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Weakly regular Einstein–Euler spacetimes with Gowdy symmetry.
The global areal foliation

Nastasia Grubic1 and Philippe G. LeFloch1

Abstract

We consider weakly regular Gowdy–symmetric spacetimes on T3 satisfying the Einstein–
Euler equations of general relativity, and we solve the initial value problem when the
initial data set has bounded variation, only, so that the corresponding spacetime may
contain impulsive gravitational waves as well as shock waves. By analyzing, both, future
expanding and future contracting spacetimes, we establish the existence of a global foliation
by spacelike hypersurfaces so that the time function coincides with the area of the surfaces
of symmetry and asymptotically approaches infinity in the expanding case and zero in the
contracting case. More precisely, the latter property in the contracting case holds provided
the mass density does not exceed a certain threshold, which is a natural assumption since
certain exceptional data with sufficiently large mass density are known to give rise to a
Cauchy horizon, on which the area function attains a positive value. An earlier result by
LeFloch and Rendall assumed a different class of weak regularity and did not determine
the range of the area function in the contracting case. Our method of proof is based on a
version of the random choice scheme adapted to the Einstein equations for the symmetry
and regularity class under consideration. We also analyze the Einstein constraint equations
under weak regularity.

1. Introduction

We study here the class of Gowdy–symmetric spacetimes on T3 when the matter model
is chosen to be a compressible perfect fluid. We formulate the initial value problem when an
initial data set is prescribed on a spacelike hypersurface and we search for a corresponding
solution to the Einstein–Euler equations. In comparison with earlier works on vacuum
spacetimes [6, 8, 10, 11, 25, 26, 17] or on the coupling with the Vlasov equation of kinetic
theory [1, 5, 21, 22, 28], dealing with compressible fluids is comparatively more challenging,
since shock waves generically form in the fluid [24] and one must work with weak solutions
to the Einstein–Euler equations.

In the present paper, building upon work by LeFloch and co-authors in [13]–[19], we
deal with the initial value problem associated with the Einstein–Euler equations under

1Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique, Université Pierre et Marie
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weak regularity conditions, only: the first–order derivatives of the metric coefficients
and the fluid variables are assumed to have bounded variation, which permits impulsive
gravitational waves in the geometry and shock waves in the fluid. Analyzing, both,
future expanding and future contracting spacetimes, we establish the existence of a global
foliation by spacelike hypersurfaces, so that the time function coincides with the area of
the surfaces of symmetry and asymptotically approaches +∞ in the expanding case and 0
in the contracting case. More precisely, the latter holds provided certain exceptional initial
data are excluded which, instead, give rise to a Cauchy horizon [23, 30].

Recall that LeFloch and Rendall [16] established the existence of weak solutions to the
initial-value problem, but assumed a different class of regularity and did not describe the
interval of variation of the area function in the contracting case. The method of proof
introduced in the present paper is based on a generalized version of the random choice
scheme originally introduced by Glimm [7] (cf. the textbooks [4, 12]) which we need to
adapt to the Einstein equations and to the (Gowdy) symmetry class under consideration.
In order to show the convergence of the proposed scheme, we derive a uniform bound on
the sup-norm and the total variation of, both, first-order derivatives of the essential metric
coefficients and the matter variables. Metrics with low regularity were considered earlier
in [3, 9] for the class of radially symmetric spacetimes, which, however, do not permit
gravitational waves which are of main interest in the present work.

We thus consider spacetimes (M, g) satisfying the Einstein–Euler equations

Gα
β = Tα

β (1.1)

and study the initial value problem when an initial data set, describing the initial geometry
and fluid variables, is prescribed on a spacelike hypersurface with 3–torus topology T3;
moreover, we assume that the initial data set is Gowdy–symmetric, that is, are invariant
under the Lie group T2 with vanishing twist constants. (See Section 2, below, for the
precise definitions.) The left-hand side of (1.1) is the Einstein tensor Gαβ := Rαβ − (R/2)gαβ
and describes the geometry of the spacetime, while Rαβ denotes the Ricci curvature tensor
associated with g. By convention, all Greek indices take here the values 0, . . . , 3.

The stress-energy tensor of a perfect compressible fluid reads

Tα
β := (µ + p) uαu

β + p gα
β, (1.2)

where µ represents the mass–energy density of the fluid and u its future-oriented, unit
time-like, velocity field. We also assume that the pressure p depends linearly upon µ, i.e.

p := k2µ, (1.3)

in which the constant k ∈ (0, 1) represents the speed of sound in the fluid and does not
exceed the speed of light, normalized to be unit.

Two main results are established in the present paper, for expanding spacetimes in
Section 6 (cf. Theorem 6.1) and for contracting spacetimes in Section 7 (cf. Theorem 7.1).
The main elements of proof are as follows:

• Our first task is to formulate the initial value problem for the Einstein-Euler equations
by solely assuming weak regularity conditions on the initial data set. Specifically,
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in areal coordinates (t, θ), the fluid variables as well as the first–order derivatives of
the metric coefficients are assumed to have bounded variation in space, in the sense
that their (first–order) distributional derivatives are bounded measures. This is so
except for one metric coefficient which is denoted by a (see Section 2, below) and
describes the conformal metric of the quotient spacetime under the group action of
the Gowdy symmetry. The time-derivative at has bounded variation in time, but no
such regularity is imposed (nor available) for the spatial derivative aθ. Cf. Sections 2
and 3, below, for further details.

• Next, in Section 4, we study special solutions to the Einstein–Euler system. On
one hand, we analyze the Riemann problem (first studied in [29, 27], as far as the
fluid variables in the flat Minkowski geometry are concerned) associated with a
homogeneous version of the Einstein–Euler system. On the other hand, we study
here an ordinary differential system which takes into account the source terms, only,
after neglecting the propagation–related terms of the Einstein–Euler system. Here, a
particular definition of the “main geometric variables” is essential in order for certain
linear interaction estimates to hold and in order to avoid any resonance phenomena,
due to the possibility of vanishing wave speeds.

• A generalization of the random choice scheme for the Einstein–Euler equations is
introduced in Section 5, which allows us to establish a continuation criterion. In
short, solutions to the Einstein–Euler equations are proven to exist as long as the
mass-energy density variable µ (or, more precisely, the geometric coefficient a) does
not blow-up.

• Based on the above arguments, we construct solutions to the initial value problem
and investigate the global geometry associated with initial data sets generating future
expanding (in Section 6) and future contracting (in Section 7) spacetimes. We prove
that, in the expanding case, the areal foliation is defined for all values of the area
function, while, in the contracting case, we establish the same global result for initial
data with “sufficiently small” mass density. The latter is a natural assumption since
certain exceptional data (with sufficiently large mass density) are known to give rise
to a Cauchy horizon.

2. Einstein–Euler spacetimes with weak regularity

2.1. Euler equations

Our first task is to introduce a definition of weak solutions to the Einstein–Euler equa-
tions. We focus here on the formulation of the Euler equations, and we refer to [17] for a
detailed treatment of the (vacuum) Einstein equations. We are given a smooth manifoldM
(described by sufficiently regular transition maps) together with a locally Lipschitz contin-
uous Lorentzian metric g. We suppose that this spacetime is foliated by compact spacelike
hypersurfacesHt (diffeomorphic to a fixed three–manifoldH ), i.e.

M =
⋃

t∈I

Ht,
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determined as level sets of a locally Lipschitz continuous time function t : M → I ⊂ R (I
being an interval) so that gαβ∂αt is a future-oriented timelike vector. The lapse function N
and the future-directed, unit normal n = (nα) are then defined as

N :=
(
− gαβ∂αt ∂βt

)−1/2
, nα := −Ngαβ∂βt.

These fields are measurable and bounded, only, that is, belong to L∞
loc

(M). We assume, in
addition, that all fields in L∞

loc
(M) actually admit well-defined values on each hypersurface

Ht, which also belong to L∞(Ht). We write, in short, N, nα ∈ L∞
loc

(L∞), by specifying first the
regularity in time and, then, the regularity in space. In practice, these objects will also enjoy
certain continuity properties in time, as we will state it below. Furthermore, we impose
that the lapse function is also locally Lipschitz continuous —which implies that the volume
forms of, both, the Lorentzian metric and the induced Riemannian metric are also locally
Lipschitz continuous.

Under the above assumptions, we decompose the Lorentzian metric in the form

g = −N2dt2 + (3) g,

in which (3) g is the induced metric on the slices of the foliation. In local coordinates (t, xa)
adapted to the foliation, we write (3) g = (gab) with a, b = 1, 2, 3. We introduce the Levi–
Cevita connection∇α associated with g, as well as the Levi–Cevita connection∇a associated
with (3)g, and we define the second fundamental form k = kt of a sliceHt by

k(X,Y) := g(∇XY, n) = −g(∇Xn,Y)

for any tangent vectors X,Y. Observe that, at this juncture,∇α,∇a, and kab belong to L∞
loc

(L∞),
only.

We now turn our attention to the Euler equations by first assuming that the fluid
variables are locally Lipschitz continuous functions (which is too strong an assumption to
allow for shock waves and will be weakened in Definition 2.1, below). Using the projection
operator hαβ := gαβ + nαnβ, we decompose the stress–energy tensor (1.2) by setting

ρ := Tαβnαnβ, jα := −Tγβhαγnβ, Sαβ := Tγδhαγh
β

δ
, (2.1)

so that
Tαβ = ρnαnβ + jαnβ + jβnα + Sαβ.

In coordinates x = (xα) = (t, xa) adapted to the foliation, we have n0 = 1/N, na = 0, j0 = 0,
and S0α = 0 and, in order to simplify the notation, we define ω := (det((3) g))1/2, so that
|det(g)|1/2 = Nω.

The Bianchi identities imply the Euler equations ∇αT
α
β
= 0, which yield

∫

M

Tαβ∇αξ
β dVg = 0 (2.2)

for every smooth and compactly supported vector field ξ. Here, the volume form dVg =

|det(g)|1/2 dx = Nω dx is locally Lipschitz continuous, while the derivative operator ∇ is
L∞

loc
, only.
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On one hand, by taking the vector field ξ to be normal, that is, ξ = ϕ∂t for some smooth
and compactly supported function ϕ, we deduce from (2.2) that

0 =

∫

M

Tαβ∂
β
t ∂αϕ dVg +

∫

M

Tαβ∇α∂
β
t ϕ dVg

=

∫

M

N2
(
ρnα + jα

)
∂αϕωdx −

∫

M

Nρnβn
α∇α∂

β
t ϕωdx −

∫

M

N Sαβ∇α∂
β
t ϕωdx,

thus ∫

M

(
N ρ ∂tϕ +N2 ja∂aϕ +

(
ρ ∂tN +N2 Sabkab

)
ϕ

)
ωdx = 0. (2.3)

On the other hand, by taking ξ to be tangential to the slices, that is, having ξ0 = dt(ξ) = 0,
we find

0 =

∫

M

Tαβ ∇αξ
β dVg

=

∫

M

N
(
ρnαnβ + jαnβ + jβn

α + Sαβ

)
∇αξ

βωdx

= −

∫

M

ρ ∂bN ξbdx +

∫

M

N kab jaξbω2dx +

∫

M

N jβn
α∇αξ

βωdx

+

∫

M

N Sa
b ∇aξ

bωdx.

The third term on the right–hand side reads

∫

M

Nω jβn
α∇αξ

β dx =

∫

M

jβ∂tξ
β ωdx +

∫

M

N jβξ
α∇αn

βωdx

=

∫

M

jb∂tξ
bωdx −

∫

M

N kab jaξbωdx

and, therefore, ∫

M

(
jb∂tξ

b +N Sa
b∇aξ

b − ρ ∂bN ξb

)
ωdx = 0. (2.4)

At this juncture, we observe that (2.3)–(2.4) make sense under a weak regularity as-
sumption on the fluid variables, which motivates us to introduce the following definition.

Definition 2.1. Consider a spacetime (M, g) with locally Lipschitz continuous metric endowed
with a foliation whose lapse function N is also locally Lipschitz continuous. Let µ > 0 be a scalar
field and u = (uα) be a future-oriented, unit timelike vector field, both of them having solely L∞

loc
regularity. Then, (µ, u) is called a weak solution to the Euler equations (1.2) if the two identities

∫

t∈I

∫

H

(
N ρ(µ, u) ∂tϕ +N2 ja(µ, u)∂aϕ +

(
ρ(µ, u) ∂tN +N2 Sab(µ, u)kab

)
ϕ
)

dtdV(3) g = 0,

∫

t∈I

∫

H

(
jb(µ, u) ∂tξ

b +N Sa
b(µ, u)∇aξ

b − ρ(µ, u) ∂bN ξb
)

dtdV(3) g = 0,

(2.5)
hold for all smooth and compactly supported fields ϕ and ξa.
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In other words, observing that dtdV(3) g = ω dx, the conditions in the definition mean
that

∂t

(
Nωρ

)
+ ∂a

(
N2ω ja

)
= ω

(
ρ ∂tN +N2 kab Sab

)
,

∂t

(
ω jb

)
+ ω∇a

(
N Sa

b

)
= −ωρ∂bN

(2.6)

hold in the distribution sense in the coordinates (t, xa). This latter statement does make
sense since the productω∇a(N Sa

b
) is understood geometrically in a weak sense as precisely

stated in the above definition. Our assumption that the lapse function N is locally Lipschitz
continuous implies that the terms ∂tN and ∂bN are bounded on each compact time interval
so that the right–hand sides of (2.6) are well-defined as locally bounded functions.

From now on, following [16], we restrict attention to spacetimes with Gowdy symmetry
on T3. Introducing coordinates (t, x1, xB) (with B = 2, 3) that are compatible with this
symmetry so that (x2, x3) ∈ T2 correspond to the 2–surfaces generated by the Killing fields,
we can now rewrite the Euler equations. As observed in [16], the Einstein’s constraint
equations (stated below) imply the second and third components of the fluid velocity
vanish, i.e.

u2 = u3 = 0.

Consequently, the remaining non-vanishing components of the stress–energy tensor read

ρ = N2(µ + p) (u0)2 − p, j1 = N (µ + p) u0u1,

S11 = (µ + p)(u1)2 + p g11, SBC = p gBC.

The term ω∇a(N Sa
b
) arising in (2.6) can be simplified, as follows:

ω∇a(N Sa
1) = ∂1(NωS1

1) −NωΓb
1a Sa

b

= ∂1(NωS1
1) −Nω

(
Γ1

11 S1
1 + Γ

C
1B SB

C

)
,

where the Christoffel symbols Γ1
11
, ΓC

1B
∈ L∞

loc
(L∞) are given by

ΓC
1B =

1

2
gCD ∂1gDB, Γ1

11 =
1

2
g11 ∂1g11.

We can finally write the Euler equations in the form

∂t

(
Nωρ

)
+ ∂1

(
N2ω j1

)
= NωΣ0,

∂t

(
ω j1

)
+ ∂1

(
NωS1

1

)
= ωΣ1,

(2.7)

where
Σ0 :=N

(
k11(µ + p)(u1)2 + p trk

)
+

(
N(µ + p)(u0)2 − p/N

)
∂tN,

Σ1 := −
(
N2(µ + p)(u0)2 − p

)
∂1N +

1

2
N p gBC∂1gBC

+
1

2
N ∂1g11

(
(µ + p)(u1)2 + p g11

)
.

(2.8)

According to Definition 2.1, the equations (2.7)–(2.8) are required to hold in the distribu-
tional sense in the coordinates (t, x1).
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2.2. Weak formulation of the Einstein equations in areal coordinates

We express the spacetime metric in areal coordinates, that is,

g = e2(η−U)(−a2dt2 + dθ2) + e2U(dx + Ady)2 + e−2Ut2dy2, (2.9)

which depends upon four scalar functions U,A, η, a depending on the variables t, θ, with
a > 0. We assume that θ ∈ S1 = [0, 1] (with a periodic boundary condition), and we
distinguish between two classes of initial data imposed on a slice Ht0 and we solve in the
future direction t ≥ t0:

Future expanding spacetimes: t0 > 0,

Future contracting spacetimes: t0 < 0.
(2.10)

The global geometry of the spacetimes is markedly different in each case, but yet many
fondamental estimates are similar (up to a change of sign). At this juncture, we may expect
that the time variable should describe the interval [t0,+∞) in the expanding case and the
interval [t0, 0) in the contracting case, although we will actually see that dealing with the
contracting case is more involved.

After a tedious but straightforward computation from the Einstein equations, one
obtains the evolution equations

(
t a−1Ut

)
t
−

(
t aUθ

)
θ
=

e4U

2ta

(
A2

t − a2A2
θ

)
+ taΠU,

(
t−1 a−1At

)
t
−

(
t−1 aAθ

)
θ
= −4t−1a−1

(
UtAt − a2UθAθ

)
+ aΠA,

(
t a−1ηt

)
t
−

(
t a(η + log a)θ

)
θ
= 2t aU2

θ +
e4U

2ta
A2

t + t aΠη(t),

(2.11)

understood in the sense of distributions, where the lower–order matter terms are given by

ΠU :=
1

2
e2(η−U)(ρ − S1 + S2 − S3),

ΠA :=2e2(η−2U)S23, Πη := e2(η−U)
(
ρ − S3

)
,

in terms of the spatial part Sαβ of the energy-momentum tensor Tαβ. Here, relevant com-
ponents of Sαβ are given with respect to the orthonormal frame

e0 := a−1e−(η−U)∂t, e1 = e−(η−U)∂θ,

e2 := e−U∂x, e3 :=
eU

t
(−A∂x + ∂y),

and read
S1 := S(e1, e1) = e2(η−U) (µ + p)(u1)2 + p, S23 := S(e2, e3) = 0,

S2 := S(e2, e2) = p, S3 := S(e3, e3) = p.
(2.12)

By introducing the scalar velocity v := u1

au0 and using (au0)2− (u1)2 = e−2(η−U), we can express

u0, u1 in terms of v:

e2(η−U)(u0)2 =
1

a2(1 − v2)
, e2(η−U)(u1)2 =

v2

1 − v2
.
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Therefore, the matter part of the evolution equations simplifies and we have

ΠU =
1

2
e2(η−U)(µ − p), ΠA = 0, Πη = e2(η−U) µ + p

1 − v2
.

Finally, we can state Einstein’s constraint equations

ηt

t
= (U2

t + a2U2
θ) +

e4U

4t2
(A2

t + a2A2
θ) + e2(η−U)a2ρ,

ηθ
t
= −

aθ
ta
+ 2UtUθ +

e4U

2t2
AtAθ − e3(η−U)aj1,

at

t
= −a3e2(η−U)(ρ − S1).

(2.13)

Remark 2.2. The “classical” formulation of the Einstein equations in areal coordinates involves
the operator ∂tt − a2∂θθ applied to U,A, and η. However, as pointed out in [16], this formulation of
the matter equations can not be used to handle weak solutions, since the metric coefficients do not
have enough regularity in the present context and, for instance, the product a2Uθθ does not make
sense.

2.3. Weak formulation of the Euler equations in areal coordinates

For the derivation of the Euler equations in areal coordinates, we need the following
expressions of the metric coefficients:

N = ae(η−U), g00 = −N2 = −a2e2(η−U),

g11 = e2(η−U), g11 = e−2(η−U) ,

det((2) g) = t2, ω2 = det((3) g) = e2(η−U)t2,

trk = −a−1e−(η−U)
(1

t
+ ηt −Ut

)
, k11 = −a−1eη−U(ηt −Ut).

We can then rewrite the right-hand sides (2.8) of the Euler equations and obtain

Σ′0 :=NωΣ0 = ωN2(k11(µ + p)(u1)2 + (trk)p) + ω(N2(µ + p)(u0)2 − p)∂tN

= − ate4(η−U)(ηt −Ut)(µ + p)(u1)2 − ate2(η−U)(
1

t
+ ηt −Ut)p

+ ate2(η−U)(
at

a
+ ηt −Ut)(a

2e2(η−U)
(
µ + p)(u0)2 − p

)

= a te2(η−U)
(
−

1

t
p + (ηt −Ut)(µ − p) +

at

a

(
(µ + p)

1

1 − v2
− p

))
,

and

Σ′1 :=ωΣ1 = teη−U
(
− (N2(µ + p)(u0)2 − p)∂θN +

1

2
Np gBC∂θgBC

+
1

2
N∂θg11

(
(µ + p)(u1)2 + pg11

))

= a te2(η−U)
(
− (ηθ −Uθ)(µ − p) −

aθ
a

(
(µ + p)

1

1 − v2
− p

))
.
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Finally, we obtain

∂t

(
a te2(η−U)(µ + (µ + p)

v2

1 − v2
)
)
+ ∂θ

(
a2 te2(η−U)(µ + p)

v

1 − v2

)
= Σ′0,

∂t

(
te2(η−U)(µ + p)

v

1 − v2

)
+ ∂θ

(
a te2(η−U)(p + (µ + p)

v2

1 − v2
)
)
= Σ′1.

Recalling the linear equation of state assumed for p, that is, p = k2µ, the weak form of Euler
equations in areal coordinates takes the following final form

∂t

(
a te2(η−U)µ

1 + k2v2

1 − v2

)
+ ∂θ

(
a2 te2(η−U)µ

(1 + k2)v

1 − v2

)
= a te2(η−U)µΣ′′0 , (2.14)

∂t

(
te2(η−U)µ

(1 + k2)v

1 − v2

)
+ ∂θ

(
a te2(η−U)µ

k2 + v2

1 − v2

)
= a te2(η−U)µΣ′′1 , (2.15)

understood in the sense of distributions, where Σ′′
0
,Σ′′

1
are given by

Σ′′0 = −
k2

t
+ (ηt −Ut)(1 − k2) +

at

a

1 + k2v2

1 − v2
,

Σ′′1 = −(ηθ −Uθ)(1 − k2) −
aθ
a

1 + k2v2

1 − v2
.

3. First-order formulation of the Einstein–Euler equations

3.1. Spacetimes with bounded variation

For the analysis in the present paper, it is convenient to refomulate the Einstein equa-
tions as a first–order hyperbolic system supplemented with constraint equations. In fact,
we will first drop the constraint equations and study the evolution part of this system.
We emphasize that the Einstein constraint equations are used in the first-order evolution
equations.

We now arrive at a new formulation of the field equations as a system of first-order,
hyperbolic balance laws supplemented with ordinary differential equations. To this end,
we introduce the new variables

W± := (Ut ∓ aUθ), V± := e2U(At ∓ aAθ), (3.1)

which we refer to as the first–order geometric variables, to which we append the fluid
variables ( µ̃, v), and the geometric coefficients (a, ν). Here µ̃ is obtained by scaling the
energy density and we also introduce a new metric coefficient, as follows:

ν = η + log(a), µ̃ := e2(ν−U)µ.

Observe that the product containing aθ on the right–hand side of the “second” Euler
equation (2.15) may not be defined under the regularity assumptions we are interested in.
However, if it is multiplied by a, the second Euler equation can be rewritten so that aθ
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cancels out. In this case, using our new notation, the source-terms Σ′′′
0
,Σ′′′

1
of the Euler

equations take the form

Σ′′′0 = Σ
′′
0 = −

k2

(1 − k2)t
−

1

2
(W+ +W−) +

t

2
(W2
+ +W2

−) +
1

8t
(V2
+ + V2

−),

Σ′′′1 = aΣ′′ +
at

a

(1 + k2)v

1 − v2
+ aθ

k2 + v2

1 − v2

= −a(νθ −Uθ)(1 − k2) +
at

a

(1 + k2)v

1 − v2

= −
1

2
(W+ −W−) +

t

2
(W2
+ −W2

−) +
1

8t
(V2
+ − V2

−).

(3.2)

Without specifying yet (see below) the regularity of the spacetime metric and lapse
function, we now collect, in the new notation, the first two evolution equations, the ordinary
differential equation for a, and Euler equations.

Definition 3.1. The first-order formulation of the Einstein–Euler equations for Gowdy–
symmetric spacetimes consists of five evolution equations for the geometry

(a−1tW±)t ± (tW±)θ = ±
(W+ −W−)

2a
+

1

2at
V+V− +

tµ̃

2a
(1 − k2), (3.3)

(a−1t−1V±)t ± (t−1V±)θ = ∓
(V+ − V−)

2at2
−

2

ta
W±V∓, (3.4)

at = − atµ̃(1 − k2), (3.5)

two equations for the fluid

∂t

(
a−1tµ̃

1 + k2v2

1 − v2

)
+ ∂θ

(
tµ̃

(1 + k2)v

1 − v2

)
= a−1tµ̃(1 − k2)Σ′′′0 ,

∂t

(
a−1tµ̃

(1 + k2)v

1 − v2

)
+ ∂θ

(
tµ̃

k2 + v2

1 − v2

)
= a−1tµ̃(1 − k2)Σ′′′1 ,

(3.6)

and three constraint equations:

νt =
t

2
(W2
+ +W2

−) +
1

8t
(V2
+ + V2

−) + tµ̃
k2 + v2

1 − v2
,

−aνθ =
t

2
(W2
+ −W2

−) +
1

8t
(V2
+ − V2

−) + tµ̃
(1 + k2)v

1 − v2
,

(3.7)

and (
ta−1(νt + tµ̃(1 − k2))

)
t
− (taνθ)θ =

t

2a
(W+ −W−)2 +

1

8at
(V+ + V−)2

+ ta−1 µ̃
(1 + k2)

1 − v2
.

(3.8)

As we will show it, (3.7) are indeed constraint equations, that is, provided the initial
data satisfy these equations, they then hold throughout the spacetime. This is a standard
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property; yet, in the present class of weak regularity, it is essential to check it, as we do
here.

We are now in a position to state the regularity of the spacetimes under consideration
and to define our concept of weak solutions. We denote by BV(S1) the space of functions
with bounded variation, that is, bounded functions f : S1 → R whose derivative is a
bounded measure. The BV regularity for tensor fields is defined by considering each
component in adapted coordinates.

Definition 3.2. A foliated spacetime with bounded variation (or BV foliated spacetime, in
short) is a foliated spacetime (M, g) with locally Lipschitz continuous metric such that the areal
metric coefficients Ut,Uθ,At,Aθ, a, νt, νθ belong to L∞

loc
(BV(S1))∩Liploc(L

1(S1)). Such a spacetime
is said to be an Einstein–Euler spacetime with bounded variation if, in addition, there exist a
scalar field µ and a unit vector field u = (uα) in L∞

loc
(BV(S1))∩Liploc(L

1(S1)) such that the first-order
formulation of the Einstein–Euler equations (cf. Definition 3.1) holds in the sense of distributions.

Whenever necessary, we will tacitly extend functions defined on the circle S1 = [0, 1] to
periodic functions defined on the real line Rwith period 1.

3.2. From first–order to second–order variables

In this section, we show that it is actually sufficient to solve the set of essential equations
(3.3)–(3.6), without imposing the constraints at the initial time. This is justified, as long as
we can show that there exists a function ν satisfying the constraint equations (3.7)–(3.8) and
we can recover the metric coefficients U and A from a given BV solution (W±,V±, a, µ̃, v) to
the first–order system (3.3) – (3.6).

Indeed, by a direct calculation, it follows from Einstein-Euler equations that the right–
hand side of the constraint equations (3.7), that is,

C1 :=
t

2
(W2
+ +W2

−) +
1

8t
(V2
+ + V2

−) + tµ̃
k2 + v2

1 − v2
,

C2 :=
t

2
(W2
+ −W2

−) +
1

8t
(V2
+ − V2

−) + tµ̃
(1 + k2)v

1 − v2
,

satisfies the compatibility condition

(a−1C2)t − (C1)θ = 0.

Therefore, the system
νt = C1, aνθ = C2,

can be solved for ν, by integrating the first (say) of the above equations

ν(t, θ) := ν0(θ) +

∫ t

0

(
t

2
(W2
+ +W2

−) +
1

8t
(V2
+ + V2

−) + tµ̃
k2 + v2

1 − v2

)
(t′, θ) dt′. (3.9)

Obviously, the distributional derivatives νt, νθ of ν belong to BV(S1), while ν is periodic,
since ν0 is periodic and, by construction,

∂t

∫

S1

νθ dθ =

∫

S1

∂t(a
−1C2)dθ =

∫

S1

∂θC1 dθ = 0.

11



Moreover, by a straightforward calculation, it follows that (3.8) holds as well. Observe that
the above calculations only require multiplying the evolution equations for W± and V±,
which is allowed even for weak solutions, since the principal part of these equations is a
linear operator and jump relations are unchanged.

It remains to recover the metric coefficients U,A from a BV solution in the variables
W±,V±, a. Indeed, by subtracting the evolution equations for W±, we obtain

(
a−1(−W+ +W−)

)
t
+

(
(W+ +W−)

)
θ
= 0

and, therefore, the system

Ut =
1

2
(W+ +W−), Uθ =

1

2a
(−W+ +W−),

can be solved in U, by setting

U(t, θ) = U0(θ) +
1

2

∫ t

0

(W+ +W−)(t′, θ) dt′. (3.10)

Clearly, first–order derivatives of U are functions of bounded variation in θ, and U is
periodic. The same properties hold for the coefficient A, and our argument is completed.

4. Special solutions to the Einstein–Euler equations

4.1. Homogeneous solutions

In this section, we neglect the source terms in the equations (3.3)–(3.6) and we tem-
porarily assume t = 1, that is tW± → W±, t−1V± → V±, tµ̃→ µ̃, to facilitate the exposition.
The results for the original variables are easily recovered after scaling by a suitable power
of t. Hence, we study the system

(a−1W±)t ± (W±)θ = 0,

(a−1V±)t ± (V±)θ = 0,

at = 0,

∂t

(
a−1µ̃

1 + k2v2

1 − v2

)
+ ∂θ

(
µ̃

(1 + k2)v

1 − v2

)
= 0,

∂t

(
a−1µ̃

(1 + k2)v

1 − v2

)
+ ∂θ

(
µ̃

k2 + v2

1 − v2

)
= 0.

(4.1)

The geometry variables (V±,W±, a) satisfy linear hyperbolic equations, associated with the
speeds −a, 0,+a only, whereas the last two equations for ( µ̃, v) correspond to the system of
special relativistic fluid dynamics. The fluid equations are coupled to the geometry only
through a and, thus, can be considered separately from (V±,W±).

We are interested first in solving the Riemann problem for the above system expressed
in terms of u := (W±,V±, a, µ̃, v), that is, in solving the initial value problem with piecewise
constant initial data

u(t0, θ) =


ul, θ < θ0,

ur, θ > θ0.
(4.2)
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Here, the constant vectors ul, ur are prescribed within the physical region

a > 0, µ̃ > 0, |v| < 1, (4.3)

and an arbitrary point (t0, θ0) has been fixed.
To solve the Riemann problem for the subsystem (a, µ̃, v), we will make use of the

Riemann invariants y, z,w

y := log a, z :=
1

2
log

(
1 + v

1 − v

)
+

k

1 + k2
log µ̃,

w :=
1

2
log

(
1 + v

1 − v

)
−

k

1 + k2
log µ̃,

This system is not strictly hyperbolic at hypersurfaces v = ±k, where, in each case, two of
the corresponding characteristic speeds

λ0 = 0, λ1 = a
v − k

1 − v k
, λ2 = a

v + k

1 + v k
,

coincide. On the other hand, both λ1 and λ2 are genuinely nonlinear and λ0 is obviously
linearly degenerate. Moreover, we have λ1 < λ2 where both are strictly monotonically in-
creasing with respect to v. Up to an additional vector a, they correspond to the characteristic
speeds of the special relativistic Euler equations, which we denote by

λ̂1,2 :=
v ∓ k

1 ∓ vk
.

Proposition 4.1 (Riemann problem for the Einstein–Euler equations). The system (4.1) ad-
mits a unique self-similar weak solution to the initial value problem (4.2). All the variables contain
a stationary discontinuity. In addition, W+,V+ contain jumps associated with the speed ar, while
W−,V− contain jumps associated with the speed −al. The fluid variables ( µ̃, v) have up to three ad-
ditional waves comprising rarefaction and/or shock waves satisfying Lax shock condition. Moreover,
the regions

AM :=
{
(w, z) / −M ≤ w ≤ z ≤M

}
, M > 0,

are invariant for the solutions of the Riemann problem associated with the fluid equations. In other
words, if the Riemann data belong to a set AM, then so does the corresponding solution of the
Riemann problem.

The proof of this proposition is given shortly below. We will mesure the strength
|ǫ(ul, ur)| of the waves present in the solution of the Riemann problem R(ul, ur) associated
with Riemann data ul, ur in terms of the strength vector ǫ(ul, ur) ∈ R

7. Its first five compo-
nents contain the jumps (a,W±,V±), whereas the last two contain the jumps of log µ̃ across
shock/rarefaction waves of the fluid equations. The total strength is defined as the sum of
the components of ǫ, that is

|ǫ(ul, ur)| :=
∑

i

|ǫi(ul, ur)|.
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Recall that W±,V± and µ̃ are all constant across a stationary discontinuity and that a possi-
ble jump in µ̃ occurring when one of the rarefaction waves crosses the plane of non–strict
hyperbolicity would not contribute if included in the definition of ǫ, since µ̃ is strictly
monotone along both rarefaction curves. For the geometry variables, the following state-
ment is just the triangle inequality, whereas for µ̃ the claim follows from the corresponding
estimate for special relativistic fluids [27].

Proposition 4.2 (Interaction estimates). For any three Riemann problems R(ul, um), R(um, ur),
R(ul, ur) associated with constant states ul, um, ur, one has

|ǫ(ul, ur)| ≤ |ǫ(ul, um)| + |ǫ(um, ur)|.

Lemma 4.3. The strength vector ǫ : Ω ×Ω → R7 is a smooth function of its arguments, and for
all ul, ur, u′l , u

′
r in a compact subset of Ω one has the uniform estimate

ǫ(u′l , u
′
r) = ǫ(ul, ur) +O(1)|ǫ(ul, ur)|(|u

′
l − ul| + |u

′
r − ur|)

+O(1)|(u′r − u′l ) − (ur − ul)|.

Proof of Proposition 4.1. We first study the fluid part of the above equations, that is we
study the subsystem corresponding to u := (a, µ̃, v). Since λ0 is linearly degenerate, the
0-wave curve starting at ul can be obtained from Rankine-Hugoniot relations or directly as
an integral curve to the eigenvector R0 := (1, 0, 0). Immediately, we have

µ̃ = µ̃l, v = vl.

The 1– and the 2–wave shock curves S1,2 can be obtained by a direct calculation from the
Rankine-Hugoniot relations, following the exposition in [27]. Then, it follows immediately
that a remains constant along both shock curves, but also that µ and v are given by the
corresponding special relativistic shock curves; hence, all of the standard results still hold
true. For completness, we state S1 respectively S2 starting at ul in terms of the Riemann
invariants y,w, z. We have

y(u) − y(ul) = 0,

w(u) − w(ul) = −
1

2
log f+(2Kβ) −

√
K

2
log f+(β),

z(u) − z(ul) = −
1

2
log f+(2Kβ) +

√
K

2
log f+(β),

and
y(u) − y(ul) = 0,

w(u) − w(ul) = −
1

2
log f+(2Kβ) −

√
K

2
log f−(β),

z(u) − z(ul) = −
1

2
log f+(2Kβ) +

√
K

2
log f−(β),

where f±(β) := 1 + β
(
1 ±

√
1 + 2/β

)
is defined for all β ≥ 0, while K := 2k2/(1 + k2)2 is a

constant.
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For the shock speeds si, it can be checked that si(a, v; al, vl) = a ŝi(v; vl), where ŝi(v; vl)
have the same form as the shock speeds of the special relativistic equations starting at vl.
Therefore, Lax shock conditions

λi(a, v) ≤ si(a, v; al, vl) ≤ λi(al, vl),

immediately follow from the corresponding standard result. On the other hand, for the
rarefaction curves R1,R2 starting at ul we have

R1 =
{
u / y(u) = y(ul), z(u) = z(ul), w(u) ≥ w(ul)

}
,

R2 =
{
u / y(u) = y(ul), w(u) = w(ul), z(u) ≥ z(ul)

}
,

which coincide with the rarefaction curves of the special relativistic equations. Finally,
the composite wave curves, defined as Wi ≡ Si ∪ Ri, are of class C2 and convex; the
parametrized curveW1 is monotonically decreasing, whileW2 is monotonically increas-

ing. From now on, we denote the (w, z)–components ofWi by Ŵi.

The form of the curves Ŵi suggests that they can be regarded as wave curves of the
special relativistic fluid dynamics; hence, for given Riemann data ul, ur, there exists a
unique point

( µ̃m, vm) ∈ Ŵ1( µ̃l, vl) ∩ Ŵ2( µ̃r, vr),

such that the special relativistic speed of the first wave at vm remains strictly smaller than the
special relativistic speed of the second one at vr. Therefore, depending on their respective
signs, it only remains to decide where to put the stationary discontinuity in order to retain
the correct wave speed relations. In terms ofWi, this amounts to jumping from a point
( µ̃, v) on the plane a = al to the same point on the plane a = ar, whereby all the relevant

speeds ŝi, λ̂i prior to the jump get multiplied by al and all following it by ar.

For instance, if we have ( µ̃m, vm) ∈ Ŝ1( µ̃l, vl) followed by ( µ̃r, vr) ∈ Ŝ2( µ̃m, vm) and
0 < ŝ1(vm) < ŝ2(vr) we have to put the stationary discontinuity afirst, i.e., we have four
constant states

(al, µ̃l, vl), (ar, µ̃l, vl), (ar, µ̃m, vm), (ar, µ̃r, vr).

Observe that, in the limiting case ŝ1(vm) = 0, the middle state (ar, µ̃l, vl) cancels out and the
solution consists of the three constant states

(al, µ̃l, vl), (ar, µ̃m, vm), (ar, µ̃r, vr).

We obtain all the other cases similarly, except if either R̂1 crosses the plane v = k or R̂2

crosses v = −k, i.e. if one of the characteristic speeds changes sign. Observe that it is
not possible for both cases to occur simultaneously, since v ≥ vl in both cases. If one of
them occurs however, the solution consists of five constant states, where the stationary
discontinuity has to be put at v = ±k. If we take, for example, the case of two rarefaction

waves, where R̂1 crosses the line v = k at some µ̃k, then we have

(al, µ̃l, vl), (al, µ̃k, k), (ar, µ̃k, k), (ar, µ̃m, vm), (ar, µ̃r, vr).
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We now turn to the geometric variables. The component W+ of the Riemann problem
consists of at most three constant states where a stationary discontinuity, across which W+
is constant, is followed by a jump discontinuity of speed ar across which a is constant.
We handle W− similarly and only note that here a jump discontinuity with speed −al is
followed by a stationary discontinuity. An analogous conclusion holds for V± and the
proof is completed.

Proof of Lemma 4.3. Since ǫ(ul, ur) = 0 if ul = ur we have

ǫ(ul, ur) =

∫ 1

0

∂ǫ

∂ur
(ul, (1 − τ)ul + τur)(ur − ul)dτ

and analogously for ǫ(u′
l
, u′r); hence, we find

ǫi(u
′
l , u
′
r) − ǫi(ul, ur)

=

∫ 1

0

(
∂ǫ

∂ur
(u′l , (1 − τ)u

′
l + τu

′
r) −

∂ǫ

∂ur
(ul, (1 − τ)ul + τur)

)
(ur − ul) dτ

+

∫ 1

0

∂ǫ

∂ur
(u′l , (1 − τ)u

′
l + τu

′
r)

(
(u′r − u′l ) − (ur − ul)

)
dτ

= O(1)
(
|u′l − ul| + |u

′
r − ur|

)
|ur − ul| +O(1)

∣∣∣(u′r − u′l ) − (ur − ul)
∣∣∣.

(4.4)

On the other hand, we have |ǫ(ul, ur)| = O(1)|ur − ul|, and the claim thus follows. �

4.2. Spatially independent solutions

We set u = (W±,V±, a, µ̃, v) and study the following system of ordinary differential
equations (ODE, in short)

u′(t) = g(u(t), t), u(t0) = u0, (4.5)

where g represents the right–hand side of the equations (3.3)-(3.6) and we assume a0, µ̃0 > 0
and |v0| < 1. More precisely, for the geometry variables we have

(a−1tW±)′ = ±
W+ −W−

2a
+

1

2at
V+V− +

tµ̃

2a
(1 − k2),

(a−1t−1V±)′ = ∓
V+ − V−

2at2
−

2

at
W±V∓,

(4.6)

while, for the fluid variables,

(
a−1tµ̃

1 + k2v2

1 − v2

)′
= a−1tµ̃(1 − k2)

(
−

k2

(1 − k2)t
−

1

2
(W+ +W−)

+
t

2
(W2
+ +W2

−) +
1

8t
(V2
+ + V2

−)
)
,

(
a−1tµ̃

(1 + k2)v

1 − v2

)′
= a−1tµ̃(1 − k2)

(
−

1

2
(W+ −W−)

+
t

2
(W2
+ −W2

−) +
1

8t
(V2
+ − V2

−)
)
.

(4.7)
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Finally, the component a satisfies

a′ = −atµ̃(1 − k2).

Observe that the above system admits an energy functional

E :=
1

2a
(W2
+ +W2

−) +
1

8at2
(V2
+ + V2

−) +
µ̃

a

1 + k2v2

1 − v2
,

whose time-derivative reads

E′ = −
1

t

(
1

2a
(W+ +W−)2 +

1

8at2
(V+ − V−)2 +

µ̃

a

(1 + k2)

1 − v2

)
.

Hence, E is non-increasing in (areal) time in the expanding case, while it is non-decreasing
in the contracting case. We now establish (for the simplified model under consideration in
the present section, at least) that, as long as the coefficient a remains bounded, the other
geometric and fluid variables can not blow–up.

Lemma 4.4 (No blow-up in finite time. Preliminary version). Fix a time t0 satisfying t0 > 0
in the expanding case and t0 < 0 in the contracting case. Fix also some initial data u0 satisfying the
physical constraints

0 < a0, 0 < µ̃0, |v0| < 1, (4.8)

and consider the corresponding solution of the ordinary differential system (4.5) defined on its
maximal interval of existence [t0,T). (Here, 0 < t0 < T in the expanding case and t0 < T < 0 in
the contracting case.) Then, the following results hold:

• In the expanding case, the solution is defined for all time up to T = +∞ and

lim
t→+∞

W±(t) = lim
t→+∞

V±(t)

t
= 0, (4.9)

1

a0
≤

1

a(t)
, (4.10)

and
−1 < v < 1, 0 < µ < +∞. (4.11)

• In the contracting case, T may be finite; however, as long as a(t) remains bounded, the variables
W±,V± remain bounded and µ̃, v remain strictly inside the physical domain; in other words,
if T ∈ (t0, 0) and a is defined on the interval [t0,T) and remains bounded on that interval,
i.e. provided

a0 ≤ sup
t∈[t0 ,T)

a(t) < +∞, (4.12)

then the solution u = u(t) extends by continuity to the closed interval [t0,T] and, therefore,
(4.9) and (4.11) hold in the interval [t0,T].

In particular, this proposition shows that ( µ̃, v) remain in the physically admissible
region, i.e.

0 < µ̃, |v| < 1.
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Proof. We will establish here a slightly stronger result than the one stated in the proposition
and will be able to control the time-dependence of our upper bounds, which will turn out
to be useful later on. We first rewrite the two fluid equations in terms of log µ̃ and log 1+v

1−v :

(
log(t µ̃)

)′
=

(1 − k2)

1 − k2v2
f (W±,V±, v, t) − (1 − k2) t µ̃,

(
log

1 + v

1 − v

)′
=

2(1 − k2)

(1 − k2v2)
g(W±,V±, v, t),

with

f (W±,V±, v, t) = −
k2

t

(1 + v2)

(1 − k2)
− 2v

(
−

1

2
(W+ −W−) +

t

2
(W2
+ −W2

−) +
1

8t
(V2
+ − V2

−)
)

+ (1 + v2)
(
−

1

2
(W+ +W−) +

t

2
(W2
+ +W2

−) +
1

8t
(V2
+ + V2

−)
)
,

and

g(W±,V±, v, t) =
k2

t

v

(1 − k2)
− v

(
−

1

2
(W+ +W−) +

t

2
(W2
+ +W2

−) +
1

8t
(V2
+ + V2

−)
)

+
1 + k2v2

1 + k2

(
−

1

2
(W+ −W−) +

t

2
(W2
+ −W2

−) +
1

8t
(V2
+ − V2

−)
)
.

For the expanding case t0 > 0, the function a is non-increasing and thus bounded by the
initial value. Assume that on some time interval [t0,T1) we have 0 < µ̃ and |v| < 1. Then, E
is decreasing and we have that a−1W2

± and a−1t−2V2
± are bounded and therefore also W±,V±.

Consequently, log µ̃ and log 1+v
1−v remain bounded as well, since all the relevant geometry

expressions are bounded. Therefore, there are constants C,M > 0 depending on T1 and the
supremum bounds on the geometry such that

0 <
1

C
≤ µ̃ ≤ C, |v| ≤M < 1.

Finally, the differential equation for a implies that a is decreasing and remains bounded
away from zero

0 < K ≤ a(t) ≤ a0

for some constant K > 0 and for all t < T1.
Next, we turn our attention to the contracting case t0 < 0 and we assume supt∈[t0 ,T] |a| <

+∞ for some T < 0. Suppose, moreover, that on the interval [t0,T) one has 0 < µ̃ and |v| < 1.
The energy is now increasing and we have the inequality

E(t)′ ≤ −
2

t
E(t),

which, by Gronwall lemma, implies

E(t) ≤ E(t0)
t2
0

t2
.
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Hence, we have

W2
±(t) ≤ a(t)2E(t0)

t2
0

t2
, V2

±(t) ≤ 8E(t0)t2
0a(t),

that is, the geometry variables remain bounded. On the other hand, this implies as in the
expanding case that v is bounded away from ±1, and µ̃ from 0 and +∞. �

The bounds in Lemma 4.4 can be stated in a quantitative form, which will be useful
when dealing with approximate solutions later. We introduce the energy

h1 :=
(tW+ − 1/2)2

2at2
+

(tW− − 1/2)2

2at2
+

V2
+

8at2
+

V2
−

8at2

and the energy flux

g1 :=
(tW+ − 1/2)2

2at2
−

(tW− − 1/2)2

2at2
+

V2
+

8at2
−

V2
−

8at2
,

and observe that they satisfy (for spatially independent solutions)

h′1 =
at

a
h1 −

2k1

t
,

g′1 =
at

a
g1 −

g1

t
,

(4.13)

in which

k1 :=
(t(W+ +W−) − 1)2

4at2
+

(V+ + V−)2

16at2

is non–negative, with 0 ≤ k1 ≤ h1. We then introduce the variables1

H± := a (h1 ± g1). (4.14)

Proposition 4.5 (No blow-up in finite time). Fix a time t0 satisfying t0 > 0 in the expanding
case and t0 < 0 in the contracting case, together with initial data u0 satisfying

0 < a0, 0 < µ̃0, |v0| < 1. (4.15)

Consider the corresponding solution of the ordinary differential system (4.5) defined on its maximal
interval of existence [t0,T). Then, the following results hold:

• In the expanding case, T = +∞ and for all T′ > t0 there exists a constant C0 > 0 depending
on the times t0,T′ and the initial data u0 so that for all t ∈ [t0,T′]

0 ≤ H±(t) ≤ max
(
H−(t0),H+(t0)

)
,

a(t) ≤ a(t0),

and
e−C0(t−t0) |w(t0)| ≤ |w(t)| ≤ eC0(t−t0) |w(t0)|,

e−C0(t−t0) |z(t0)| ≤ |z(t)| ≤ eC0(t−t0) |z(t0)|.

1These variables are natural also for the homogeneous Riemann problem studied in Section 4.1 and are
easily checked to satisfy the invariant domain principle, like the Riemann invariants w, z for the fluid; cf. Propo-
sition 4.1.
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• In the contracting case, T ≤ 0 may be non zero (so that a(t) may blow–up “before” t would
reach 0), and one has

0 ≤ H±(t) ≤
t2
0

a(t)2

t2a(t0)2
max

(
H−(t0),H+(t0)

)
,

a(t0) ≤ a(t),

and w, z also satisfy the bounds above for all T′ ∈ (t0,T).

Of course, controling the two variables h1, g1 is sufficient to control the four variables
W±,V±. Observe also that, in the expanding case, our bounds on H±,w, z are independent
of any lower bound on a; such a lower bound can however be deduced from the equation
(log a)t = −(1 − k2) t µ̃ (and the control of the density µ̃ implied by the above proposition);
we do not state this here, since such a lower bound can not be “propagated” in the Glimm
scheme, as only Riemann invariants must be used.

Observe that, in the contracting case, the coefficient
t2
0

a(t)2

t2a(t0)2 is greater than 1 and a possible

amplification of H± may take place.

Proof. Consider first the expanding case. Here, we have t > 0 and at < 0 and, since h1 and
k1 are both positive, we easily find 0 ≤ h1(t) ≤ h1(t0). Next, we consider the equation for g1

and obtain directly
(

log |g1|
)′
≤ 0 so that |g1(t)| ≤ |g(t0)|. After summation, we deduce that

0 ≤ H±(t) ≤
a(t)

a(t0)
max

(
H+(t0),H+(t0)

)
,

≤ max
(
H+(t0),H+(t0)

)
,

since a is decreasing. The Riemann invariants w, z for the fluid satisfy a first–order differ-
ential system whose right–hand side is immediatly controled by H± and, therefore, w, z can
grow by a multiplicative factor eC(t−t0), at most.

Consider next the case of contracting spacetimes. The function is now increasing in
time and we have (

t2a−1h1

)′
=

2t

a
(h1 − k1) < 0,

since now t < 0 and h1 − k1 > 0. Similarly, one checks that
(

log
(
t2a−1|g1|

))′
is negative and,

in turn, we obtain
t2a(t)−1h1(t) ≤ t2

0a(t0)−1h1(t0),

t2a(t)−1 |g1(t)| ≤ t2
0a(t0)−1|g1(t0)|,

which leads to the announced result for H±. The argument for the fluid variables is identical
to the one in the expanding case. �

5. A continuation criterion for the Einstein–Euler equations

5.1. Generalized random choice scheme

In this section, we follow [2] and generalize the so-called random–choice scheme to the
Einstein–Euler system (3.3)–(3.6). The scheme is constructed from an approximate solver
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to the generalized Riemann problem, i.e. the Cauchy problem associated with piecewise
constant initial data

u(t0, ·) =


ul, θ < θ0

ur, θ > θ0,
(5.1)

which we denote by RG(ul, ur; t0, θ0). The approximate solver of interest is constructed by
evolving the solution û of the corresponding classical Riemann problem R(ul, ur; t0, θ0) by
the ODE system (4.6)–(4.7). More precisely, we have

ũ(t, θ; ul, ur, t0, θ0) := û(t, θ; ul, ur, t0, θ0) +

∫ t

t0

g(τ, Sτû(t, θ; ul, ur, t0, θ0))dτ, (5.2)

where Sτû(t, θ; t0, θ0, ul, ur)) is the solution of the ODE system (4.6)–(4.7) corresponding to
the initial value u(t0) = û(t, θ; ul, ur, t0, θ0).

To formulate the scheme of interest, we denote by r, s > 0 the space and time mesh–
lengths, respectively, and by (tk, θh) (for k = 0, 1, . . . and h any integer) the mesh points of
the grid, that is,

tk := t0 + ks, θh := hr.

We also set
θk,h := ak + hr,

where (ak)k∈N is a fixed equidistributed sequence in the interval (−1, 1). We will let s, r→ 0,
while keeping the ratio s/r constant. We can now define the approximate solutions us =

us(t, θ) to the Cauchy problem for the system (3.3)–(3.6) associated with the initial data

u0(θ) := u(t0, θ), θ ∈ S1.

It is convenient to avoid the discussion of boundary conditions by assuming that u0 is
defined on the real line R, after periodically extending it beyond S1.

As usual, the scheme is defined inductively. First, the initial data are approximated by
a piecewise constant function

us(t0, θ) := u0(θh+1), θ ∈ [θh, θh+2), h even.

Then, if us is known for all t < tk, we define us at the level t = tk as

us(t, θ) = us(t−, θk,h+1), θ ∈ [θh, θh+2), k + h even.

Finally, the approximation us is defined in each region

tk < t < tk+1, θh−1 ≤ θ < θh+1, k + h even,

from the approximate generalized Riemann problem

RG

(
us(tk, θh−1), us(tk, θh+1); tk, θh

)
,

that is,
us(t, θ) := ũ

(
t, θ; us(tk, θh−1), us(tk, θh+1); tk, θh

)
,

as introduced in (5.2).
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5.2. Sup–norm and bounded variation estimates

We will first establish that the sup–norm of the approximate solutions remains uni-
formly bounded for all compact intervals [t0,T] with t0 > 0 and T < +∞ in the expanding
case, and for all compact intervals [t0,T] with t0 < T < 0 before the mass density blows up
in the contracting case, that is, for all intervals [t0,T] such that

sup
s

sup
[t0,T]×S1

µ̃s ≤ C1(T) in the contracting case. (5.3)

Subsequently, we establish a uniform bound on the total variation, again on compact time
intervals. Recall that s and r must satisfy the standard stability condition

s

r
sup

S1

as(t, ·) < 1, (5.4)

where we have observed that the function as provides one with a bound on all characteristic
speeds associated with the classical Riemann solver. In the expanding case, as remains
bounded by the supremum of the initial data a0 but, in the contracting case, the bound
imposes that the coefficient as does not blow up. However, thanks to the equation (3.5), the
bound (5.3) on the mass density implies an a priori bound on the function as, so that the
condition (5.4) can be ensured a priori from the initial data and once we know the constant
C1(T).

Lemma 5.1 (Global sup–norm estimate). Consider any bounded initial data W0
±,V

0
±, a0, µ̃0, v0

satisfying the physical constraints

0 < a0, 0 < µ̃0, |v0| < 1.

Then, in the expanding case, for all T > t0 there exists a constant C0, depending on the time T, t0

and the initial data, and a constant C′
0

depending on t0 and the initial data so that for all t ∈ [t0,T]
and all relevant s

0 < 1/C0(T) ≤ as(t, ·) ≤ sup
S1

a0(·),

sup
S1

|Ws
±(t, ·) − 1/(2t)| +

1

t
sup

S1

|Vs
±(t, ·)| ≤ C′0,

sup
S1

∣∣∣∣∣∣ log

(
1 + vs(t, ·)

1 − vs(t, ·)

)∣∣∣∣∣∣ +
2k

1 + k2
sup

S1

∣∣∣ log µ̃s(t, ·)
∣∣∣ ≤ C0(T).

On the other hand, in the contracting case the same conclusion holds for any T ∈ (t0, 0) such that
(5.3) holds.

Proof. We apply Propositions 4.1 and 4.5, in which we derived “maximum principles” for
the geometry and the fluid. Observe that it is at this juncture that it is important to formulate
these principles in terms of the Riemann invariants associated with the geometry and the
fluid variables. In each ODE step, the maximum of the geometric Riemann invariants H±s
defined as in (4.14) does not increase in the expanding case, and may only increase by a
factor 1 + C s in the contracting case. In each Riemann problem step, the variables H± are
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non–increasing as well. The fluid variables w, z are also similarly controled in both the
ODE and the Riemann problem steps, while for the function a we need to require that
the density is a priori bounded in the contracting case; that is, the assumption (5.3). By
iterating our estimates and covering a compact time interval [t0, t], and after observing
(1 + C s)n ≤ e−C(t−t0) provided (t − t0) ≤ n s, we obtain the desired uniform bounds.

In the contracting case, Proposition 4.5 shows that the amplification factor for H±s at
each time step is

t2
k

as(tk+1, θ)2

t2
k+1

as(tk, θ)2
,

which we can control from the uniform bound (5.3), as follows, using (log as)t = −(1−k2) t µ̃s

so that

sup
θ

as(tk+1, θ)

as(tk, θ)
= sup

θ

exp

(
(1 − k2)

∫ tk+1

tk

|t′′| µ̃s(t
′′, θ) dt′′

)

≤ exp

(
(1 − k2) C1(T) (tk+1 − tk)|t0 |

)

for all tk < tk+1 ≤ T. By iterating this estimate over all times ≤ T, we conclude that the
sup–norm of H±s remains uniformly bounded in the compact interval [t0,T]. �

We next establish the uniform bounds on the total variation of the approximate solu-
tions. Denote by uk,h+1 the value achieved by the function us at the mesh point (tk, θh+1),
i.e.

uk,h+1 := us(tk, θh+1) k + h even,

and denote by ûk,h the solution to the classical Riemann problem

R(uk−1,h, uk−1,h+2; tk−1, θh+1),

where

uk,h+1 := ûk,h+1 +

∫ tk

tk−1

g(τ, Sτûk,h+1)dτ.

We divide the (t, θ)–plane into diamonds ∆k,h (k + h even) with vertices (θk−1,h, tk−1),
(θk,h−1, tk), (θk,h+1, tk), (θk+1,h, tk+1). To simplify the notation, we introduce the values of
us at the vertices of ∆k,h and the corresponding classical Riemann solvers by

uS := uk−1,h, uW := uk,h−1, uE := uk,h+1, uN := uk+1,h,

ûW := ûk,h−1, ûE := ûk,h+1, ûN := ûk+1,h,

in terms of which, the strength ǫ∗(∆k,h) of the waves entering the diamond is defined as

ǫ∗(∆k,h) := |ǫ(ûW , uS)| + |ǫ(uS, ûE)|,

whereas the strength ǫ∗(∆k,h) of the waves leaving it is defined as

ǫ∗(∆k,h) := |ǫ(uW , ûN)| + |ǫ(ûN, uE)|.
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Let J be a spacelike mesh curve, that is a polygonal curve connecting the vertices (θk,h+1, tk)
of different diamonds, where k+ h is even. We say that waves (uk−1,h, ûk,h+1) cross the curve
J if J connects (θk−1,h, θk−1) to (yk,h+1, tk) and similarly for ( ûk,h−1, uk−1,h). The total variation
L(J) of J is defined as

L(J) :=
∑
|ǫ(uk−1,h, ûk,h+1)| + |ǫ(ûk,h−1, uk−1,h)|,

where the sum is taken over all the waves crossing J. Furthermore, we say that a curve J2

is an immediate successor of the curve J1 if they connect all the same vertices except for
one and if J2 lies in the future of J1. For the difference of their total variation we have the
following result.

Lemma 5.2 (Global total variation estimate). Let J1, J2 be two spacelike curves such that J2 is
an immediate successor of J1 and let ∆k,h be the diamond limited by these two curves. Then, for each
time T, strictly larger than the time tk determined by ∆k,h, for which the assumptions of Lemma 5.1
hold, there exists a constant C0(T) depending on T and the sup bounds on the initial data, only,
such that

L(J2) − L(J1) ≤ C0(T) sǫ∗(∆k,h).

Proof. By definition, we have

L(J2) − L(J1) = |ǫ(uW , ûN)| + |ǫ(ûN, uE)| − |ǫ(ûW , uS)| − |ǫ(uS, ûE)|

= ǫ∗(∆k,h) − ǫ∗(∆k,h).

Observe that |ǫ(uW , ûN)| + |ǫ(ûN, uE)| = |ǫ(uW , uE)| since ûN is just one of the states in the
solution of the Riemann problem for uW, uE. Hence, we can write

L(J2) − L(J1) = X1 + X2,

where
X1 := |ǫ(ûW , ûE)| − |ǫ(ûW, uS)| − |ǫ(uS, ûE)|,

X2 := |ǫ(uW , uE)| − |ǫ(ûW, ûE)|.

By Proposition 4.2 we have
X1 ≤ 0.

To estimate X2, note that, by Lemma 5.1, us is uniformly bounded for all t ∈ [t0,T], hence
by Lemma 4.3 we can write for some constant C depending on T and the initial data

X2 ≤ C |ǫ(ûW, ûE)|
(
|uW − ûW | + |uE − ûE|

)
+ C

∣∣∣(uW − uE) − (ûW − ûE)
∣∣∣

≤ Cs |ǫ(ûW, ûE)| ( sup
t∈[tk−1 ,tk]

|u′W(t)| + sup
t∈[tk−1 ,tk]

|u′E(t)|) + Cs |(ûW − ûE)|

≤ Cs|ǫ(ûW, ûE)| ≤ Cs(|ǫ(ûW , uS)| + |ǫ(uS, ûE)|),

since |(ûW − ûE)| = O(1)|ǫ(ûW , ûE)|. �
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5.3. Convergence and consistency properties

In view of the uniform total variation bound, Helly’s theorem allows us to extract a
converging subsequence and, hence, to arrive at the following conclusion.

Theorem 5.3 (Convergence and existence theory for the Einstein–Euler equations). Let
u0 = (W0

±,V
0
±, a0, µ̃0, v0) be an initial data set for the system (3.3)–(3.6), which is assumed to

belong to BV(S1) and satisfy the physical constraints

0 < a0, 0 < µ̃0, |v0| < 1.

Consider the approximate solutions us = (Ws
±,V

s
±, as, µ̃s, vs) constructed by the random choice

scheme in Section 5.1. Then, the functions us(t, ·) belong to BV(S1) for each fixed time t ∈ [t0,+∞)
in the expanding case and for each t ∈ [t0,T] in the contracting case, where T < 0 is such that the
mass–energy density satisfies the uniform bound (5.3) for some constant C1(T). Moreover, on any
compact time interval, the solutions us are Lipschitz continuous in time with values in L1, and have
uniformly bounded total variation, that is, for all t, t′ ∈ [t0,T]

TV
(
us(t, ·)

)
≤ C0(T) TV(u0), (5.5)

∫

S1

|us(t, θ) − us(t
′, θ)| dθ ≤ C0(T) TV(u0)

(
|t − t′| + s

)
, (5.6)

where C0 is a constant depending on t0, T and the supremum bounds on the initial data and,
additionally, on C1(T) in the contracting case. Furthermore, there exists a subsequence of us

converging in L1, whose limit u = (V,W, a, µ̃, v) is a weak solution to the system (3.3)–(3.6) and
satisfies the physical constraints

0 < a(t, θ), 0 < µ̃(t, θ), |v(t, θ)| < 1

and periodic boundary conditions.

Proof. Lemma 5.2 implies that we can estimate the total variation L(Jk+1), along the curve
Jk+1 connecting vertices of the form (θk+1,h, tk+1) to vertices (θk+2,h+1, tk+2), in terms of the
the total variation L(Jk) of the curve Jk. Hence, we have inductively

L(Jk+1) ≤ L(Jk) + s C(T)
∑

h

ǫ∗(∆k,h)

≤ (1 + s C(T))L(Jk) ≤ eC(T)L(J1),

and also
L(J1) ≤ C TV(u0),

which imply the claim made on us. Observe that by periodically extending u0 to the
real line, the proof of (5.6) proceeds along the same lines as the standard proof since,
by construction, us are periodic as well. By Helly’s compactness theorem, there exists a
subsequence, still denoted by us, converging strongly in the L1 norm toward a function u
with bounded variation. Moreover, the uniform estimates valid for us extend to the limit
u.
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It remains to show that u is a weak solution to the system (3.3)–(3.6), which we express
in the form

∂tH(u, t) + ∂θF(u, t) + G(u, t) = 0,

with obvious notation. By fixing a compactly supported smooth function φ, we have
∫ +∞

0

∫ +∞

−∞

(
∂tφH(us, t) + ∂θφ F(us, t) + φG(us, t)

)
dθdt

=
∑

k

∑

h+k odd

∫ (k+1)s

ks

∫ (h+1)r

(h−1)r

(
∂tφH(us, t) + ∂θφ F(us, t) + φG(us, t)

)
dθdt

= Ω1
s +Ω

2
s +Ω

3
s ,

where

Ω1
s :=

∑

k,h
h+k odd

∫ (k+1)s

ks

∫ (h+1)r

(h−1)r

φG(us, t)dθdt,

Ω2
s :=

∑

k,h
h+k odd

∫ (h+1)r

(h−1)r

(
H
(
us((k + 1)s−, θ), (k + 1)s −

)
φ((k + 1)s, θ)

−H
(
us(ks+, θ), ks +

)
φ(ks, θ)

)
dθ,

and

Ω3
s :=

∑

k,h
h+k odd

∫ (k+1)s

ks

(
F
(
us(t, (h + 1)r−), t

)
φ(t, (h + 1)r)dt

− F
(
us(t, (h − 1)r+), t

)
φ(t, (h − 1)r)

)
dt.

For the first term, we have

Ω1
s = O(1)

∑

k

∑

h+k odd

(
s2 + r2

) (
s + r + |ur

k,h+1 − ur
k,h−1|

)
χsuppφ,

where χsuppφ denotes the characteristic function of the support of φ; see [2] for further

details. Since us have uniformly bounded total variation and φ is smooth, we haveΩ1
s → 0

for s→ 0. The second term can be rewritten as

Ω2
s =

∑

k≥1

∑

h+k odd

∫ (h+1)r

(h−1)r

(
H(us(ks−, θk,h), ks−) −H(us(ks, hr), ks)

)
φ(ks, θ)dθ

−

∫ +∞

−∞

H(us(t0, θ), t0)φ(t0, θ)dθ,

and it is well–known [7, 4] that the first part on the right–hand side goes to zero as s → 0
for almost every equidistributed sequence (ak)k∈N. It remains to estimate Ω3

s , but after
rearranging some terms, we obtain

Ω3
s =

∑

k

∑

h+k odd

∫ (k+1)s

ks

(
F(us(t, (h + 1)r+), t) − F(us(t, (h + 1)r−), t)

)
φ(t, (h + 1)r)dt = 0,
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since us is smooth there. Collecting the previous estimates, we conclude that, as s→ 0,
∫ +∞

0

∫ +∞

−∞

(
∂tφH(us, t) + ∂θφF(us, t) + φG(us, t)

)
dθdt

+

∫ +∞

−∞

H(us(t0, θ), t0)φ(t0, θ)dθ

tends to zero. Hence, by the Lebesgue’s dominated convergence theorem, passing to the
limit us → u, we arrive at

∫ +∞

0

∫ +∞

−∞

(
∂tφH(u, t) + ∂θφF(u, t) + φG(u, t)

)
dθdt

+

∫ +∞

−∞

H(u0(t0, θ), t0)φ(t0, θ)dθ = 0.

�

6. Future expanding Einstein–Euler spacetimes

We are now in a position to establish our first main result.

Theorem 6.1 (Expanding Einstein–Euler spacetimes with Gowdy symmetry). Consider any
BV regular, Gowdy symmetric, initial data set on T3 for the Einstein–Euler equations, and assume
that these initial data set has constant area t0 > 0 and is everywhere expanding (toward the future).
Then, there exists a BV regular, Gowdy symmetric spacetime M with metric gαβ and matter fields
µ and uα satisfying the Einstein–Euler equations (1.1)–(1.3) in the distributional sense, and the
following properties hold. This spacetime is (up to diffeomorphisms) a Gowdy-symmetric future
development of the initial data set and is globally covered by a single chart of coordinates t and
(θ, x, y) ∈ T3, with

M = [t0,+∞) × T2,

the time variable being chosen to coincide with the area of the surfaces of symmetry.

This global existence result was established earlier by LeFloch and Rendall [16] for a
different class of regularity, which provides less regularity properties on the spacetimes.

Proof. Given an arbitrary initial data set u = (W0
±,V

0
±, a0, µ̃0, v0), we have constructed (in Sec-

tion 5.1) a sequence of approximate solutions for the “essential” Einstein–Euler equations
(3.3)–(3.6) and this sequence was found to converge to an exact solution u = (W±,V±, a, µ̃, v)
with BV regularity to the Einstein–Euler equations understood in the sense of distributions;
Cf. Theorem 5.3 above. More precisely, u is locally Lipschitz continuous in time and has
bounded variation with respect to the space variable, so for any fixed T ∈ (t0,+∞) and all
t, t′ ∈ [t0,T]

TV(u(t, ·)) ≤ C0(T) TV(u0),∫

S1

|u(t, θ) − u(t′, θ)| dθ ≤ C0(T)
(
|t − t′| + s

)
TV(u0).

(6.1)

Once a solution to the first–order system (3.3)–(3.6) has been found, we only have to recover
the original metric coefficients U,A and ν and show that the constraint equations remain
satisfied for all times. However, this has precisely been done in Section 3.2; hence, the
proof of Theorem 6.1 is now complete. �
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7. Future contracting Einstein–Euler spacetimes

7.1. Global geometry and energy functionals

We are now in a position to state our second main result. Observe that, for the con-
tracting spacetimes under consideration now, a partial existence result was established in
LeFloch and Rendall [16] for a different class of regularity, as it was already established
therein that the development below covers [t0, tc) with tc ≤ 0.

Theorem 7.1 (Contracting Einstein–Euler spacetimes with Gowdy symmetry). Consider
any BV regular, Gowdy symmetric, initial data set on T3 for the Einstein–Euler equations, which
has constant area −t0 > 0 and is everywhere contracting toward the future. Then, there exists a BV
regular, Gowdy symmetric spacetime M with metric gαβ and matter fields µ and uα satisfying the
Einstein–Euler equations (1.1)–(1.3) in the distributional sense, and the following properties hold.
This spacetime is (up to diffeomorphisms) a Gowdy-symmetric future development of the initial data
set and is globally covered by a single chart of coordinates t and (θ, x, y) ∈ T3, with

M = [t0, tc) × T2

for some tc ≤ 0, the time variable being chosen to coincide with minus the area of the surfaces of
symmetry and so that the mass energy density blows-up at tc, that is,

lim
t→tc

sup
S1

µ̃(t, ·) = +∞. (7.1)

Furthermore, when the initial data set satisfies

∫

S1

a−1
0

(
1 −

4

3
t2
0

1 + k2v2
0

1 − v2
0

µ̃0

)
dθ ≥ 0, (7.2)

the future development exists up to the maximal time tc = 0 when the area of the surfaces of
symmetry shrinks to zero.

The theorem above seems to be essentially optimal and, for instance, we do not expect
that a global–in–space, energy–type functional should allow us to decompose the space of
initial data into spacetimes that blow–up (that is, tC < 0) and spacetimes that do not blow–
up (that is, tC = 0). At this juncture, let us recall that the class of T2–symmetric vacuum
spacetimes was studied by Isenberg and Weaver [11] who could exhibit an energy that
vanishes precisely for a set of exceptional solutions and also controls the behavior of the
area function. Later, Smulevici [28] was able to handle spacetimes satisfying the Einstein
equation with a cosmological constant. In contrast to these problems, the Euler equations
are nonlinear partial differential equations of hyperbolic type, so that the analysis of the
global geometry of Einstein–Euler spacetimes is technically much more involved than
the one of Einstein–vacuum or Einstein–Vlasov spacetimes. By taking advantage of the
property of finite speed of propagation satisfied by the Euler equations, it is straightforward
to “localize” our conclusions above and to construct solutions to the Einstein–Euler that
are small perturbations in the L1 norm (but not in the BV semi–norm) of non–blow-up
solutions (for instance homogeneous spacetimes) and, however, blow–up in a time tC < 0
with tC arbitrarily close to the initial time t0.
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The rest of this section is devoted to the proof of Theorem 7.1 and will make use of the
energy functionals

E1(t) :=

∫

S1

h1 dθ, E2(t) :=

∫

S1

(
h1 + hM

1

)
dθ,

with

h1 =
(tW+ − 1/2)2

2at2
+

(tW− − 1/2)2

2at2
+

V2
+

8at2
+

V2
−

8at2
, hM

1 :=
µ̃

a

1 + k2v2

1 − v2
.

Observe that h1 can be obtained from the standard energy density by a simple transforma-
tion of the metric coefficient U 7→ 2U − log t. Introduce the flux

g1 :=
(tW+ − 1/2)2

2at2
−

(tW− − 1/2)2

2at2
+

V2
+

8at2
−

V2
−

8at2
,

and observe that h1, g1 satisfy the balance laws (cf. with (4.13))

∂th1 + ∂θ(ag1) =
at

a
h1 −

2k1

t
,

∂tg1 + ∂θ(ah1) =
at

a
g1 −

g1

t
,

with k1 :=
(t(W++W−)−1)2

4at2 +
(V+−V−)2

16at2 . By using the evolution equations, we obtain the following
result.

Lemma 7.2. Both functionals E1 and E2 are monotonically increasing and, specifically,

dE1

dt
(t) =

∫

S1

(
at

a
h1 −

2k1

t

)
dθ ≥ 0 (7.3)

dE2

dt
(t) = −

1

t

∫

S1

(
(t(W+ +W−) − 1)2

2at2
+

(V+ + V−)2

8at2
+ hM

1 +
µ̃

a

3k2 + 1

4

)
dθ ≥ 0. (7.4)

Hence, we have dE2

dt ≤ −
2E2

t and thus

E1(t) ≤ E2(t) ≤ E2(t0)
t2
0

t2
,

which implies that the functionals E1 and E2 do not blow up before the singularity hyper-
surface t = 0 is reached.

Observe that the arguments in Section 6 can be repeated, once we establish that the
metric coefficient a and fluid density µ do not blow–up. The new difficulty comes from
the uniform bound (5.3) on the mass–energy density. In fact, as discussed now, there are
solution where this condition does not hold uniformly up to t = 0.
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7.2. Revisiting the class of spatially independent solutions

Before we provide a rigorous proof of our non–blow–up result, we provide a simple
derivation for special classes of solutions. By inspection of the proof of Lemma 4.4, one
easily checks the following slightly stronger statement.

Lemma 7.3 (No blow-up property for the homogeneous solutions in the contracting case).
Fix a time t0 < 0 and initial data u0 = (W±

0
,V±

0
, a0, µ̃0, v0) satisfying the constraints

0 < a0, 0 < µ̃0, |v0| < 1, (7.5)

and consider the corresponding solution u = u(t) of the ordinary differential system (4.5), defined
on its maximal interval of existence [t0,T) with T ≤ 0. Then, for the geometric variables, one has

|W±(t)| ≤ C0

√
a(t)

|t|
, |V±(t)| ≤ C0

√
a(t), a0 ≤ a(t),

while, for the fluid variables,

∣∣∣∣∣∣ log

(
1 + v

1 − v

)∣∣∣∣∣∣ +
2k

1 + k2
| log µ̃| ≤ C0

a(t)

|t|
,

where the constant C0 is uniform in time and depends on the initial data t0, u0, only.

The above lemma provides a quantitative control of all the variables (but a) in terms of
the coefficient a. If a(t) blows-up when t approaches some critical time T ∈ (t0, 0), then at
that time the density may tend to 0 or +∞. To be more precise and describe the nature of
the blow-up for the fluid variables, we can use the energy

E1 =
(tW+ − 1/2)2

2at2
+

(tW− − 1/2)2

2at2
+

V2
+

8at2
+

V2
−

8at2
,

introduced in the previous section, as a criterion for the blow–up of a.

Lemma 7.4. Given any initial data u0 and the corresponding solution u = (W±,V±, a, µ̃, v) of the
ordinary differential system (4.5), one can distinguish between the following two cases:

• If E1(t0) , 0, then the function a remains bounded.

• If E1(t0) = 0, then the velocity remains bounded away from ±1 and the following two subcases
arise:

– When µ̃0 is sufficiently large and, specifically,

4

3
t2
0 µ̃0 > 1,

the coefficient a and consequently the density µ̃ blow–up for some T ∈ (t0,T).
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– When µ̃0 is sufficiently small and, specifically,

4

3
t2
0

1 + k2v2
0

1 − v2
0

µ̃0 ≤ 1,

then a, µ̃ remain bounded.

Our latter claim is just a special case of the final statement in Theorem 7.1. Observe
that, in the spatially homogeneous case, where, in addition, v = 0, the system can be solved
explicitly and the above lemma actually covers all cases.

Proof. If E1(t0) > 0, we have

(a−1E1)′ = −
1

2a2 t3

(
(t(W+ +W−) − 1)2 + (V+ + V−)2/4

)
≥ 0

and, therefore, a−1(t) ≥ a−1
0

E1(t0)/E1(t), so that the coefficient a is bounded. On the other
hand, if the energy initially vanishes E1(t0) = 0, by uniqueness, it must remain identically
zero for all times. Therefore, the system (4.5) simplifies and

t W = 1/2, V = 0, a′ = (1 − k2) |t| aµ̃,

with W :=W+ =W−, V := V+ = V−, and

(
a−1tµ̃

1 + k2v2

1 − v2

)′
= −a−1tµ̃(1 − k2)

3k2 + 1

4t
,

(
a−1tµ̃

(1 + k2)v

1 − v2

)′
= 0.

After changing the variables, we obtain

(
log a−1|t|µ̃

)′
=

(3k2 + 1)

4|t|

1 + v2

(1 − k2v2)

and, by integration and using |v| < 1,

a−1tµ̃ ≤ a−1
0 t0µ̃0

(
t0

t

)(3k2+1)/4

or

a−1(t) ≤ a−1
0 +

4

3
a−1

0 t2
0µ̃0

((
t

t0

)3(1−k2)/4

− 1

)
.

Consequently, our assumption 4
3 t2

0
µ̃0 > 1 implies that there exists a critical time t ∈ (t0, 0)

such that 1 = 4
3 t2

0
µ̃0

(
1−

(
t
t0

)3(1−k2)/4)
, which leads us to a−1(t) = 0, a contradiction. The latter

claim in the lemma can be checked similarly. �
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7.3. Estimates on the geometry and fluid variables

We now consider any solution to the Einstein-Euler system defined on some interval
of [t0, tc) and we derive a bound on supS1 a which depends upon a lower bound on t 7→∫

S1 a−1(t, θ) dθ. This property will provides us with the key ingredient of the proof of
Theorem 7.1.

Proposition 7.5. If there exists a function C = C(t) defined for t ∈ [t0, tc) such that for ll relevant
times t

0 < C(t) ≤

∫

S1

a−1(t, θ) dθ, (7.6)

then there exists also a function C1 = C1(t) such that for all such times

sup
S1

∫ t

t0

µ̃

1 − v2
(τ, ·) dτ ≤ C1(t). (7.7)

Then, a fortiori, supS1

∫ t

t0
µ̃(τ, ·) dτ is bounded and the metric coefficient a is uniformly bounded on

S1.

To establish this result, we rely on the following two lemmas, which we derive first

and concern the infimum of the time–average of the mass density
∫ t

t0

µ̃

1−v2 (τ, ·) dτ and its

variation in space, respectively.

Lemma 7.6 (Lower bound for the averaged mass–energy density). For all t ∈ [t0, tc), one has

(1 + k2)

( ∫

S1

a−1(t, θ)dθ

)
inf
S1

∫ t

t0

µ̃

1 − v2
(τ, ·) dτ ≤ |t0|

(
E2(t) − E2(t0)

)
.

Proof. Namely, from the energy–type estimate (7.4) we deduce

∫ t

t0

∫

S1

a−1µ̃
(1 + k2)

1 − v2
(τ, θ) dθ dτ ≤ |t0|

(
E2(t) − E2(t0)

)
.

Since a−1 is monotonically decreasing in time, we obtain

( ∫

S1

a−1(t, θ)dθ

)
inf
S1

∫ t

t0

µ̃

1 − v2
(τ, ·) dτ

≤

∫

S1

a−1(t, θ)

∫ t

t0

µ̃

1 − v2
(τ, θ) dτ dθ ≤

∫ t

t0

∫

S1

a−1µ̃

1 − v2
(τ, θ) dθ dτ.

�

Lemma 7.7 (Variation in space of the averaged mass–energy density). For all t ∈ [t0, tc) and
θ0, θ1 ∈ S1, one has

k2

∫ t

t0

µ̃ |τ|

1 − v2
(τ, θ1) dτ ≤(1 + k2)

∫ t

t0

µ̃|τ|

1 − v2
(τ, θ0) dτ

+ |t0|
(
E1(t) − E1(t0)

)
+ 2|t|E2(t) + 2|t0|E2(t0).
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Proof. Setting M :=
µ̃

1−v2 > 0, integrating the “second” Euler equation in (3.6) over some
slab [t0, t] × [θ0, θ1], and finally using |v| < 1, we obtain (recalling that the time variable
takes negative values)

(1 + k2)

∫ t

t0

τM(τ, θ1) dτ − k2

∫ t

t0

τM(τ, θ0) dτ

≤

∫ t

t0

τM (k2 + v2)(τ, θ1) dτ −

∫ t

t0

τM (k2 + v2)(τ, θ0) dτ

=

∫ t

t0

∫ θ1

θ0

τ
aτ
a

g1 dθdτ + (1 + k2)

∫ θ1

θ0

(
ta−1Mv(t, θ) − t0a−1Mv(t0, θ)

)
dθ.

In the above identity, the double integral term is controlled by E1, i.e.,

∫ t

t0

∫ θ1

θ0

aτ
a
τg1dθdτ ≤ −

∫ t

t0

∫

S1

aτ
a
τh1dθdτ ≤ |t0|

(
E1(t) − E1(t0)

)
,

whereas, for the other two terms of the right-hand side,

(1 + k2)

∫ θ1

θ0

(
ta−1Mv(t, θ) − t0a−1Mv(t0, θ)

)
dθ

≤ t2 E′2(t) + t2
0 E′2(t0) ≤ −2t E2(t) − 2t0 E2(t0).

Hence, we obtain

− k2

∫ t

t0

τM(τ, θ1)dτ

≤ −(1 + k2)

∫ t

t0

τM(τ, θ0) dτ − t0(E1(t) − E1(t0)) − 2tE2(t) − 2t0E2(t0),

which is the desired estimate. �

Proof of Proposition 7.5. Combining Lemmas 7.6 and 7.7, we obtain

k2 sup
S1

∫ t

t0

µ̃ |τ|

1 − v2
(τ, ·) dτ ≤ (1 + k2) inf

S1

∫ t

t0

µ̃ |τ|

1 − v2
(τ, ·) dτ

+ |t0|
(
E1(t) − E1(t0)

)
+ 2|t|E2(t) + 2|t0 |E2(t0)

≤ C0(t)

( ∫

S1

a−1(t, θ)dθ

)−1

+ C1(t)

for some (explicit) functions C0(t),C1(t) > 0. �

Proof of Theorem 7.1. We now complete the proof of our second main result. In view of
Proposition 7.5 and the earlier results in Section 4, it is sufficient to derive the lower bound
(7.6) on

∫
S1 a−1 dθ. Specifically, we now check that if the time interval [t0, tc) is sufficiently

small or if the initial data set satisfies the condition (7.2) then (for all t ∈ [t0, tc) or else for
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all t ∈ [t0, 0), respectively) there exists a function C(t) > 0 such that (7.6) holds. Namely, by
integrating the “first” Euler equation in (3.6) over [t0, t] × S1 we obtain

∫

S1

a−1µ̃|t| dθ ≤

∫

S1

a−1µ̃|t|
1 + k2v2

1 − v2
dθ

≤

∫

S1

a−1
0 µ̃0|t0|

1 + k2v2
0

1 − v2
0

dθ +

∫ t

t0

∫

S1

a−1µ̃
3k2 + 1

4
dθdτ

and, by Gronwall’s inequality,

∫

S1

a−1µ̃|t| dθ ≤ C(t0)

(
t0

t

)(3k2+1)/4

with

C(t0) =

∫

S1

a−1
0 µ̃0|t0|(1 + k2v2

0)/(1 − v2
0) dθ.

Therefore, in view of (a−1)t = a−1µ̃t(1 − k2), we arrive at

∫

S1

a−1(t, θ) dθ ≥

∫

S1

a−1
0 (θ) dθ +

4

3
C(t0)|t0|

(( t

t0

)3(1−k2)/4
− 1

)
,

which implies (7.6) as long as the right-hand side above remains positive, that is, either on
a sufficiently small interval [t0, tc) (since the lower bound is always positive if t is close to
t0), or else on the whole interval [t0, 0) if the small mass condition (7.2) holds. We conclude
by applying Proposition 7.5, which provides us with the required uniform bound in order
to complete the proof of Theorem 7.1. �
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