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THE ALGEBRA OF ESSENTIAL RELATIONS ON A FINITE SET

SERGE BOUC AND JACQUES THÉVENAZ

Abstract. Let X be a finite set and let k be a commutative ring. We consider
the k-algebra of the monoid of all relations on X, modulo the ideal generated
by the relations factorizing through a set of cardinality strictly smaller than
Card(X), called inessential relations. This quotient is called the essential alge-
bra associated to X. We then define a suitable nilpotent ideal of the essential
algebra and describe completely the structure of the corresponding quotient,
a product of matrix algebras over suitable group algebras. In particular, we
obtain a description of the Jacobson radical and of all the simple modules for
the essential algebra.

1. Introduction

Let X and Y be finite sets. A correspondence between X and Y is a subset R of
X × Y . In case X = Y , we say that R is a relation on X . Correspondences can be
composed as follows. If R ⊆ X×Y and S ⊆ Y ×Z, then RS is the correspondence
between X and Z defined by

RS = {(x, z) ∈ X × Z | ∃ y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S} .

In particular the set of all relations on X is a monoid. Given a commutative ring
k and a finite set X , let R be the k-algebra of the monoid of all relations on X
(having this monoid as a k-basis).

Throughout this paper, X will denote a finite set of cardinality n. We say that a
relation R on X is inessential if there exists a set Y with Card(Y ) < Card(X) and
two relations S ⊆ X×Y and T ⊆ Y ×X such that R = ST . Otherwise, R is called
essential . The set of all inessential relations on X span a two-sided ideal I of R.
We define E = R/I. It is clear that E is a k-algebra having as a k-basis the set of
all essential relations on X . The purpose of this paper is to explore the concept of
essential relation and to study the structure of E .

We shall define a nilpotent ideal N of E and describe completely the quotient
P = E/N . More precisely, P is isomorphic to a product of matrix algebras over
suitable group algebras, the product being indexed by the set of all (partial) order
relations on X , up to permutation. Consequently, we know the Jacobson radical
J(E) and we find all the simple E-modules.

The idea of passing to the quotient by all elements obtained from something
smaller is widely used in the representation theory of finite groups. In the theory
of G-algebras, the notion of Brauer quotient is of this kind (see [The]). In the more
recent development of the theory of biset functors for finite groups (see [Bo]), the
same idea plays a key role in [BST]. The analogous idea for sets instead of groups
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yields the notion of essential relation, which does not seem to have been studied.
It is the purpose of this paper to fill this gap.

2. Essential relations

Given a correspondence R ⊆ X × Y between a set X and a set Y , then for every
a ∈ X and b ∈ Y we write

aR = {y ∈ Y | (a, y) ∈ R} and Rb = {x ∈ X | (x, b) ∈ R} .

We call aR a column of R and Rb a row of R.
We first characterize inessential relations. Any subset of X×Y of the form U×V

will be called a block (where U ⊆ X and V ⊆ Y ).

2.1. Lemma. Let X,Y, Z be finite sets.

(a) Let R ⊆ X × Z be a correspondence between X and Z. Then R factorizes
through Y if and only if R can be decomposed as a union of blocks indexed
by the set Y .

(b) Let R be a relation on X, where X has cardinality n. Then R is inessential
if and only if R can be decomposed as a union of at most n− 1 blocks.

Proof : (a) If R factorizes through Y , then R = ST , where S ⊆ X × Y and
T ⊆ Y × Z. Then we can write

R =
⋃

y∈Y

Sy × yT ,

as required.
Suppose conversely that R =

⋃

y∈Y Uy ×Vy, where each Uy is a subset of X and
each Vy is a subset of Z. Then we define

S =
⋃

y∈Y

Uy × {y} ⊆ X × Y and T =
⋃

y∈Y

{y} × Vy ⊆ Y × Z .

Then S is a correspondence between X and Y , and Uy = Sy, the y-th row of S.
Similarly, T is a correspondence between Y and Z, and Vy = yT , the y-th column
of T .

We now claim that R = ST . If (x, z) ∈ R, then there exists y ∈ Y such that
(x, z) ∈ Uy × Vy. It follows that (x, y) ∈ S and (y, z) ∈ T , hence (x, z) ∈ ST ,
proving that R ⊆ ST . If now (x, z) ∈ ST , then there exists y ∈ Y such that
(x, y) ∈ S and (y, z) ∈ T . It follows that x ∈ Sy = Uy and z ∈ yT = Vy, hence
(x, z) ∈ Uy ×Vy ⊆ R, proving that ST ⊆ R. We have shown that R = ST , proving
the claim.

(b) This follows immediately from (a).
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2.2. Corollary. Let R be a relation on X. If two rows of R are equal, then R is
inessential. If two columns of R are equal, then R is inessential.

Proof : Suppose that aR = bR = V . Then

R = ({a, b} × V ) ∪
(

⋃

c∈X
c 6=a,c 6=b

{c} × cR
)

,

a union of n− 1 blocks, where n = Card(X). The proof for rows is similar.

2.3. Corollary. Let R be a relation on X. If a row of R is empty, then R is
inessential. If a column of R is empty, then R is inessential.

Proof : Assume that aR = ∅. Then

R =
⋃

c∈X
c 6=a

{c} × cR ,

a union of n− 1 blocks, where n = Card(X). The proof for rows is similar.

2.4. Corollary. Let R be a relation on X. If R is an equivalence relation different
from the equality relation (i.e. R 6= ∆ where ∆ is the diagonal of X ×X), then R
is inessential.

Proof : Suppose that a and b are equivalent and a 6= b. Then the rows Ra and Rb

are equal and Corollary 2.2 applies.

We need a few basic facts about reflexive relations. Recall that a relation S on X
is reflexive if S contains ∆ = {(x, x) | x ∈ X}. Moreover, a preorder is a relation
which is reflexive and transitive, while an order is a preorder which is moreover
antisymmetric. (Note that, throughout this paper, the word “order” stands for
“partial order”.) Associated to a preorder R, there is an equivalence relation ∼R

defined by x ∼R y if and only if (x, y) ∈ R and (y, x) ∈ R. Then ∼R is the equality
relation if and only if R is an order.

We will often use the containment of relations on X (as subsets of X × X).
Note that if R ⊆ S, then RT ⊆ ST and TR ⊆ TS for any relation T on X . If
S is a reflexive relation, then S ⊆ S2 ⊆ S3 . . . and there exists m ∈ N such that
Sm = Sm+1, hence Sm = SN for all N ≥ m. The relation S := Sm is called the
transitive closure of S. It is reflexive and transitive, that is, a preorder. Note that
any preorder is an idempotent relation.

2.5. Proposition. Let R be a preorder on a finite set X of cardinality n.

(a) If R is not an order, then R is inessential.
(b) If R is an order and if Q is a reflexive relation contained in R, then Q is

essential. In particular, if R is an order, then R is essential.
(c) If R is a total order, then R is maximal among essential relations.
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Proof : (a) If R is not an order, then the associated equivalence relation ∼R is not
the equality relation. Let a and b be equivalent under ∼R with a 6= b. Then, by
transitivity of R, the rows Ra and Rb are equal. By Corollary 2.2, R is inessential.

(b) Suppose now that R is an order and that Q is reflexive with Q ⊆ R. We
claim that, if a 6= b, then (a, a) and (b, b) cannot belong to a block contained in Q.
This is because, if (a, a), (b, b) ∈ U×V ⊆ Q, then (a, b) ∈ U×V (because a ∈ U and
b ∈ V ) and (b, a) ∈ U ×V (because b ∈ U and a ∈ V ), and therefore (a, b) ∈ Q and
(b, a) ∈ Q, hence (a, b) ∈ R and (b, a) ∈ R, contrary to antisymmetry. It follows
that, in any expression of Q as a union of blocks, the diagonal elements (a, a) all
lie in different blocks, so that the number of blocks is at least n. This shows that
Q is essential.

(c) Without loss of generality, we can assume that the total order R is the usual
total order on the set X = {1, 2, . . . , n}, i.e. (x, y) ∈ R ⇔ x ≤ y. Let S be a
relation strictly containing R. Then S−R 6= ∅ and we choose (j, i) ∈ S−R with
i maximal, and then j maximal among all x with (x, i) ∈ S−R. In other words,
(j, i) ∈ S, but j > i because (j, i) /∈ R, and moreover

(x, y) ∈ S−R ⇒ y ≤ i and (x, i) ∈ S−R ⇒ x ≤ j .

If i = j − 1, then the rows Si and Sj are equal, so S is inessential by Corollary 2.2.
Assume now that j − 1 > i. Then we claim that

S =
(

Si × {i, j}
)

∪
(

Sj−1 × {j−1, j}
)

∪
(

⋃

k 6=i,j−1,j

Sk × {k}
)

.

To show that the first block is contained in S, let x ∈ Si. Then x ≤ j if
(x, i) ∈ S−R, and also x ≤ j if (x, i) ∈ R, i.e. x ≤ i. Hence x ≤ j in both cases,
and therefore (x, j) ∈ R ⊂ S. This shows that Si × {j} ⊆ S.

To show that the second block is contained in S, let x ∈ Sj−1. Then (x, j−1)
cannot belong to S−R, by maximality of i (because j−1 > i). Thus (x, j−1) ∈ R,
that is, x ≤ j−1. Then x < j, hence (x, j) ∈ S. This shows that Sj−1 × {j} ⊆ S.

Next we show that S is contained in the union of the blocks above. This is clear
for any (x, y) ∈ S such that y 6= j. Now take (x, j) ∈ S. By maximality of i and
since j > i, we have (x, j) ∈ R, that is, x ≤ j. If x = j, then (j, j) ∈ Si × {i, j}
because (j, i) ∈ S, that is, j ∈ Si. If x < j, then x ≤ j−1, hence (x, j−1) ∈ S, that
is x ∈ Sj−1, and therefore (x, j) ∈ Sj−1 × {j−1, j}.

This proves the claim about the block decomposition. It follows that S is a union
of n− 1 blocks, so S is inessential.

2.6. Example. Let n = Card(X). Let ∆ be the diagonal of X × X and let
R = (X × X) − ∆. It is not difficult to see that R is essential if 2 ≤ n ≤ 4.
However, for n ≥ 5, we prove that R is inessential. Without loss of generality, we
can choose X = {1, . . . , n}. If U ⊆ X , we write U c for the complement of U in X .
Then it is easy to prove that R is equal to

(

n−3
⋃

i=1

{i, i+3}c×{i, i+3}
)

∪
(

{n−2, n−1, n}c×{n−2, n−1, n}
)

∪
(

{1, 2, 3}c×{1, 2, 3}
)

.

This is a union of n− 1 blocks, so R is inessential.
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3. Permutations

As before, X denotes a finite set. We let Σ be the symmetric group on X , that is,
the group of all permutations of X . For any σ ∈ Σ, we define

∆σ = { (σ(x), x) ∈ X ×X | x ∈ X } .

This is actually the graph of the map σ−1, but the choice is made so that ∆σ∆τ =
∆στ for all σ, τ ∈ Σ. With a slight abuse, we shall often call ∆σ a permutation.
We also write ∆ = ∆id.

The group Σ has a left action on the set of all relations, σ acting via left mul-
tiplication by ∆σ. Similarly, Σ also acts on the right on the set of relations. It is
useful to note how multiplication by ∆σ behaves. Given any relation R on X ,

(x, y) ∈ R ⇐⇒ (σ(x), y) ∈ ∆σR ⇐⇒ (x, σ−1(y)) ∈ R∆σ .

3.1. Lemma. Let R be a relation on X and let ∆σ be a permutation.

(a) R is essential if and only if ∆σR is essential.
(b) ∆σ is essential.
(c) The left action of Σ on the set of all essential relations is free.

Proof : (a) If R factorizes through a set of cardinality smaller than Card(X), then
so does ∆σR. The converse follows similarly using multiplication by ∆σ−1 .

(b) This follows from (a) by taking R = ∆ (which is essential by Proposition 2.5
because it is an order).

(c) Suppose that ∆σR = R for some σ 6= id. Then

(x, y) ∈ R ⇐⇒ (σ(x), y) ∈ R ,

hence xR = σ(x)R. Since σ 6= id, two columns of R are equal and so R is inessential
by Corollary 2.2. Thus if R is essential, ∆σR 6= R for all σ 6= id.

Our next result will be essential in our analysis of essential relations.

3.2. Theorem. Any essential relation contains a permutation.

We shall provide two different proofs. The first is direct, while the second uses
a theorem of Philip Hall. In fact, a relation containing a permutation is called a
Hall relation in a paper of Schwarz [Sch], because of Hall’s theorem, so Theorem 3.2
asserts that any essential relation is a Hall relation.

First proof : Let R be a relation on X and let n = Card(X). We have to prove
that, if R is essential, then there exists σ ∈ Σ such that R contains ∆σ−1 , that
is, R∆σ contains ∆ (or in other words R∆σ is reflexive). Let Dσ = R∆σ ∩ ∆
and suppose that Card(Dσ) < n, for all σ ∈ Σ. Then we have to prove that R is
inessential.

We choose τ ∈ Σ such that Card(Dσ) ≤ Card(Dτ ), for all σ ∈ Σ. We let
S = R∆τ and we aim to prove that S is inessential (hence R too by Lemma 3.1).
Note that Dτ ⊆ S by construction. Define

A = {a ∈ X | (a, a) ∈ Dτ} , in other words Dτ = {(a, a) | a ∈ A} .
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In particular Card(A) = Card(Dτ ) < n. By maximality of Dτ , we have the follow-
ing property :

Card(S∆σ ∩∆) ≤ Card(A) , ∀ σ ∈ Σ . (∗)

Given x, y ∈ X , define a path from x to y to be a sequence x0, x1, . . . , xr of
elements of X such that x0 = x, xr = y, and (xi, xi+1) ∈ S for all i = 0, . . . , r − 1.
We write x  y to indicate that there is a path from x to y, and also x → y
whenever (x, y) ∈ S (path of length 1). Define Ac to be the complement of A in X
(so Ac is nonempty by assumption). Define also

A1 = {a ∈ A | there exists z ∈ Ac and a path z  a} ,
A2 = {a ∈ A | there exists z ∈ Ac and a path a z} .

We claim that there is no path from an element of A1 to an element of A2.
Suppose by contradiction that there is a path a1  a2 with ai ∈ Ai. Then there
exists zi ∈ Ac and paths z1  a1  a2  z2, in particular z1  a  z2 with
a ∈ A. In the path z1  a, let w1 be the element of Ac closest to a, so that the
path w1  a does not contain any element of Ac except w1. Similarly, let w2 be
the element of Ac closest to a in the path a  z2 , so that the path a  w2 does
not contain any element of Ac except w2. We obtain a path w1  a w2 having
all its elements in A except the two extremities w1 and w2. By suppressing cycles
within A, we can assume that all elements of A in this path are distinct. We end
up with a path

w1 → x1 → · · · → xr → w2

where x1, . . . , xr ∈ A are all distinct.
Let σ ∈ Σ be the cycle defined by σ(w1) = x1, σ(xi) = xi+1 for 1 ≤ i ≤ r − 1,

σ(xr) = w2, and finally σ(w2) = w1 in case w2 6= w1. In case w2 = w1, then σ(w2)
is already defined to be σ(w2) = σ(w1) = x1. We emphasize that σ(y) = y for all
the other elements y ∈ X . Then we obtain :

(w1, x1) ∈ S hence (w1, w1) ∈ S∆σ ,
(xi, xi+1) ∈ S hence (xi, xi) ∈ S∆σ ,
(xr , w2) ∈ S hence (xr, xr) ∈ S∆σ ,

(y, y) ∈ S hence (y, y) ∈ S∆σ , ∀ y ∈ A− {x1, . . . , xr} .

Thus we obtain (a, a) ∈ S∆σ, ∀ a ∈ A, but also (w1, w1) ∈ S∆σ. Therefore
Card(S∆σ ∩∆) > Card(A), contrary to Property (∗). This proves the claim that
there is no path from A1 to A2.

In particular, A1∩A2 = ∅ because if a ∈ A1∩A2 we would have a path of length
zero from A1 to A2 (since (a, a) ∈ S). Let A3 be the complement of A1 ∪A2 in A.
Thus X is the disjoint union of the 4 subsets Ac, A1, A2, and A3.

We now claim the following :

(a) There is no relation between Ac and Ac, that is, S ∩ (Ac ×Ac) = ∅.
(b) There is no relation between Ac and A2 ∪ A3, that is, S ∩ (Ac × A2) = ∅

and S ∩ (Ac ×A3) = ∅.
(c) There is no relation between A1 and Ac, that is, S ∩ (A1 ×Ac) = ∅.
(d) There is no relation between A1 and A2, that is, S ∩ (A1 ×A2) = ∅.
(e) There is no relation between A1 and A3, that is, S ∩ (A1 ×A3) = ∅.
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To prove (a), suppose that (w, z) ∈ S where w, z ∈ Ac. Choose ρ ∈ Σ such that
ρ(a) = a for all a ∈ A and ρ(w) = z. Then (a, a) ∈ S∆ρ for all a ∈ A but also
(w,w) ∈ S∆ρ, contrary to Property (∗).

To prove (b), we note that the definition of A1 implies that, if (z, a) ∈ S with
z ∈ Ac and a ∈ A, then a ∈ A1. Thus a /∈ A2 ∪ A3.

To prove (c), suppose that (a, z) ∈ S with a ∈ A and z ∈ Ac. Then a ∈ A2 by
the definition of A2 and in particular a /∈ A1.

Property (d) follows immediately from the previous claim that there is no path
from A1 to A2.

To prove (e), suppose that (a1, a3) ∈ S with a1 ∈ A1 and a3 ∈ A3. Then by the
definition of A1, there is a path z  a1 → a3 where z ∈ Ac, but this means that
a3 ∈ A1, a contradiction.

It follows that the relation S has the property that there is no relation between
Ac ∪ A1 and Ac ∪ A2 ∪ A3. Therefore S is the union of the columns indexed by
(Ac ∪ A1)

c = A2 ∪ A3 and the lines indexed by (Ac ∪ A2 ∪ A3)
c = A1, that is,

S =
(

⋃

b∈A2∪A3

bS
)

∪
(

⋃

a∈A1

Sa

)

.

Since Card(A2 ∪A3)+Card(A1) = Card(A), we obtain a union of Card(A) blocks.
But Card(A) < n by assumption, so S is inessential, as was to be shown.

Second proof : Let R be an essential relation on X . For any subset A of X ,
define

RA = {x ∈ X | ∃ a ∈ A such that (x, a) ∈ R} =
⋃

a∈A

Ra .

Then R decomposes as a union of blocks

R =
(

⋃

y/∈A

(Ry × {y})
)

⋃

(

⋃

x∈RA

({x} × xR)
)

.

Since R is essential, Card(X − A) + Card(RA) cannot be strictly smaller than
Card(X). Therefore Card(RA) ≥ Card(A), for all subsets A of X , that is

Card
(

⋃

a∈A

Ra

)

≥ Card(A) .

This is precisely the assumption in a theorem of Philip Hall (see Theorem 5.1.1
in [HaM], or [HaP] for the original version which is slightly different). The con-
clusion is that there exist elements xy ∈ Ry, where y runs over X , which are all
distinct. In other words σ : y 7→ xy is a permutation and

(σ(y), y) = (xy , y) ∈ R for all y ∈ X .

This means that R contains ∆σ, as required.

3.3. Corollary. Let R be an essential relation on X. Then there exists m ∈ N

such that Rm is a preorder.

Proof : By Theorem 3.2, R contains ∆σ for some σ ∈ Σ. If σ has order k in the
group Σ, then Rk contains ∆σk = ∆, so Rk is reflexive. Then the transitive closure
of Rk is some power Rkt. This is reflexive and transitive, that is, a preorder.
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We know that any order is an essential relation (Proposition 2.5), hence contains
a permutation (Theorem 3.2). But in fact, we have a more precise result.

3.4. Lemma. If R is an order on X, then R contains a unique permutation,
namely ∆.

Proof : Suppose that R is reflexive and transitive and contains a nontrivial permu-
tation ∆σ. Then σ contains a nontrivial k-cycle, say on x1, . . . , xk, for some k ≥ 2.
It follows that (xi+1, xi) ∈ R for 1 ≤ i ≤ r − 1, hence (xk, x1) ∈ R by transitivity
of R. Now we also have (x1, xk) ∈ R because σ(xk) = x1. Thus the relation R is
not antisymmetric, hence cannot be an order.

In the same vein, we have the following more general result.

3.5. Lemma. Let R be an order and let S, S′ be two relations on X. The following
two conditions are equivalent :

(a) ∆ ⊆ S′S ⊆ R.
(b) There exists a permutation ∆σ such that :

∆ ⊆ ∆σ−1S ⊆ R and ∆ ⊆ S′∆σ ⊆ R.

Moreover, in condition (b), the permutation σ is unique.

Proof : If (b) holds, then

∆ = ∆2 ⊆ (S′∆σ)(∆σ−1S) = S′S ⊆ R2 = R ,

so (a) holds.
If (a) holds, then S′S is essential, by Proposition 2.5. It follows that S is essential,

and therefore S contains a permutation ∆σ, by Theorem 3.2. Then we obtain

∆ ⊆ ∆σ−1S and S′∆σ ⊆ S′S ⊆ R .

Similarly, S′ is essential, hence contains a permutation ∆τ , and we obtain

∆ ⊆ S′∆τ−1 and ∆τS ⊆ S′S ⊆ R .

Now R contains ∆τ∆σ = ∆τσ and Lemma 3.4 implies that τσ = id, that is,
τ = σ−1. Then (b) follows.

If moreover S contains a permutation ∆ρ (that is, ∆ ⊆ ∆ρ−1S), then

∆σ−1ρ = ∆σ−1∆ρ ⊆ S′S ⊆ R ,

and so σ−1ρ = id by Lemma 3.4, proving the uniqueness of σ.

4. The essential algebra

Let X be a finite set and let k be a commutative ring. We shall be mainly interested
in the cases where k is either the ring Z of integers or a field, but it is convenient
to work with an arbitrary commutative ring.

Let R be the k-algebra of the monoid of all relations on X . This monoid is a
k-basis of R and the product in the monoid defines the algebra structure. The set
of all inessential relations on X spans a two-sided ideal I of R. We define E = R/I
and call it the essential algebra. It is clear that E is a k-algebra having as a k-basis
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the set of all essential relations on X . Moreover, if R and S are essential relations
but RS is inessential, then RS = 0 in E .

Both R and E have an anti-automorphism, defined on the basis elements by
R 7→ Rop, where (x, y) ∈ Rop if and only if (y, x) ∈ R. It is easy to see that
(RS)op = SopRop.

As before, we let Σ be the symmetric group of all permutations of X . We first
describe an obvious quotient of E .

4.1. Lemma. Let H be the k-submodule of the essential algebra E spanned by
the set of all essential relations which strictly contain a permutation. Then H is a
two-sided ideal of E and E/H ∼= kΣ, the group algebra of the symmetric group Σ.

Proof : Let us write ⊂ for the strict containment relation. Let R be an essential
relation such that ∆σ ⊂ R and let S be any essential relation. Then S contains a
permutation ∆τ , by Theorem 3.2. We obtain

∆στ = ∆σ∆τ ⊂ R∆τ ⊆ RS ,

showing that RS ∈ H . Similarly SR ∈ H and therefore H is a two-sided ideal of E .
The quotient E/H has a k-basis consisting of all the permutations ∆σ, for σ ∈ Σ.

Moreover, they multiply in the same way as permutations, so E/H is isomorphic
to the group algebra of the symmetric group Σ.

If k is a field, it follows, not surprisingly, that every irreducible representation of
the symmetric group Σ gives rise to a simple E-module. In short, the representation
theory of the symmetric group Σ is part of the representation theory of E .

We now want to describe another E-module, which is simple when k is a field. We
fix a total order T on X (e.g. the usual total order on X = {1, . . . , n}). Then any
other total order onX is obtained by permuting the elements ofX . Since permuting
via σ corresponds to conjugation by ∆σ, we see that {Tσ := ∆σT∆σ−1 | σ ∈ Σ} is
the set of all total orders on X . All of them are maximal essential relations on X ,
by Proposition 2.5.

4.2. Lemma. Let T be a total order on X.

(a) If ρ ∈ Σ, then T∆ρT = 0 in E if ρ 6= id and otherwise T∆T = T 2 = T .
(b) The set {Tσ := ∆σT∆σ−1 | σ ∈ Σ} is a set of pairwise orthogonal idempo-

tents of E.

Proof : (a) TTρ contains both T and Tρ (because both T and Tρ contain ∆). Since
T 6= Tρ if ρ 6= id, the product TTρ contains strictly T and is therefore inessential by
Proposition 2.5. Thus T∆ρT is also inessential, that is, T∆ρT = 0. On the other
hand T 2 = T because any preorder is idempotent.

(b) It follows from (a) that

TσTτ = ∆σT∆σ−1τT∆τ−1 =

{

0 if σ 6= τ ,
∆σT∆σ−1 = Tσ if σ = τ ,

as was to be shown.
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4.3. Proposition. Fix a total order T on X. Let L be the k-submodule of the
essential algebra E spanned by the set {∆σT | σ ∈ Σ}. Then L is a left ideal of E
and is free of rank n! as a k-module, where n = Card(X). If k is a field, then L is
a simple E-module of dimension n! .

Proof : Write Sσ = ∆σT , for all σ ∈ Σ. Let R be an essential relation on X . Then
∆τ ⊆ R for some τ ∈ Σ by Theorem 3.2. Therefore ∆ ⊆ ∆τ−1R and this implies
that

Sσ = ∆Sσ ⊆ ∆τ−1RSσ and T = ∆σ−1Sσ ⊆ ∆σ−1∆τ−1RSσ .

If this containment is strict, then ∆σ−1∆τ−1RSσ is inessential (by Proposition 2.5)
and so RSσ is inessential too (by Lemma 3.1). Otherwise Sσ = ∆τ−1RSσ, hence
RSσ = ∆τSσ = ∆τσT = Sτσ. Therefore, in the algebra E , either RSσ = 0 or
RSσ = Sτσ. This proves that L is a left ideal of E .

Clearly L has rank n! with basis {Sσ | σ ∈ Σ}. The action of E on L induces a
k-algebra map

φ : E −→ Mn!(k)

and L can be viewed as anMn!(k)-module (consisting of column vectors with entries
in k). By Lemma 4.2, the action of ∆τT∆ρ−1 on basis elements is given by

(∆τT∆ρ−1) · Sσ = (∆τT∆ρ−1) ·∆σT =

{

0 if ρ 6= σ ,
Sτ if ρ = σ .

This means that φ(∆τT∆ρ−1) is the elementary matrix with a single nonzero entry 1
in position (τ, ρ). Therefore the map φ is surjective. This implies that, if k is a
field, the module L is simple as an E-module, because the space of column vectors
is a simple Mn!(k)-module.

5. A nilpotent ideal

The purpose of this section is to construct a suitable nilpotent ideal N of the
essential algebra E . We shall later pass to the quotient by N and describe the
quotient E/N . In order to find nilpotent ideals, the following well-known result is
often useful.

5.1. Lemma. Let k be a commutative ring and let B be a k-algebra which is
finitely generated as a k-module. Let I be a two-sided ideal of B which is k-linearly
spanned by a set of nilpotent elements of B.

(a) If k is a field, then I is a nilpotent ideal of B.
(b) If k = Z and if B is a finitely generated free Z-module, then I is a nilpotent

ideal of B.
(c) Suppose that B is defined over Z, that is, B ∼= k⊗ZBZ for some Z-algebra BZ

which is finitely generated free as a Z-module. Suppose that I is defined
over Z, that is, I ∼= k⊗Z IZ, where IZ is a two-sided ideal of BZ which is Z-
linearly spanned by a set of nilpotent elements of BZ. Then I is a nilpotent
ideal of B.
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Proof : (a) The assumption still holds after extending scalars to an algebraic
closure of k. Therefore we can assume that k is algebraically closed. Let J(B) be
the Jacobson radical of B. Then J(B) =

⋂r
i=1 Mi, where Mi is a maximal two-sided

ideal of B. Moreover, by Wedderburn’s theorem, B/Mi is isomorphic to a matrix
algebra Mni

(k), because k is algebraically closed. We will show that I ⊆ Mi,
for all i = 1, . . . , r. It then follows that I ⊆ J(B), so I is nilpotent (because it is
well-known that the Jacobson radical of a finite-dimensional k-algebra is nilpotent).

Let I be the image of I in B/Mi. Then I is spanned by nilpotent elements
of Mni

(k). But any nilpotent matrix has trace zero (because its characteristic
polynomial is Xni and the coefficient of Xni−1 is the trace, up to sign). It follows
that I is contained in Ker(tr), which is a proper subspace of Mni

(k). Now I is a
two-sided proper ideal of the simple algebra Mni

(k), hence I = {0}, proving that
I ⊆ Mi.

(b) Let F be a basis of B as a Z-module. Extending scalars to Q, we see that F
is a Q-basis of the Q-algebra Q ⊗Z B and B embeds in Q ⊗Z B. By part (a), the
ideal Q⊗Z I is nilpotent in Q ⊗Z B. Since I embeds in Q⊗Z I, it follows that I is
nilpotent.

(c) By part (b), IZ is a nilpotent ideal of BZ. Extending scalars to k, we see that
I is a nilpotent ideal of B.

Recall that Σ denotes the symmetric group on X and that, if R is a reflexive
relation, then R denotes the transitive closure of R.

5.2. Lemma. If S = ∆τ−1R∆τ where τ ∈ Σ and R is a reflexive relation, then
S = ∆τ−1R∆τ .

Proof : We have R = Rm for some m and we obtain

Sm = (∆τ−1R∆τ )
m = ∆τ−1Rm∆τ = ∆τ−1R∆τ .

Therefore Sm is a preorder, because it is conjugate to a preorder, and so S = Sm =
∆τ−1R∆τ .

5.3. Theorem. Let F be the set of all reflexive essential relations on X. Let N
be the k-submodule of the essential algebra E generated by all elements of the form
(S − S)∆σ with S ∈ F and σ ∈ Σ (where S denotes the transitive closure of S).

(a) N is a nilpotent two-sided ideal of E. In particular, N is contained in the
Jacobson radical J(E).

(b) The quotient algebra P = E/N has a k-basis consisting of all elements of
the form S∆σ, where S runs over the set of all orders on X and σ runs
over the symmetric group Σ.

Proof : (a) Let E1 be the subalgebra of E which is k-linearly generated by the
set F of all reflexive essential relations. It is clearly a subalgebra since the product
of two reflexive relations is reflexive. Let N1 be the k-submodule of E1 generated
by all elements of the form S − S with S ∈ F . We claim that N1 is a two-sided
ideal of E1.
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If T ∈ F , then TS = TS (because TS contains both T and S, hence TS, and

TS contains both T and S, hence TS). Therefore

T (S − S) = (TS − TS)− (TS − TS) = (TS − TS)− (TS − TS) .

Note that if TS is inessential (hence zero in E1), then its transitive closure TS
cannot be an order by Proposition 2.5 and is therefore also zero in E1 (again by
Proposition 2.5). Thus, in the expression above, we obtain either generators of N1

or zero. The same argument works for right multiplication by T (or use the anti-
automorphism of E) and this proves the claim.

The ideal N1 is invariant under conjugation by Σ because, for every σ ∈ Σ,

∆σ−1(S − S)∆σ = ∆σ−1S∆σ −∆σ−1S∆σ = ∆σ−1S∆σ −∆σ−1S∆σ

by Lemma 5.2. Therefore the generators of N can also be written ∆σ(S
′−S′) with

S′ ∈ F and σ ∈ Σ (namely S′ = ∆σ−1S∆σ). It follows that N = N1∆Σ = ∆ΣN1,
where we write for simplicity ∆Σ = {∆σ | σ ∈ Σ}.

If R is an essential relation on X , then R contains a permutation ∆σ (for some
σ ∈ Σ) by Theorem 3.2, so R = Q∆σ with Q ∈ F , and also R = ∆σQ

′ where
Q′ = ∆σ−1Q∆σ. Since N1 is an ideal of E1, it follows that N is invariant by right
and left multiplication by R. Thus N is a two-sided ideal of E .

The generators of N1 are nilpotent, because if S = Sm, then

(S − S)m = (S − Sm)m =
m
∑

j=0

(

m

j

)

(−1)jSm−jSmj

=
(

m
∑

j=0

(

m

j

)

(−1)j
)

Sm = (1− 1)mSm = 0 .

Thus N1 is a nilpotent ideal of E1, by Lemma 5.1 (because clearly E1 and N1

are defined over Z). Since N1 is invariant under conjugation by Σ, we obtain
Nn = (N1∆Σ)

n = Nn
1 ∆Σ for every n ∈ N. Since Nm

1 = 0 for some m, the ideal N
is nilpotent.

(b) In the quotient algebra E/N , any reflexive relation Q is identified with its
transitive closure Q. Moreover, by Theorem 3.2, any essential relation R on X can
be written R = Q∆σ, with Q reflexive, and Q∆σ is identified with Q∆σ in the
quotient algebra E/N . Note that Q is a preorder and that Q is zero in E if it is not
an order, by Proposition 2.5.

On each basis element R of E , the effect of passing to the quotient by N consists
of just two possibilities.

• If R can be written R = Q∆σ, with Q reflexive and Q is not an order, then
R is identified with Q∆σ, so R is zero in E/N because Q is zero.

• If R can be written R = Q∆σ, with Q reflexive and Q is an order, then R
is identified with an element of the form S∆σ where S is an order (namely
S = Q).

In the second case, ∆σ is the unique permutation contained in R (or in other words
the expressionR = Q∆σ is the unique decomposition of R as a product of a reflexive
relation and a permutation). This is because if ∆σ′ ⊆ R, we obtain

∆σ′σ−1 = ∆σ′∆σ−1 ⊆ R∆σ−1 = Q ⊆ Q ,
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so that σ′σ−1 = id since Q is an order (Lemma 3.4). Thus σ′ = σ. This uniqueness
property shows, on the one hand, that both possibilities cannot occur simultane-
ously and, on the other hand, that in the second case the order S = Q is uniquely
determined by R.

It follows that the nonzero images in E/N of the basis elements of E form a
k-basis of E/N consisting of (the images of) the elements S∆σ, where S is an order
and σ ∈ Σ.

The quotient algebra P = E/N will be called the algebra of permuted orders
on X , because every basis element S∆σ is obtained from the order S by applying a
permutation σ to the rows of S. Moreover, ∆σ is the unique permutation contained
in S∆σ, because ∆ is the unique permutation contained in S by Lemma 3.4. This
defines a Σ-grading on P :

P =
⊕

σ∈Σ

Pσ ,

where Pσ is spanned by the set of all permuted orders containing ∆σ. Clearly
Pσ · Pτ = Pστ , so we have indeed a Σ-grading. We also write P1 := Pid and call
it the algebra of orders on X . Moreover, Pσ = ∆σP1 = P1∆σ, so that the product
in P is completely determined by the product in the subalgebra P1 and the product
in the symmetric group Σ. Hence we first need to understand the subalgebra P1.

6. The algebra of orders

Let P1 be the algebra of orders on X defined above. It has a k-basis O consisting
of all orders on X . The product of basis elements R,S ∈ O will be written R · S
and is described as follows.

6.1. Lemma. Let · be the product in the k-algebra P1.

(a) Let R,S ∈ O. Then the product R · S is equal to the transitive closure of
R ∪ S if this closure is an order, and zero otherwise.

(b) The product · is commutative.

Proof : (a) By definition of the ideal N , the product RS in the algebra P = E/N
is identified with the transitive closure RS, which is also the transitive closure of
R ∪ S, because the inclusions

R ∪ S ⊆ RS ⊆ (R ∪ S)2 ⊆ R ∪ S ⊆ RS

force the equality R ∪ S = RS. Now RS is a preorder. If this is an order, then
R ·S = RS. If this preorder is not an order, then it is zero in E (by Proposition 2.5),
hence also zero in P1.

(b) This follows from (a) and the fact that R ∪ S = S ∪R.
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6.2. Theorem.

(a) There exists a k-basis {fR |R ∈ O} of P1, consisting of mutually orthogonal
idempotents whose sum is 1, and such that, for every R ∈ O, the ideal
generated by fR is free of rank one as a k-module.

(b) P1 is isomorphic to a product of copies of k, indexed by O :

P1
∼=

∏

R∈O

k·fR .

Proof : We know that P1 is commutative, with a basis O consisting of all orders
on X . Any such basis element is idempotent. Moreover O is a partially ordered
set with respect to the containment relation and we make it a lattice by adding an
element ∞ and defining R ∨ S = ∞ whenever the transitive closure of R ∪S is not
an order, while R ∨ S is the transitive closure of R ∪ S otherwise. The greatest
lower bound of R and S is just the intersection R ∩ S.

Now define gR = R if R ∈ O and g∞ = 0. By Lemma 6.1, these elements satisfy
the condition gR · gS = gR∨S . Therefore Theorem 10.1 of the appendix applies. We
let

fR =
∑

S∈O
R⊆S

µ(R,S)S ,

where µ denotes the Möbius function of the poset O, so by Möbius inversion, we
have

R =
∑

S∈O
R⊆S

fS .

The transition matrix from {R ∈ O} to {fR | R ∈ O} is upper-triangular, with 1
along the main diagonal, hence invertible over Z. It follows that {fR | R ∈ O} is a
k-basis of P1. By Theorem 10.1 of the appendix, {fR |R ∈ O} is a set of mutually
orthogonal idempotents in P1 whose sum is 1. Moreover, by the same theorem,

fR · T =

{

fR if T ⊆ R ,
0 if T 6⊆ R .

Since T runs over a k-basis of P1, this proves that the ideal P1fR generated by fR
is equal to the rank one submodule k·fR spanned by fR. Thus we obtain

P1
∼=

∏

R∈O

P1fR =
∏

R∈O

k·fR ,

as was to be shown.

Note that if k is a field, then each idempotent fR is primitive.

7. The algebra of permuted orders

We know from the end Section 5 that the algebra P of permuted orders is Σ-graded

P =
⊕

σ∈Σ

Pσ .

If R,S ∈ O and σ, τ ∈ Σ, then the product in P satisfies

(R∆σ)(S∆τ ) =
(

R · (∆σS∆σ−1)
)

∆σ∆τ =
(

R · (∆σS∆σ−1)
)

∆στ ,
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where · denotes the product in P1 described in Lemma 6.1 . Note that this definition
makes sense because ∆σS∆σ−1 is an order, since S is. Note also that we can
write the basis elements as ∆σS with S ∈ O, because R∆σ = ∆σ(∆σ−1R∆σ) and
∆σ−1R∆σ ∈ O.

Instead of O, we can use the basis {fR | R ∈ O} of P1, consisting of the
idempotents of P1 defined in Theorem 6.2. The group Σ acts by conjugation on
the set O of all orders, hence also on the set {fR | R ∈ O}. We first record the
following easy observation.

7.1. Lemma. Let R be an order and let fR be the corresponding idempotent of P1.
For every σ ∈ Σ,

∆σfR∆σ−1 = f σR ,

where σR := ∆σR∆σ−1 .

Proof : This follows immediately from the definition of fR in Section 6.

Since P =
⊕

σ∈Σ Pσ, this has a k-basis {∆σfR | σ ∈ Σ , R ∈ O}. We now
describe the product in P with respect to this basis.

7.2. Lemma. The product of basis elements of P is given by :

(∆τfS)(∆σfR) =

{

0 if S 6= σR ,
∆τσfR if S = σR ,

for all S,R ∈ O and all τ, σ ∈ Σ.

Proof : (∆τfS)(∆σfR) = ∆τfSf σR∆σ. This is zero if S 6= σR. Otherwise we
obtain ∆τf σR∆σ = ∆τ∆σfR = ∆τσfR.

7.3. Corollary. Let R be an order and let fR be the corresponding idempotent
of P1. The left ideal PfR has a k-basis {∆σfR | σ ∈ Σ}.

Proof : We have (∆τfS)fR =

{

0 if S 6= σR ,
∆τfR if S = σR ,

and we know that the set

{∆σfR | σ ∈ Σ} is part of the basis of P .

Now we introduce central idempotents in P . Let R be an order, let ΣR be
the stabilizer of R in Σ, and denote by [Σ/ΣR] a set of coset representatives. By
Lemma 7.1, ΣR is also the stabilizer of fR and we define

eR =
∑

σ∈[Σ/ΣR]

∆σfR∆σ−1 =
∑

σ∈[Σ/ΣR]

f σR ,

the sum of the Σ-orbit of fR.
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7.4. Lemma. Let [Σ\O] be a set of representatives of the Σ-orbits in O. The
set {eR | R ∈ [Σ\O]} is a set of orthogonal central idempotents of P, whose sum is
1P = ∆.

Proof : We compute

∆τfS eR =
∑

σ∈[Σ/ΣR]

∆τfS f σR =

{

0 if S does not belong to the orbit of R ,
∆τfS if S = σR .

On the other hand

eR ∆τfS =
∑

σ∈[Σ/ΣR]

f σR ∆τfS =
∑

σ∈[Σ/ΣR]

f σR f τS ∆τ .

This is zero if τS does not belong to the Σ-orbit of σR, that is, if S does not belong
to the Σ-orbit of R, while if τS = σR, then we get f τS ∆τ = ∆τfS . This shows
that eR is central.

We know that {fR | R ∈ O} is a set of orthogonal idempotents with sum 1. Since
we have just grouped together the Σ-orbits, it is clear that the set {eR | R ∈ [Σ\O]}
is also a set of orthogonal idempotents of P , whose sum is 1P = ∆.

It follows from Lemma 7.4 that P ∼=
∏

R∈[Σ\O] PeR and we have to understand

the structure of each term.

7.5. Theorem. Let R be an order on X and let ΣR be its stabilizer in Σ. Then

PeR ∼= M|Σ:ΣR|(kΣR) ,

a matrix algebra of size |Σ : ΣR| on the group algebra kΣR. In other words

P ∼=
∏

R∈[Σ\O]

M|Σ:ΣR|(kΣR) .

Proof : By Corollary 7.3, the left ideal PfR is a free k-submodule of P spanned
by the set {∆σfR | σ ∈ Σ}. The group ΣR acts on the right on this set, because
fR∆h = ∆hfR for every h ∈ ΣR. It follows that PfR is a free right kΣR-module
with basis {∆σfR | σ ∈ [Σ/ΣR]}.

Clearly, the left action of P commutes with the right action of kΣR. The left
action of P on this free right kΣR-module induces a k-algebra map

φR : P −→ M|Σ:ΣR|(kΣR) .

By Lemma 7.2, eR acts as the identity on PfR, while eS acts by zero if S does not
belong to the Σ-orbit of R. Therefore we get a k-algebra map

φR : PeR −→ M|Σ:ΣR|(kΣR) ,

because φR(eS) = 0 whenever S does not belong to the Σ-orbit of R. Putting all
these maps together, we obtain a k-algebra map

φ =
∏

R∈[Σ\O]

φR : P −→
∏

R∈[Σ\O]

M|Σ:ΣR|(kΣR) .

Lemma 7.2 shows that, if ρ, σ, τ ∈ [Σ/ΣR] and g ∈ ΣR, we have

(∆τfR∆g∆ρ−1 ) ·∆σfR =

{

0 if ρ 6= σ ,
∆τfR∆g if ρ = σ ,
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using the fact that fR∆g = ∆gfR. This means that φR(∆τfR∆g∆ρ−1) is the ele-
mentary matrix with a single nonzero entry equal to ∆g in position (τ, ρ). Moreover,
we also have φS(∆τfR∆g∆ρ−1) = 0 whenever S does not belong to the Σ-orbit of R.
Therefore the map φ is surjective.

Finally, we prove that φ is an isomorphism. It suffices to do this in the case
where k = Z, because all the algebras are defined over Z (that is, they are obtained
by extending scalars from Z to k) and the algebra map φ is also defined over Z.
Now if k = Z, then all algebras under consideration are finitely generated free Z-
modules and we know that the map φ is surjective. So it suffices to show that the
source and the target of φ have the same rank as Z-modules. The rank of P is
|Σ|Card(O). On the other hand,

rank(M|Σ:ΣR|(kΣR)) = |Σ : ΣR|
2|ΣR| = |Σ : ΣR| |Σ| .

Summing over R ∈ [Σ\O], we obtain
∑

R∈[Σ\O]

|Σ : ΣR| |Σ| = |Σ|
∑

R∈[Σ\O]

Card(orbit of R) = |Σ|Card(O) ,

as was to be shown.

7.6. Remark. Since a matrix algebra Mr(A) is Morita equivalent to A (for any
k-algebra A), it follows from Theorem 7.5 that the algebra P is Morita equivalent
to a product of group algebras, namely B =

∏

R∈[Σ\O] kΣR. The bimodule which

provides the Morita equivalence is M =
⊕

R∈[Σ\O]PfR, which is clearly a left

P-module by left multiplication, and a right module for each group algebra kΣR,
acting by right multiplication on the summand PfR, and acting by zero on the
other summands PfS, where S 6= R in [Σ\O]. Notice that PfR is the bimodule
appearing in the proof of Theorem 7.5.

The bimodule inducing the inverse Morita equivalence is M∨ =
⊕

R∈[Σ\O] fRP .

Indeed we, obtain

M ⊗B M∨ ∼=
⊕

S∈[Σ\O]

⊕

R∈[Σ\O]

PfSfRP =
⊕

R∈[Σ\O]

PfRP = P

and on the other hand

M∨ ⊗P M ∼=
⊕

S∈[Σ\O]

⊕

R∈[Σ\O]

fSPfR =
⊕

R∈[Σ\O]

fRPfR

=
⊕

R∈[Σ\O]

kΣR·fR ∼=
⊕

R∈[Σ\O]

kΣR = B .

Each module PfR has rank |Σ|, because it has a k-basis {∆σfR | σ ∈ Σ}, but we
view it as a free right kΣR-module of rank |Σ : ΣR|.

8. Simple modules for the essential algebra

By standard commutative algebra, any simple E-module is actually a module over
k/m⊗k E , where m is a maximal ideal of k. Replacing k by the quotient k/m, we
assume from now on that k is a field. Let E be the essential algebra of Section 5
and let P = E/N be the algebra of permuted orders. Since N is a nilpotent ideal
and since nilpotent ideals act by zero on simple modules, any simple E-module can
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be viewed as a simple P-module. So we work with P and we wish to describe all
simple left P-modules.

There is a general procedure for constructing all simple modules for the algebra
of a semigroup S, using equivalence classes of maximal subgroups of S, see Theo-
rem 5.33 in [CP], or Section 3 of [HK] for a short presentation. But our previous
results allow for a very direct and easy approach, so we do not need to follow the
method of [CP].

First notice that the simple P1-modules are easy to describe, because P1 is a
product of copies of k (by Theorem 6.2). More precisely, P1

∼=
∏

R∈O k · fR and
each one-dimensional space k ·fR is a simple P1-module (where R runs through the
set O of all orders).

8.1. Theorem. Assume that k is a field. Let W be the set of all pairs (R, V ),
where R is an order on X and V is a simple kΣR-module up to isomorphism. The
group Σ acts on W via σ(R, V ) := ( σR, σV ), where σR = ∆σR∆σ−1 and σV is the
conjugate module, a module for the group algebra kΣ σR = k[σΣR σ−1].

(a) The set of isomorphism classes of simple P-modules is parametrized by the
set Σ\W of Σ-conjugacy classes of pairs (R, V ) ∈ W.

(b) The simple module corresponding to (R, V ) under the parametrization of
part (a) is

SR,V = WR ⊗k V ,

where WR is the unique (up to isomorphism) simple module for the matrix
algebra M|Σ:ΣR|(k) and WR ⊗ V is viewed as a module for the algebra

M|Σ:ΣR|(k)⊗k kΣR
∼= M|Σ:ΣR|(kΣR) ,

which is one of the factors of the decomposition of P in Theorem 7.5.
(c) The simple P-module SR,V is also isomorphic to PfR ⊗kΣR

V , with its
natural structure of P-module under left multiplication.

(d) The simple P-module SR,V has dimension |Σ : ΣR| · dim(V ).

Proof : By Theorem 7.5, any simple P-module is a simple module for one of the
factorsM|Σ:ΣR|(kΣR), where R belongs to a set [Σ\O] of representatives of Σ-orbits
in O. In view of the isomorphism

M|Σ:ΣR|(kΣR) ∼= M|Σ:ΣR|(k)⊗k kΣR ,

any such simple module is isomorphic to a tensor product WR ⊗k V as in the
statement. This proves (a) and (b).

By Theorem 7.5, PeR ∼= M|Σ:ΣR|(kΣR) and its identity element eR decomposes
as a sum of orthogonal idempotents eR =

∑

σ∈[Σ/ΣR] f σR . Cutting by the idempo-

tent fR, we obtain the left ideal PfR, which is a free right kΣR-module, isomorphic
to the space of column vectors with coefficients in kΣR. Now PfR is the bimodule
providing the Morita equivalence betweenM|Σ:ΣR|(kΣR) and kΣR (see Remark 7.6).
Therefore, for any simple left kΣR-module V , the corresponding simple module for
PeR ∼= M|Σ:ΣR|(kΣR) is the left P-module PfR ⊗kΣR

V . Since PfR is the space of
column vectors with coefficients in kΣR, while WR is the space of column vectors
with coefficients in k, we get PfR ∼= WR⊗k kΣR. Therefore our simple P-module is

PfR ⊗kΣR
V ∼= WR ⊗k kΣR ⊗kΣR

V ∼= WR ⊗k V ∼= SR,V ,

proving (c).
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Finally, the dimension is

dim(SR,V ) = dim(WR ⊗k V ) = dim(WR) · dim(V ) = |Σ : ΣR| · dim(V ) ,

proving (d).

8.2. Example. Consider the trivial order ∆. Then Σ∆ = Σ and the matrix
algebra reduces to

M|Σ:Σ∆|(kΣ∆) ∼= M1(k)⊗k kΣ ∼= kΣ .

The simple module W∆ for the algebra M1(k) is just k and the simple module
S∆,V = W∆ ⊗k V ∼= V is just a simple kΣ-module. In that case, the central
idempotent eS of P acts by zero on V for any order S 6= ∆, hence fS too (because
fS eS = fS). Then R =

∑

R⊆S fS also acts by zero for any order R 6= ∆. For any
essential reflexive relation Q with Q 6= ∆, the action of Q is equal to the action
of Q (because Q −Q belongs to the nilpotent ideal N), and therefore Q also acts
by zero on V . Then so does the action of the essential relation ∆σQ containing
the permutation ∆σ. This shows that the simple modules S∆,V

∼= V are just the
modules for kΣ viewed as a quotient algebra as in Lemma 4.1.

8.3. Example. Consider a total order T . Then ΣT = {id} and the matrix algebra
reduces to

M|Σ:ΣT |(kΣT ) ∼= Mn!(k)⊗k k ∼= Mn!(k) .

In that case, there is unique simple kΣT -module, namely V = k, the trivial module
for the trivial group. We obtain the single simple module ST,k = WT ⊗k k ∼= WT

for the algebra Mn!(k). Equivalently, with the approach of part (c) of Theorem 8.1,
we have fT = T (by maximality of T in O) and so

ST,k = PfT ⊗kΣT
V = PT ⊗k k ∼= PT .

So we obtain just the left ideal PfT = PT , which turns out to be simple in that
case. But it is also the left ideal L appearing in Proposition 4.3. So we have
recovered the simple module of Proposition 4.3.

We also mention another byproduct of Theorem 7.5.

8.4. Theorem. If the characteristic of the field k is zero or > n, then P is a
semi-simple k-algebra.

Proof : It suffices to see that each factor in the decomposition of Theorem 7.5 is
semi-simple. Now we have the isomorphism

M|Σ:ΣR|(kΣR) ∼= M|Σ:ΣR|(k)⊗k kΣR ,

and M|Σ:ΣR|(k) is a simple algebra. Moreover the group algebra kΣR is semi-simple
by Maschke’s theorem, because the characteristic of k does not divide the order of
the group ΣR, by assumption. The result follows.

Every simple P-module SR,V is a simple R-module, because of the successive
quotients R → E → P . We now give a direct description of the action on SR,V of
an arbitrary relation in R. Since SR,V

∼= PfR ⊗kΣR
V , it suffices to describe the

action on PfR, and for this we can work again with an arbitrary commutative base
ring k. Recall that PfR has a basis {∆σfR |σ ∈ Σ}.
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8.5. Proposition. Let k be a commutative ring. Let R be an order on X and
let Q be an arbitrary relation (in the k-algebra R). The action of Q on PfR is
described on the basis elements as follows :

Q ·∆σfR =

{

∆τσfR if ∃ τ ∈ Σ such that ∆ ⊆ ∆τ−1Q ⊆ σR ,
0 otherwise .

Proof : Suppose first that S is an order. By Lemma 7.2, the action of fS is given
by

fS ·∆σfR =

{

∆σfR if S = σR ,
0 otherwise .

Now S =
∑

T∈O
S⊆T

fT and the action of fT is nonzero only if T = σR. So we obtain the

action of S as follows :

S ·∆σfR =

{

∆σfR if S ⊆ σR ,
0 otherwise .

Next we suppose that S is reflexive and that its transitive closure S is an order.
Since S−S belongs to the nilpotent ideal N of Section 5, which acts by zero because
P = E/N , the action of S coincides with the action of S. Moreover, the condition
S ⊆ σR is equivalent to S ⊆ σR, because σR is transitive. Therefore the action
of S is the following :

S ·∆σfR =

{

∆σfR if S ⊆ σR ,
0 otherwise .

Now suppose that S is reflexive and that S is not an order. Then S is inessential
by Proposition 2.5, hence zero in E . So S acts by zero, and since S − S acts by
zero, the action of S is also zero. On the other hand, S cannot be contained in
σR, otherwise S ⊆ σR, which would force S to be an order since σR is an order.
Therefore the condition S ⊆ σR is never satisfied in that case. So the previous
formula still holds, because we have zero on both sides :

S ·∆σfR =

{

∆σfR if S ⊆ σR ,
0 otherwise .

Now suppose that Q contains a permutation ∆τ . Then S = ∆τ−1Q is reflexive and
Q = ∆τS. Thus the action of Q is :

Q ·∆σfR =

{

∆τ∆σfR if S ⊆ σR ,
0 otherwise ,

=

{

∆τσfR if ∆τ−1Q ⊆ σR ,
0 otherwise ,

=

{

∆τσfR if ∆ ⊆ ∆τ−1Q ⊆ σR ,
0 otherwise .

The last equality holds because the condition ∆τ−1Q ⊆ σR is equivalent to ∆ ⊆
∆τ−1Q ⊆ σR, since S = ∆τ−1Q is reflexive. This proves the result for such a
relation Q.

Finally if Q does not contain a permutation, then Q is inessential by Theorem 3.2,
hence acts by zero. On the other hand the condition that there exists τ ∈ Σ such
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that ∆ ⊆ ∆τ−1Q cannot be satisfied since Q does not contain a permutation.
Therefore the previous formula still holds, because we have zero on both sides :

Q ·∆σfR =

{

∆τσfR if ∆ ⊆ ∆τ−1Q ⊆ σR ,
0 otherwise .

This proves the result in all cases.

8.6. Remark. In the description of the algebra P (Theorem 7.5) and in the de-
scription of its simple modules (Theorem 8.1), we may wonder which groups appear
as ΣR for some order R. The answer is that the group ΣR is arbitrary. More pre-
cisely, by a theorem of Birkhoff [Bi] (and further improvements by Thornton [Tho]
and Barmak–Minian [BaM]), any finite group is isomorphic to ΣR for some order R
on a suitable finite set X . However, for a given finite set X , it is not clear which
isomorphism classes of groups ΣR appear.

Another question is to determine whether or not the simple modules of Theo-
rem 8.1 are absolutely simple. But again this depends on the group ΣR, because
the field k may or may not be a splitting field for the group algebra kΣR.

9. A branching rule

In this section, we let X = {1, . . . , n} for simplicity. In order to let n vary, we use a
superscript (n) for all objects depending on n, such as X(n) for the set X , Σ(n) for

the symmetric group on X(n), O(n) for the set of all orders on X(n), P
(n)
1 for the

algebra of orders on X(n), P(n) for the algebra of permuted orders on X(n), etc.
In the representation theory of the symmetric group Σ(n), there are well-known

branching rules, describing the restriction of simple modules to the subgroup Σ(n−1)

of all permutations of X(n−1), and the induction of simple modules from Σ(n−1)

to Σ(n). In a similar fashion, working again over an arbitrary commutative base
ring k, we will describe how modules for P(n−1) behave under induction to P(n).
For this we need to view the former as a subalgebra of the latter. We first define

φ : P
(n−1)
1 −→ P

(n)
1 , φ(R) = R ∪ {(n, n)} ,

for any order R on X(n−1). It is clear that φ(R) is an order on X(n). Since Σ(n−1)

is a subgroup of Σ(n) (by fixing the last letter n), the map φ clearly extends to an
injective algebra homomorphism φ : P(n−1) −→ P(n).

Now we want to compute the image under φ of the idempotents f
(n−1)
R . For a

given order R on X(n−1), we define

SR = {S ∈ O(n) | S ∩ (X(n−1) ×X(n−1)) = R} .

9.1. Lemma. Let R be an order on X(n−1) and let f
(n−1)
R be the corresponding

idempotent of P
(n−1)
1 .

(a) If S is an order on X(n) and if f
(n)
S is the corresponding idempotent of P

(n)
1 ,

then

φ(f
(n−1)
R ) · f

(n)
S =

{

f
(n)
S if S ∈ SR ,
0 otherwise .
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(b) φ(f
(n−1)
R ) =

∑

S∈SR

f
(n)
S .

Proof : We have f
(n−1)
R =

∑

Y ∈O(n−1)

R⊆Y

µ(R, Y )Y and φ(Y ) = Y ∪ {(n, n)}. There-

fore, using part (a) of Theorem 10.1, we obtain

φ(f
(n−1)
R ) · f

(n)
S =

∑

Y ∈O(n−1)

R⊆Y

µ(R, Y )(Y ∪ {(n, n)}) · f
(n)
S

=
(

∑

Y ∈O(n−1)

R⊆Y, Y ∪{(n,n)}⊆S

µ(R, Y )
)

f
(n)
S

=
(

∑

Y ∈O(n−1)

R⊆Y ⊆S∩(X(n−1)×X(n−1))

µ(R, Y )
)

f
(n)
S .

We get zero if R 6⊆ S ∩ (X(n−1) ×X(n−1)) and also if R ⊂ S ∩ (X(n−1) ×X(n−1))
(by the definition of the Möbius function). If now R = S ∩ (X(n−1)×X(n−1)), that

is, if S ∈ SR, then the sum reduces to µ(R,R) = 1 and we obtain f
(n)
S , proving (a).

Now we have

φ(f
(n−1)
R ) =

∑

S∈O(n)

φ(f
(n−1)
R ) · f

(n)
S =

∑

S∈SR

f
(n)
S ,

proving (b).

9.2. Theorem. Let R be an order on X(n−1), let f
(n−1)
R be the corresponding

idempotent of P
(n−1)
1 , and let V be a kΣ

(n−1)
R -module. Then, inducing to P(n) the

P(n−1)-module SR,V = P(n−1)f
(n−1)
R ⊗

kΣ
(n−1)
R

V , we obtain

P(n) ⊗P(n−1)

(

P(n−1)f
(n−1)
R ⊗

kΣ
(n−1)
R

V
)

∼=
⊕

S∈SR

P(n)f
(n)
S ⊗

kΣ
(n)
S

Ind
Σ

(n)
S

Σ
(n−1)
R

∩Σ
(n)
S

Res
Σ

(n−1)
R

Σ
(n−1)
R

∩Σ
(n)
S

V .

Proof : Using Lemma 9.1, we obtain

P(n) ⊗P(n−1)

(

P(n−1)f
(n−1)
R ⊗

kΣ
(n−1)
R

V
)

= P(n)φ(f
(n−1)
R )⊗

kΣ
(n−1)
R

V

∼=
⊕

S∈SR

P(n)f
(n)
S ⊗

kΣ
(n−1)
R

V

∼=
⊕

S∈SR

P(n)f
(n)
S ⊗

kΣ
(n)
S

kΣ
(n)
S ⊗

k[Σ
(n−1)
R

∩Σ
(n)
S

]
k[Σ

(n−1)
R ∩Σ

(n)
S ]⊗

kΣ
(n−1)
R

V

∼=
⊕

S∈SR

P(n)f
(n)
S ⊗

kΣ
(n)
S

Ind
Σ

(n)
S

Σ
(n−1)
R

∩Σ
(n)
S

Res
Σ

(n−1)
R

Σ
(n−1)
R

∩Σ
(n)
S

V ,

proving the result.
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Assume for simplicity that the base ring k is a field of characteristic zero and let

V be a simple kΣ
(n−1)
R -module. The kΣ

(n)
S -module Ind

Σ
(n)
S

Σ
(n−1)
R

∩Σ
(n)
S

Res
Σ

(n−1)
R

Σ
(n−1)
R

∩Σ
(n)
S

V

is a direct sum of simple modules W , and each W gives rise to a simple P(n)-

module P(n)f
(n)
S ⊗

kΣ
(n)
S

W . Moreover, every such simple P(n)-module occurs with

multiplicities, appearing for instance whenever we have σ running in a set of rep-

resentatives of cosets [Σ
(n−1)
R /Σ

(n−1)
R ∩ Σ

(n)
S ]. For any such σ, we have σS ∈ SR

and also σV ∼= V , because V is a kΣ
(n−1)
R -module and σ ∈ Σ

(n−1)
R . Therefore the

corresponding term in the direct sum is

P(n)f
(n)
σS ⊗

kΣ
(n−1)
R

V ∼= P(n)f
(n)
σS ⊗

kΣ
(n−1)
R

σV ,

but this gives rise to the same simple P(n)-modules as the ones coming from S,
by Theorem 8.1. Thus the multiplicity of these simple P(n)-modules is at least

|Σ
(n−1)
R /Σ

(n−1)
R ∩Σ

(n)
S |.

10. Appendix on Möbius inversion

In this appendix, we prove a general result on Möbius inversion involving idempo-
tents in a ring. This was already used by the first author in other contexts (see
Section 6.2 of [Bo]) and can be of independent interest.

Let (P,≤) be a finite lattice. Write 0 for the minimal element of P and write
x ∨ y for the least upper bound of x and y in P .

10.1. Theorem. Let P be a finite lattice. Let {gx |x ∈ P} be a family of elements
in a ring A such that g0 = 1 and gxgy = gx∨y for all x, y ∈ P . For every x ∈ P ,
define

fx =
∑

y∈P
x≤y

µ(x, y)gy ,

where µ denotes the Möbius function of the poset P .

(a) For all x, y ∈ P , we have gzfx = fxgz =

{

fx if z ≤ x ,
0 if z 6≤ x .

(b) The set {fx |x ∈ P} is a set of mutually orthogonal idempotents in P whose
sum is 1.

Note that our assumption implies that every gx is idempotent, because x ∨ x = x.

Proof : By Möbius inversion, we have

gx =
∑

y∈P
x≤y

fy ,

and in particular 1 = g0 =
∑

y∈P fy.
Next we compute products. If x, z ∈ P , then

fxgz =
(

∑

y∈P
x≤y

µ(x, y)gy

)

gz =
∑

y∈P
x≤y

µ(x, y) gygz =
∑

y∈P
x≤y

µ(x, y) gy∨z

=
∑

w∈P
x∨z≤w

(

∑

y∈P
x≤y, y∨z=w

µ(x, y)
)

gw .
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Note that gzfx = fxgz because gzgy = gz∨y = gy∨z = gygz. If x is strictly smaller
than x ∨ z, then the inner sum runs over the set of all elements y in the interval
[x,w] := {v ∈ P | x ≤ v ≤ w} such that y ∨ (x ∨ z) = w. But we have

∑

x≤y
y∨z=w

µ(x, y) =
∑

x≤y
y∨(x∨z)=w

µ(x, y) = 0 ,

by a well-known property of the Möbius function (Corollary 3.9.3 in [St]). Thus
fxgz = 0 if x is strictly smaller than x ∨ z, that is, if z 6≤ x.

If now x = x ∨ z, that is, z ≤ x, we get y = y ∨ z (because z ≤ x ≤ y), hence
y = w, so that the inner sum has a single term for y = w. In that case, we get

fxgz =
∑

w∈P
x≤w

µ(x,w) gw = fx .

Therefore

fxgz =

{

fx if z ≤ x ,
0 if z 6≤ x ,

proving (a).
If now x, u ∈ P , then

fxfu =
∑

y∈P
u≤y

µ(u, y) fxgy =
∑

y∈P
u≤y≤x

µ(u, y) fx .

If u 6≤ x, the sum is empty and we get zero. If u < x, then
∑

u≤y≤x

µ(u, y) = 0 by

the very definition of the Möbius function. This shows that fxfu = 0 if u 6= x.
Finally, if u = x, then we get fxfx = fx, thus fx is idempotent, and the proof is
complete.

10.2. Corollary. Let P be a finite lattice. Write t for the maximal element of P
and write x ∧ y for the greatest lower bound of x and y in P . Let {gx |x ∈ P} be a
family of elements in a ring A such that gt = 1 and gxgy = gx∧y for all x, y ∈ P .
For every x ∈ P , define

fx =
∑

y∈P
y≤x

µ(y, x)gy ,

where µ denotes the Möbius function of the poset P . Then the set {fx |x ∈ P} is a
set of mutually orthogonal idempotents in P whose sum is 1.

Proof : This follows from Theorem 10.1 by using the opposite ordering on P .
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Station 8, CH-1015 Lausanne, Switzerland.
Jacques.Thevenaz@epfl.ch


