, t ≥ t0 ε, (1.11) f - σ (ct, t) < α - 1 , f + σ (ct, t) > α - 1 , if t ≥ t0 ε.
(1.12)

If x ≤ 0 and parameters t0 = t 0 ε and ρ are big enough, then definitions above imply existence of λ 0 > 0 independent of ε such that

f - σ (x, t) = f - 0,σ x ε -c - 0,σ t ε -d( t ε ) ≤ f - 0,σ -c - 0,σ t ε -ρ ln t ε ≤ α - 0 -σ + O exp -λ 0 c 0 t ε -λ 0 ρ ln t ε ≤ α - 0 - ε t + O exp -λ 0 c 0 t ε O ( ε t 0 ) ρλ 0 < α - 0 , if ρ > 1 λ 0 and t0 = t 0 ε -big enough.
Note, that by estimate (6.3) from [START_REF] Henkin | A difference-differential analogue of the Burgers equation and some models of economic development[END_REF], parameter λ 0 can be chosen up to O( ε t ) equal to solution λ 0 of the equation

λ 0 = ϕ(α - 0 )ψ(α - 0 , α + 0 )(1 -e -λ 0 ),
where

ψ(α - 0 , α + 0 ) = 1 α + 0 -α - 0 α + 0 α - 0 dy ϕ(y) .
For f + σ (x, t), x ≤ 0, estimate follows more easily

f + σ (x, t) = f + 0,σ x ε -c + 0,σ t ε + (2 c + 0,σ + γ + 2δ)( t ε ) 1/2 + d( t ε ) ≥ α - 0 + σ > α - 0 , if t0 big enough.
Inequalities (1.11) are proved. Let us prove (1.12) by the similar way.

For c > c 1 , x = ct and t0 = t 0 ε we have

f - σ (ct, t) = f - 1,σ x ε -c - 1,σ t ε -d( t ε ) < α + 1 -σ < α + 1 , f + σ (ct, t) = f + 1,σ c t ε -c + 1,σ t ε + d( t ε ) = f + 1,σ c t ε -c 1 1 -O( ε t ) t ε + ρ ln t ε ≥ α + 1 + σ -O exp (-λ 1 (c -c 1 ) t ε + λ 1 ρ ln ε t ≥ α + 1 + ε t -O exp (-λ 1 (c -c 1 ) t ε O ( ε t ) ρλ 1 > α + 1 ,
if ρ > 1 λ 1 and t0 = t 0 ε big enough. Inequalities (1.12) are proved. Lemma 3 is proved.

Lemma 4. Under conditions of Lemmas 1,2 ∃ T > 0 (independent of ε > 0) such that for t ≥ T function f = f ε (x, t) satisfies inequalities f - σ (x, t + T ) < f ε (x, t) < f + σ (x, t -T ), x ∈ R. (1.13)
Proof.

From Lemma 3 and from results of [START_REF] Weinberger | Long-time behaviour for a regularized scalar conservation law in the absence of genuine nonlinearity[END_REF] (section 2) it follows the existence of T > 0 such that initial values f (x, t 0 ) = f 0 (x) satisfy (1.13) with t 0 = T .

From this and comparison principle for solutions of (1b) (see Lemma 7.3 in [START_REF] Henkin | A difference-differential analogue of the Burgers equation and some models of economic development[END_REF]) we deduce inequality (1.13) for t ≥ t 0 = T with T and t0 big enough. Lemma 4 is proved.

Proof of Theorem 1.

From σ-modified versions (1.8) of (1.2), (1.3) for f ∓ (x, t) we have

f - 01,σ (x, t) = ϕ (-1) x -γ √ εt t - c - 0,σ ε ϕ ′ (α +- 0 )(x -c - 0,σ t) , if c - 0,σ t + b - 0,σ √ εt ≤ x ≤ c - 1,σ t + b - 1,σ √ εt, where c - 0,σ = ϕ(α +- 0 ) = c 0 (1 + O + ( ε t )), c 0 = ϕ(α + 0 ), c - 1,σ = ϕ(α -+ 1 ) = c 1 (1 + O + ( ε t )), c 1 = ϕ(α - 1 ), b - 1 = γ + √ c 1 + δ + δ 2 + 2δ √ c 1 + o(1), b - 0,σ = b - 0 + O + ( ε t ), b - 0 = γ + o(1), b - 1,σ = b - 1 + O + ( ε t ). f + 01,σ (x, t) = ϕ (-1) x + γ √ εt t + c + 1,σ ε ϕ ′ (α -+ 1 )(c + 1,σ t -x) , if c + 0,σ t -b + 0,σ √ εt ≤ x ≤ c + 1,σ t -b + 1,σ √ εt, where c + 0,σ = c 0 (1 -O + ( ε t )), c + 1,σ = c 1 (1 -O + ( ε t )), b + 0,σ = b + 0 -O + ( ε t ); b + 0 = γ + √ c 0 + δ + δ 2 + 2δ √ c 0 ; b + 1,σ = b + 1 -O + ( ε t ); b + 1 = γ + o(1)
.

Let γ = γ + Γ be such that

ϕ (-1) x - γ√ εt t ≤ ϕ (-1) x -γ √ εt t - c - 0,σ ε ϕ ′ (α +- 0 )(x -c - 0,σ t) and ϕ (-1) x + γ √ εt t + c + 0,σ ε ϕ ′ (α -+ 1 )(c + 1,σ t -x) ≤ ϕ (-1) x + γ√ εt t , (1.14) 
where

c - 0,σ t + b - 0,σ √ εt ≤ x ≤ c + 1,σ t -b + 1,σ √ εt (1.15) 
To obtain (1.14) we must have under condition (1.15) the following inequalities for Γ > 0:

- 1 (sup ϕ ′ ) Γ √ εt t ≤ - c - 0,σ ε ϕ ′ (α +- 0 )(x -c - 0,σ t) and c + 0,σ ε ϕ ′ (α -+ 1 )(c + 1,σ t -x) ≤ 1 (sup ϕ ′ ) Γ √ εt t , (1.16) 
where

ϕ ′ = ϕ ′ x t ± (γ + θΓ) ε t , θ ∈ [0, 1], t ≥ t 0 .
From (1.15) and (1.16) we obtain the following condition for parameter Γ:

Γ (sup ϕ ′ ) > c - 0,σ ϕ ′ (α +- 0 )b - 0,σ and Γ (sup ϕ ′ ) ≥ c + 0,σ ϕ ′ (α -+ 0 )b + 1,σ . (1.17) 
To satisfy (1.17) it is sufficient to take Γ such that

Γ > (sup ϕ ′ ) c - 0,σ ϕ ′ (α +- 0 )b - 0,σ and Γ > (sup ϕ ′ ) c + 0,σ ϕ ′ (α -+ 0 )b + 1,σ .
From Lemma 4 and inequalities (1.14), (1.15) for t ≥ T and

x ∈ [c 0 t + b 0 √ εt, c 1 t -b 1 √ εt] we obtain ϕ (-1) x -γ ε(t + T ) t + T ≤ f ε (x, t) ≤ ϕ (-1) x + γ ε(t -T ) t -T , (1.18) 
where b

0 > γ + o(1), b 1 > γ + O(1), γ = γ + O 1 b 0 . Theorem 1 is proved.
2. Vanishing viscosity method for Cauchy-Gelfand problem. Theorem 1, incorporated in the proof of Proposition 2 from [START_REF] Henkin | Burgers type equations, Gelfand's problem and Schumpeterian dynamics[END_REF], implies the following improved version of this proposition as well as of Theorem 2 of [START_REF] Henkin | Estimates for solutions of Burgers type equations and some applications[END_REF].

Theorem 2.

Let under assumptions and notations of Theorem 1, bl > b l > O(1/γ), l = 0, . . . , L, γ > 0. Then ∃ t 0 > 0 such that ∀ t ≥ t 0 and ε > 0 the difference ∆f = f (x,t)-f (x-ε,t) ε for a solution f = f ε (x, t) of (1b), ( 2) and the derivative ∂f ∂x (x, t) for a solution f = f ε (x, t) of (1a), (2) satisfy the following estimates

∆f ∂f ∂x = 1 ϕ ′ (α + l ) • t + O γ ϕ ′ (α + l ) • t (2.1) for x ∈ [c l t + b l √ εt, c l t + bl √ εt], l = 0, . . . , L -1, t ≥ t 0 , and ∆f ∂f ∂x = 1 ϕ ′ (α - l ) • t + O γ ϕ ′ (α - l ) • t (2.2) for x ∈ [c l t -bl √ εt, c l t -b l √ εt], l = 1, . . . , L, t ≥ t 0 .
Corollary.

Under conditions of Theorem 2 ∃γ 0 > 0 small enough and ∃ t 0 > 0 big enough such that for t ≥ t 0 , γ ≤ γ 0 and ε > 0 functions x → f ε (x, t) from (1a,b), (2) are increasing functions on the intervals x ∈ [c l t + b l √ εt, c l t + bl √ εt], l = 0, . . . , L -1, and x ∈ [c l t -bl √ εt, c l t -b l √ εt], l = 1, . . . , L. From theorem 1 and from corollary of theorem 2 ∀ε > 0 and for big enough t 0 > 0 and Γ > 0 we deduce existence of functions t → y ± l (t, ε), l = 0, . . . , L, t ≥ t 0 , with properties

f ε (y + 0 , t) = α + 0 + εΓ t , f ε (y - L , t) = α - L - εΓ t , f ε (y ± l , t) = α ± l ± εΓ t , l = 1, . . . , L -1, α - 0 < f ε (x, t) < α + 0 + εΓ t , if x < y + 0 (t, ε), α - L - εΓ t < f ε (x, t) < α + L , if x > y - L (t, ε), α - l - εΓ t < f ε (x, t) < α + l + εΓ t , l = 1, . . . , L -1, if y - l (t, ε) < x < y + l (t, ε).
This implies correctness of the following definition of Maxwell type shift-functions d l (t, ε) for solutions of (1a,b), (2) with ε > 0.

Definition 1.

Under assumptions and notations of Theorem 1 for Cauchy problem (1a), (2) ∀ t 0 > 0 and Γ > 0 big enough ∃! well defined functions d l (t, ε) and y ± l (t, ε), l = 0, . . . , L, t ≥ t 0 , ε > 0 such that

c 0 t+d 0 (t,ε) -∞ (f ε (x, t) -α - 0 )dx + y + 0 (t,ε) c 0 t+d 0 (t,ε) (f ε (x, t) -α + 0 - εΓ t )dx = 0, f ε (y + 0 , t) = α + 0 + εΓ t , (2.3) 
c l t+d l (t,ε) y - l (t,ε) (f ε (x, t) -α - l + εΓ t )dx + y + l (t,ε) c l t+d l (t,ε) (f ε (x, t) -α + l - εΓ t )dx = 0, f ε (y ± l , t) = α ± l ± εΓ t , l = 1, . . . , L -1, (2.4) 
c L t+d L (t,ε) y - L (t,ε) (f ε (x, t) -α - L + εΓ t )dx + ∞ c L t+d L (t,ε) (f ε (x, t) -α + L )dx = 0, f ε (y - L , t) = α - L - εΓ t .
(2.5)

To define Maxwell type shift-functions for Cauchy problem (1b), (2) it is sufficient to replace in definition 1 function f ε (x, t) and parameters α ± l by functions Ψ(f ε (x, t)) and parameters Ψ(α ± l ), where Ψ

(f ) = f α - y ϕ(y) . Theorem 3. Let Φ(f ) be such that ϕ(f ) ∂f ∂x = ∂Φ(f ) ∂x .
Then under notations of Theorem 1 and definition 1 ∀ t ≥ t 0 and ε > 0 the following formulas for Maxwell type shift-functions d l (t, ε) for solutions of Cauchy problem (1a), (2) are valid:

(α + l -α - l + 2 εΓ t ) d dt (c l t + d l (t, ε)) = Φ(α + l + εΓ t ) -Φ(α - l - εΓ t )- ε( ∂f ε ∂x (y + l (t, ε), t) - ∂f ε ∂x (y - l (t, ε), t))- 1 t εΓ t y + l (t, ε) + y - l (t, ε) 2 -c l t -d l (t, ε) , if l = 1, . . . , L -1, (2.6) 
(α + 0 -α - 0 + εΓ t ) d dt (c 0 t + d 0 (t, ε)) = Φ(α + 0 + εΓ t ) -Φ(α - 0 )- ε( ∂f ε ∂x (y + 0 (t, ε), t) - 1 2t εΓ t (y + 0 (t, ε) -c 0 t -d 0 (t, ε)), if l = 0, (2.7) 
(α + L -α - L + εΓ t ) d dt (c L t + d L (t, ε)) = Φ(α + L ) -Φ(α - L - εΓ t )+ ε( ∂f ε ∂x (y - L (t, ε) - 1 2t ε t (y - L -c L t -d L (t, ε)), if l = L.
(2.8)

Proof.

Let us consider firstly the case l = 1, . . . , L -1. Derivation of equality (2.4) from definition 1 gives equality This gives (2.7). Equality (2.8) can be proved by a similar way. Theorem 3 is proved.

d dt (c l t + d l (t, ε))(f ε (c l t + d l (t, ε), t) -α - l + εΓ t )- d dt (c l t + d l (t, ε))(f ε (c l t + d l (t, ε), t) -α + l - εΓ t )+ y + l (t,ε) y - l (t,ε) ∂f ε (x, t) ∂t dx + 2 c l t + d l - y - l + y + l 2 d dt εΓ t = 0.
+ y + 0 -∞ ε ∂ 2 f ε ∂x 2 -ϕ(f )

Remark 5.

Result similar to Theorem 3 is valid also for shift-functions for Cauchy problem (1b), (2).

From Theorems 1, 2, 3 we can deduce the following. (2.9)

Proof (for problem (1a), ( 2)).

Let us consider the case l = 1, . . . , L -1. In order to obtain estimate (2.9) for this case we must estimate all terms of (2.6). For these estimates we note that equalities f ε (y ± l , t) = α ± l ± εΓ t and Theorem 1 for Γ big enough imply the following inequality This gives property (28) in [START_REF] Henkin | Burgers type equations, Gelfand's problem and Schumpeterian dynamics[END_REF] and as a consequence a strong version of theorem 1 in [START_REF] Henkin | Burgers type equations, Gelfand's problem and Schumpeterian dynamics[END_REF]."

c l t -Γ √ εt ≤ y - l ≤ y + l ≤ c l t + Γ √ εt,

  2 (c 0 t + d 0 (t) -y + 0 ) t + d 0 (t, ε)) = -ε ∂f ε ∂x (y + 0 , t) -0 + Φ(f ε (y - 0 )) -Φ(f ε (-∞)) -√ εΓ 2t 3/2 (y + 0 -c 0 t + d 0 (t)).

Theorem 4 .

 4 Under assumptions and notations of Theorem 1 and definition 1 Maxwell type shiftfunctions d l (t, ε) for solutions of Cauchy problem (1a,b), (2) have the following small viscosity estimate:

  t, ε) = O( ε/t), ε > 0, t ≥ t 0 , l = 0, . . . , L.

  If l = 0 then derivation of (2.3) impliesd dt (c 0 t + d 0 (t, ε))(f ε (c 0 t + d 0 (t, ε), t) -α - 0 )d dt (c 0 t + d 0 (t, ε))(f ε (c 0 t + d 0 (t, ε), t) -α + 0 -

										εΓ t	)+
	y + 0 (t,ε)	∂f ε (x, t) ∂t	dx + (c 0 t + d 0 (t, ε) -y + 0 )	d dt	εΓ t	= 0.
	-∞								
	Using (1a) we have further							
	(α + 0 -α -0 +	εΓ t	)	d dt	(c
	This equality and equation (1a) imply
	(α + l -α -l + 2 (c y + εΓ t ) d dt l (t,ε) ε ∂ 2 f ε ∂x 2 -ϕ(f ) ∂f ε ∂x	dx -	1 t	εΓ t	c l t + d l -	y -l + y + l 2	= 0.
	y -l (t,ε)								
	Using equality ϕ(f ) ∂f ∂x = ∂Φ(f ) ∂x , we obtain further
	(α + l -α -l + 2	εΓ t	)	d dt	(c l t + d l (t, ε)) = -ε	∂f ε ∂x	(y + l , t) -	∂f ε ∂x	(y -l , t) +
	Φ(f ε (y + l , t)) -Φ(f ε (y -l , t)) -	1 t	εΓ t	y + l + y -l 2	-c l t -d l .
	This gives (2.6), taking into account equality
								f ε (y ± l , t) = α ± l ±	εΓ t	.

l t + d l (t, ε))+ 0 t + d 0 (t, ε))

  t ≥ t 0 .

	d dt	d l (	t ε	, (	ε t	) 1/4 ) = O(	ε t	) + O(	ε t	) 3/4 ).
										(2.10)
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Using (2.10) and Theorem 2 we obtain the following equality

.

(2.11) Definition 1 and (2.10) imply inequality

(2.12) Formula (5a) gives equality

Using (2.13), we obtain

Finally, (2.11), (2.12), (2.14) imply (2.9). The cases l = 0 and l = L can be obtained by a similar way.

Theorem 4 is proved.

Corollary.

Under conditions of Theorem 1

Proof of the main theorem.

The first statement of the main theorem was obtained in [START_REF] Henkin | Burgers type equations, Gelfand's problem and Schumpeterian dynamics[END_REF], theorem 1. The second statement of the main theorem follows directly from the first statement and corollary of Theorem 4.

Remark 6.

Note that in [START_REF] Henkin | Burgers type equations, Gelfand's problem and Schumpeterian dynamics[END_REF] in the proof of theorem 1 there are misprints, which we correct here: "From ( 10) and ( 11) of [START_REF] Henkin | Burgers type equations, Gelfand's problem and Schumpeterian dynamics[END_REF], Proposition 3 with A = ( ε t )