
HAL Id: hal-00877548
https://hal.science/hal-00877548

Submitted on 28 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Free vibrations of an uncertain energy pumping system
Edson Cataldo, Sergio Bellizzi, Rubens Sampaio

To cite this version:
Edson Cataldo, Sergio Bellizzi, Rubens Sampaio. Free vibrations of an uncertain energy pumping
system. Journal of Sound and Vibration, 2013, 332 (25), pp.6815–6828. �10.1016/j.jsv.2013.08.022�.
�hal-00877548�

https://hal.science/hal-00877548
https://hal.archives-ouvertes.fr


Free vibrations of an uncertain energy pumping system

Edson Cataldoa, Sergio Bellizzib, Rubens Sampaioc

aUniversidade Federal Fluminense, Applied Mathematics Departament and Graduate
program in Telecommunications Engineering, Rua Mário Santos Braga, S/N, Centro,

Niteroi, RJ, CEP: 24020-140, Brazil
bLMA, CNRS, UPR 7051, Centrale Marseille, Aix-Marseille Univ, F-13402 Marseille

Cedex 20 France
cPUC-Rio, Mechanical Engineering Departament, Rua Marquês de São Vicente, 225,

Gavea, Rio de Janeiro, RJ, CEP: 22453-900, Brazil

Abstract

The aim of this paper is to study the energy pumping (the irreversible energy
transfer from one structure, linear, to another structure, nonlinear) robust-
ness considering the uncertainties of the parameters of a two DOF mass-spring-
damper, composed of two subsystems, coupled by a linear spring: one linear
subsystem, the primary structure, and one nonlinear subsystem, the so-called
NES (non-linear energy sink). Three parameters of the system will be considered
as uncertain: the nonlinear stiffness and the two dampers. Random variables
are associated to the uncertain parameters and probability density functions
are constructed for the random variables applying the Maximum Entropy Prin-
ciple. A sensitivity analysis is then performed, considering different levels of
dispersion, and conclusions are obtained about the influence of the uncertain
parameters in the robustness of the system.
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1. Introduction

Energy pumping (EP) refers to a mechanism in which energy is transferred
in an one-way irreversible fashion from a source to a receiver. In the context
of passive vibration control of mechanical systems, it can be used to develop
a nonlinear dynamic absorber. In this case, the energy pumping occurs from
the main, or primary, structure, which needs to be protected, to the nonlinear
absorber coupled with it. The nonlinear absorber, also named Nonlinear Energy
Sink (NES), consists of a mass with an essential nonlinear spring. This concept
involves nonlinear energy interactions which occur due to internal resonances
making possible irreversible nonlinear energy transfers from the primary system
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to the attachment. The nonlinear energy pumping in nonlinear mechanical sys-
tems was first described in [3, 17]. An important characteristic of the nonlinear
dynamic absorber should be highlighted: since the NES is essential nonlinear,
this system has no (or very small) natural frequency and it is effective for a
large range of frequencies, while the linear absorbers attenuate well only one
frequency. The linear system to which the NES is attached has, of course, a
natural frequency. A complete description of the energy pumping phenomenon
can be found in [18].

The energy pumping phenomenon has been studied extensively in determin-
istic frameworks including theoretical, numerical and experimental investiga-
tions. Very few studies have been devoted to analyze it in stochastic cases.
Stochasticity was taken into account to discuss the robustness of energy pump-
ing. In [7], the robustness of a nonlinear energy sink during transient regime was
analyzed assuming various parameters as Gaussian random variables and using
polynomial chaos expansion. In [14], the robustness was considered with re-
spect to the initial condition and external excitation forces. Assuming Gaussian
initial condition and white-noise excitation forces, the problem was analyzed
solving the associated Fokker-Planck equation. In [13], a general linear system
connected with an essentially nonlinear attachment in the presence of stochas-
tic excitation to both the linear system and the nonlinear attachment and with
random initial conditions was considered. The problem was analyzed combin-
ing the complexification-averaging technique and solving the Fokker-Planck-
Kolmogorov equation associated to the slow dynamics of the system.

In this paper, uncertain parameters are considered and random variables
are associated to them as in [7]. However, the corresponding probability den-
sity functions are constructed using the Maximum Entropy Principle [9]. This
principle states that out of all probability density distributions consistent with
the given set of available information, the one with the maximum uncertainty
(entropy) must be chosen. Next, the robustness is investigated from the proba-
bilistic properties of some quantities that measure the transfer of energy between
the primary system to the NES. We focus on the ratio of the sum of the energy
stored and energy dissipated in the primary system and sum of the energy stored
and energy dissipated in the NES. This ratio can be related to the percentage
of energy dissipated by the NES.

This paper is organized as follows: in Section 2, the deterministic model
used to study the energy pumping phenomenon is introduced and the energy
quantity used to analyze the transfer of energy is described. The stochastic
approach used is described in Sec. 3. In Section 4, the robustness of the system
is discussed taking into account the uncertainties of the parameters. A special
case, considering the situation where the maximum of the energy pumping is
obtained, is showed in Sec. 5. Finally, in Sec. 6 conclusions are outlined.
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2. The deterministic model used

The system used to illustrate the energy pumping phenomenon and to discuss
its robustness, taking into account uncertainties, has two-degrees-of-freedom and
its sketch is shown in Fig. 1.

Figure 1: Energy pumping model.

The system is composed of two subsystems (mass-spring-damper) coupled
by a linear stiffness. The first subsystem, corresponding to the linear part (or
primary system), is composed of the mass m, the linear spring k1 and the linear
damping c1. It defines a linear oscillator. The second subsystem, corresponding
to the NES, is composed of a mass, which is proportional to m (ǫm), the cubic
spring k2 and the linear damping c2. It defines a nonlinear oscillator. A lin-
ear spring γ couples the two subsystems. This configuration is referred as the
grounded configuration because the NES is connected to the ground. This con-
figuration has been considered in many studies to analyze the EP phenomenon
in terms of transient dynamics [3, 6, 19], in terms of steady state dynamics [8, 12]
and in experimental context [1, 12].

The equations of motion are given by Eq. 1:
{

mẍ1 + c1ẋ1 + k1x1 + γ(x1 − x2) = 0
ǫmẍ2 + c2ẋ2 + k2x

3
2 + γ(x2 − x1) = 0

(1)

where x1(t) and x2(t) denote the displacements of the primary system and the
NES, respectively. Only free responses associated to impulsive excitation of
the primary system will be analyzed, which corresponds to the following initial
conditions:

x1(0) = 0, ẋ1(0) =

√

2h

m
, x2(0) = 0 and ẋ2(0) = 0 , (2)

where h corresponds to the initial energy given to the system. This conditions
may be given applying an impulse in the primary system. That is, some energy
is introduced in the primary system at t = 0 and one sees how the energy is
dissipated, if by the primary system or by the attachment.

As it is well known, energy pumping occurs when the value of the initial
injected energy h is above a specific value [10]. The critical energy level (or
pumping threshold) can be estimated from the Nonlinear Normal Modes (NNM)
of the undamped associated nonlinear mechanical system using the frequency-
energy-plot[11]. One NNM corresponds to periodic orbits where the oscillations
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of the primary system (x1) and the NES (x2) are out of phase the other NNM
corresponding to in phase oscillations. The energy pumping phenomenon hap-
pens through a nonlinear beat phenomenon activating a 1:1 internal resonance:
x1 and x2 oscillate at the same frequency according to the in phase NNM where
the motion is localized in the NES. This state permits the transfer of the energy
from the linear subsystem to the NES where the energy is dissipated (transfer
in a irreversible way)[11].

The transfer of energy can be analyzed observing the energy exchanged
between the two subsystems and/or comparing the energy dissipated by the
two subsystems. This approach will be considered here.

As in [6], the following energy quantities are introduced

E1(t) =
1

2
mẋ2

1(t) +
1

2
k1x

2
1(t) + c1

∫ t

0

ẋ2
1(s)ds (3)

E2(t) =
1

2
ǫmẋ2

2(t) +
1

4
k2x

4
2(t) + c2

∫ t

0

ẋ2
2(s)ds (4)

where Ei(t) denotes the sum of the mechanical energy present in the subsystem
i at time t and the energy dissipated in the subsystem i over [0, t]. At t = 0,
Ei(0) corresponds to the energy introduced in the subsystem i and at t = +∞,
Ei(+∞) corresponds to the energy dissipated in the subsystem i. Note that
with the imposed initial conditions (2), E1(0) = h and E2(0) = 0.

Starting from the equations of motion (1) and using the initial conditions

(2), it can be shown that the non dimensional ratio rE(t) =
E2(t)

E1(t)
(also named

energy ratio) reduces to

rE(t) =

−
∫ t

0

ẋ1(s)x2(s)ds− 1
2x

2
2(t)

h
γ +

∫ t

0

ẋ1(s)x2(s)ds − 1
2x

2
1(t)

(5)

giving

rE(0) = 0 and rE(+∞) =

−
∫ +∞

0

ẋ1(s)x2(s)ds

h
γ +

∫ +∞

0

ẋ1(s)x2(s)ds

. (6)

The non dimensional ratio rE(+∞) is also related to the percentage of energy
dissipated by the subsystem 2 (the NES) over [0,+∞] as

Edis
2

Edis
1 + Edis

2

=
rE(+∞)

1 + rE(+∞)
(7)

where Edis
i denotes the energy dissipated in the subsystem i over [0,+∞].
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When energy is transferred from the primary system to the NES, E2(t) can
become greater than E1(t) giving rE(t) > 1. Hence, energy pumping occurs if
there exists Tp such that rE(t) ≥ 1 for all t, t ≥ Tp. Note that rE(t) ≥ 1 can
also occur for t < Tp.

Energy pumping will be efficient if Tp is small and rE(+∞) is large (always
greater than 1). The last condition will be satisfied if the denominator of (6) is

near zero corresponding to a negative value for the integral

∫ +∞

0

ẋ1(s)x2(s)ds.

This condition will mainly occur during the activation of a 1:1 internal resonance
(the energy pumping phase) where the components x1(t) and x2(t) are in-phase
(see previous comment and [1]). In this paper, treating the free vibration prob-
lem, it will be studied the conditions that assure energy pumping, but not its
effectiveness. In a follow-up problem dealing with forced vibrations, where a
primary system is to be protected using a NES, it would be more interesting to
study also the effectiveness of the energy pumping, connected with the value of
Tp.

Typical behaviors of the non dimensional ratio rE(t) versus time are plotted
in Fig. 2 for m = 1 kg, ǫ = 0.1, k1 = 0.9 N m−1, k2 = 0.1 N m−3, γ =
0.05 N m−1, c1 = 0.05 N s m−1 and c2 = 0.01 N s m−1. Three values (h =
0.01, 0.15 and 1) of the initial energy will be considered showing that in these
cases energy pumping only occurs for h = 0.15.

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

Time (s)

r E
 (

t)

 

 

h=0.01
h=0.15
h=1

Figure 2: Energy ratio rE versus time t, considering three different cases for the initial energy:
h = 0.01 (dotted line), h = 0.15 (dashed line) and h = 1 (continuous line).

For the same set of numerical values, the behavior of the rE(t) at t = +∞
versus the initial energy h is plotted (Fig. 3).

When h is small, no energy pumping occurs (rE(+∞) < 1). When h ≥
hi
p where hi

p is defined as the initial energy where the curve rE(+∞) cross

up the horizontal line y = 1 (here hi
p ≈ 0.09 as seen in Fig. 3), the energy

pumping occurs (rE(+∞) ≥ 1). Increasing h, the energy pumping phenomenon
disappears for h ≥ hf

p where hi
f is defined as the initial energy where the curve

rE(+∞) cross down the horizontal line y = 1 (here hf
p ≈ 0.25 as seen in Fig. 3).

For the selected configuration, the energy pumping is optimal for h ≈ 0.15 and
in this case the NES dissipates 60% of the energy.
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Figure 3: Energy ratio rE(t) at t = +∞ versus initial energy h.

The threshold value hi
p can be compared to the pumping threshold esti-

mated from the nonlinear normal modes of the undamped associated nonlinear
mechanical system. The two nonlinear normal modes have been computed us-
ing the complexification-averaging method [18]. They are depicted using the
energy-frequency-plot (see Fig. 4(a)) and the displacement-frequency plots (see
Fig. 4(b)). The energy is defined as

Energy =
1

2
mẋ2

1 +
1

2
ǫmẋ2

2 +
1

2
k1x

2
1 +

1

2
γ(x1 − x2)

2 +
1

4
k2x

4
2.

The first NNM corresponds to in-phase periodic orbits (Fig. 4, gray curves). The
second NNM corresponds to out-of-phase periodic orbits (Fig. 4, black curves).
The pumping threshold is defined as the energy value where the out of phase
NNM shows a local maximum (see the horizontal line (Fig. 4(a)). The value
(≈ 0.08) is close to hi

p ≈ 0.09.
Considering a deterministic system, it was possible to discuss the princi-

ples of the energy pumping. However, the main objective here is to discuss
the robustness of energy pumping taking into account the uncertainties of some
parameters of the system; that is, to discuss what happens with the energy
pumping phenomenon when the parameters of the system are uncertain. Ran-
dom variables will be associated to these parameters and the corresponding
stochastic system constructed.

3. The stochastic approach used

3.1. General considerations

In order to apply the theory to real structures, where the nonlinear struc-
ture annexed does not reflect perfectly the theoretical conception and the prob-
lems related to the nonlinear identification appear, it is important to know if
the energy pumping can be produced even when the parameters are uncertain.
The aim of this section is to study the energy pumping when uncertainties are
present; that is, when the values of the parameters are not well known.
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Figure 4: Nonlinear normal modes of the undamped associated nonlinear mechanical system in
terms of (a) energy-frequency-plot and (b) displacement-frequency-plot. In phase NNM (gray
curves), out of phase NNM (black curves). x1 component (continuous lines), x2 component
(dashed lines)

.

3.2. Stochastic modeling

Herein, the most relevant parameters in terms of energy pumping have be
chosen as uncertain: (i) k2, the nonlinear stiffness, (ii) c1, the damping corre-
sponding to the linear system, and (iii) c2 the damping corresponding to the
nonlinear system. The nonlinear energy pumping occurs if the damping of the
NES and damping of the primary system are small[4], inceasing one of these
parameters can cancel the energy transfer. As shown by energy-frequency-plot
representation of the NNMs, the pumping threshold is also strongly related to
the nonlinear stiffness coefficient of the NES. This set of parameters also corre-
spond to the quantities that are difficult to characterize in practice.

To construct the corresponding stochastic model, random variables K, C1

and C2 will be associated to the uncertain parameters and probability density
functions constructed to these random variables using the Maximum Entropy
Principle [9].

Let Y be each one of the random variables K, C1 or C2. If pY is the
probability distribution of Y , the entropy associated to Y is defined by [16]:

S(pY ) = −
∫ +∞

−∞

pY (y)ℓn(pY (y))dy. (8)
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The goal is to maximize S under the constraints defined by some available
information on the random variable Y .

For our problem, the following information is considered as available: (i) the
support of the probability density function is ]0,+∞[, (ii) the mean value, which
is known, E[Y ] = Y and (iii) the condition E{ℓn(Y )} < +∞ which implies that
zero is a repulsive value.

The probability density function pY has then to verify the following con-
straint equations [2]:

∫ +∞

−∞

pY (y)dy = 1 ,

∫ +∞

−∞

ypY (y)dy = Y ,

∫ +∞

−∞

ℓn(Y )pY (y)dy < +∞ . (9)

Applying the Maximum Entropy Principle yields the following probability
density function for Y :

pY (y) = 1]0,+∞[(y)
1

Y

(

1

δ2Y

)
1

δ2
Y × 1

Γ (1/δ2Y )

(

y

Y

)
1

δ2
Y

−1

exp

(

− y

δ2Y Y

)

(10)

where δY =
σY

Y
is the coefficient of dispersion of the random variable Y such

that δY <
1√
2
and σY is the standard deviation of Y .

It can be verified that Y satisfies

E{1/Y 2} < +∞ . (11)

3.3. Stochastic solver for the uncertain system

The stochastic system is constructed from the corresponding deterministic
one substituting k2, c1 or c2 by the random variable K, C1 or C2, respectively.
The stochastic solver used is based on the Monte Carlo method. Each random
variable will be substituted separately by the corresponding uncertain parameter
in the deterministic system.

The following steps will be performed for each random variable.

(i) A probability density function is constructed using the Maximum En-
tropy Principle (see previous section).

(ii) Independent realizations Y (θ) of the random variable Y are constructed
using the associated probability density function obtained in step (i). For each
realization Y (θ), the system of differential equations given by Eqs. (1)(2) is nu-
merically solved and the stochastic processes X1(t) and X2(t), associated to the
displacements x1(t) and x2(t) of the masses m1 and m2, are obtained.

(iii) Confidence intervals corresponding to different quantities related to the
energy pumping phenomenon (such as nonlinear normal modes, rE ,...) are

8



plotted considering different values for the dispersion coefficient. The confidence
interval associated with a specific probability level is constructed using quantiles
[2, 15]. Herein, the probability that one realization is inside the confidence
interval is 0.95.

4. Energy pumping robustness

The following numerical values have been used to define the nominal system:
m = 1 kg, ǫ = 0.1, k1 = 0.9 N m−1, k2 = 0.1 N m−3, γ = 0.05 N m−1,
c1 = 0.05 N s m−1 and c2 = 0.01 N s m−1. The equations of motion Eq. (1)(2)
have been approximated over [0, T ] with T = 160 s using Runge-Kutta method.
The confidence intervals have been estimated simulating 200 realizations.

4.1. Parameter k2 chosen as uncertain

The nonlinear stiffness k2 is considered as uncertain. The probability density
function of the associated random variable K is defined from (10) with Y = K.
It is assumed that E[K] = K = k2.

From the relation (11), it can be deduced that E{1/K2/3} < +∞. Let X
be the random variable corresponding to a displacement of the stiffness k2 and
let F be the force applied to k2. Then, F = KX3. Therefore, E{X2} < +∞ ⇒
E{1/K2/3} < +∞.

9



Figure 5 shows the confidence interval of the displacement of the nonlinear
normal modes (considered as the conserved mechanical energy of the associated
periodic orbits) in relation to the frequency, when the dispersion coefficient
varies. It is also reported the evolution of the mean values of the realizations
and energy-frequency plot associated to the nominal systems. It can be noted
that the mean values of the realizations slightly differ from the results obtained
from the nominal system. However, the uncertainty on k2 affects differently
the nonlinear normal modes. For the out-of-phase branch, the influence of
the uncertainty increases with the frequency affecting significantly the pumping
threshold. For the in-phase branch, the uncertainty affects the branch where
the curvature is larger.
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Figure 5: Confidence interval related to the displacements of the nonlinear normal modes
(considered as the conserved mechanical energy of the associated periodic orbits) and the
mean values of the realizations (dashed line) for different values of the dispersion coefficient
δK of the random variable K, : (a) δK = 0.05, (b) δK = 0.1, (c) δK = 0.2 and (d) δK = 0.3.
Energy-frequency-plot of the nominal system (thick line).

Figure 6 shows the confidence interval of the energy ratio rE(t) at t = +∞
in relation to the variation of the initial energy h ∈ [0, 0.8] when the dispersion
coefficient varies.

The scale of the plots was chosen so that the results can be compared with
other confidence intervals that will be constructed in the following. The uncer-
tainty on k2 affects rE(+∞) over h ∈ [0, 0.8]. When the dispersion coefficient
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Figure 6: Confidence interval related to the energy ratio rE(t) at t = +∞ versus initial energy
h for different values of the dispersion coefficient of the random variable K. (a) δK = 0.05.
(b) δK = 0.1. (c) δK = 0.2. (d) δK = 0.3

is small, the phenomenon of energy pumping is robust for a large initial en-
ergy range. Increasing the dispersion, the initial energy range corresponding to
the energy pumping is reduced and for δK = 0.3 the robustness of the energy
pumping phenomenon is lost. These curves show also a very interesting result
concerning the influence of the uncertainty of k2 on the efficiency of the NES.
The upper-bound of the confidence interval shows an upper-bound (≈ 1.4) and
remains equal to this value in the energy pumping range. It indicates that the
energy pumping efficiency cannot be increased varying only K. There is a limit
for it.

The energy pumping robustness can also be analyzed for a given initial
energy. Figure 7 shows the realizations of the displacements of the two masses
with the initial energy h = 0.15 considering δK = 0.3 as the value of the
dispersion coefficient.

Here, basically, the same characteristics obtained by [5] can be highlighted.
The energy pumping phenomenon is produced and it is effective for all the
realizations (Fig. 7 (a) and (b)). The mean values of x1(t) and x2(t) (Fig. 7
(c) and (d)) are characterized by two different behaviors: At the beginning,
for 0 < t < 15 s, the mean displacements of the two oscillators are almost in-
phase, the oscillation of the mean displacement of the NES is large and the
decay of the primary system displacement is linear and very fast compared
with that of the primary system disconnected from the NES (a one DOF linear
oscillator) where the decay (not shown here) is exponential with decay rate
0.025. Then, for t > 15, the behavior of the two oscillators present out-of-phase
displacements and the standard deviations of x1(t) and x2(t) are small, although
near t = 20s their values are higher. Figure 7 (e) and (f) show the standard
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Figure 7: Numerical results for K = 0.1 and δK = 0.3. (a) and (b): Realizations of the
displacements of the masses. (c) and (d): Mean values of the realizations. (e) and (f):
Standard deviation of the realizations. Left: linear system. Right: nonlinear system.

deviation corresponding to the realizations.
Figure 8 shows the confidence interval of the energy ratio rE(t), with respect

to time, when the dispersion coefficient varies. The scale of the plots was chosen
so that the results can be compared with other confidence intervals that will be
constructed in the following.

When the dispersion coefficient has a low value (0.05) it can be noted that
all the realizations cross the value 1, approximately after the first 15 seconds,
and remain above the value 1 during all the time indicating that the energy
pumping occurs. Increasing the dispersion coefficient (0.1) it can be observed
that the confidence interval is larger and some realizations remain under the
value 1 during all the time, indicating that the energy pumping does not occur
anymore. Increasing a little bit more the dispersion coefficient (0.2 and 0.3)
more realizations appear under the value 1. Consequently, the energy pumping
phenomenon is not effective, for these realizations.

Figure 9 shows the confidence interval of the energy ratio, with respect to
time, considering only the coefficient of dispersion δK = 0.3.

It can be noted that the nominal value and the mean value are not coin-
cident. This happens due to the nonlinear characteristic of the system. To
better understanding this behavior, a 3D graph was constructed and is shown
in Fig. 10. The graph shows some realizations of K and the corresponding
behavior of the energy.

It is important to note that the maximum value of the energy ratio occurs
for values of K near to 0.07.

12



0 50 100 150
0

1

2

3

r E
 (

t)

(a)
0 50 100 150

0

1

2

3

r E
 (

t)

(b)

0 50 100 150
0

1

2

3

t(s)

r E
 (

t)

(c)
0 50 100 150

0

1

2

3

t(s)

r E
 (

t)

(d)

Figure 8: Confidence interval related to the energy ratio rE versus time t for different values
of the dispersion coefficient of the random variable K. (a) δK = 0.05, (b) δK = 0.1, (c)
δK = 0.2 and (d) δK = 0.3.Initial energy h = 0.15.

4.2. Parameter c1 chosen as uncertain

The next parameter to be considered as uncertain is the linear damping c1
and the random variable C1 will be assigned to it. The available information is
the same as considered for K and, consequently, using the Maximum Entropy
Principle, the corresponding probability density function constructed will have
the same expression as the one constructed for K (Eq. 10), substituting K by
C1.

Figure 11 shows the confidence interval of the energy ratio in relation to the
variation of the initial energy (h).

It can be noted that the maximum values of the energy ratio occurs for
values of h near to 0.15.

The confidence interval for the realizations of the energy ratio is plotted for
different values of the dispersion coefficient and the results are shown in Fig. 12.

In this case, the confidence interval seems to be considerable large when the
value of the dispersion coefficient is δC1

= 0.3 and, maybe, only in this case,
the energy pumping cannot occur for some realizations. It indicates that the
system is very robust in relation to variations of the uncertain parameter c1.
For all the other cases, the lower limit of the confidence interval is not below
the level 1.

It is interesting to note that the confidence intervals considering C1 as the
only random variable is smaller than the one obtained when K was considered
as the only random variable of the stochastic system.
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Figure 9: Confidence interval related to the energy ratio rE versus time t considering δK = 0.3,
the nominal value (thick line) and the mean value (dashed line). Initial energy h = 0.15.

Figure 13 shows the particular case of the confidence interval in which δC1
=

0.3, including the nominal and mean values of the energy ratio.
In this case, the graphs corresponding to the nominal and mean values for the

energy ratio are almost the same and they are near the middle of the confidence
interval. It is interesting to observe that this damping coefficient belongs to the
linear part of the system. The confidence interval presented here is larger than
the one shown in the Fig. 9, however the range below the level 1 is shorter.
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Figure 10: Realizations of the energy ratio in a 3D graph considering the values of K ordered,
with δK = 0.3.
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Figure 11: Confidence interval related to the energy ratio rE(t) at t = +∞ versus initial energy
h for different values of the dispersion coefficient of the random variable C1. (a) δC1

= 0.05.
(b) δC1

= 0.1. (c) δC1
= 0.2. (d) δC1

= 0.3

Figure 14 shows a 3D graph, considering some realizations of C1, and the
corresponding behavior of the energy ration was obtained.

This graph is particularly useful because it shows how the energy ratio
changes when C1 varies and also it shows the maximum value of the energy
ratio, which occurs for values of C1 near to 0.02, indicating a possible value for
increasing the energy pumping.
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Figure 12: Confidence interval related to the energy ratio rE versus time t for different values
of the dispersion coefficient of the random variable C1. (a) δC1

= 0.05. (b) δC1
= 0.1. (c)

δC1
= 0.2. (d) δC1

= 0.3. Initial energy h = 0.15.

4.3. Parameter c2 chosen as uncertain

The next parameter to be considered as uncertain is the linear damping c2
associated to the nonlinear subsystem, and the random variable C2 is assigned to
it. The available information is the same as considered for C1 and, consequently,
using the Maximum Entropy Principle, the corresponding probability density
function constructed will have the same expression as the one constructed for
C1 (and K) (Eq. 10), substituting C1 (or K) by C2.
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Figure 13: Confidence interval related to the energy ratio rE versus time t considering δC1
=

0.3, the nominal and mean values of the energy ratio. Initial energy h = 0.15.

Figure 15 shows the confidence interval of the energy ratio in relation to the
variation of the initial energy (h).

It can also be noted that the energy ratio is maximum when h is near 0.15.
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Figure 14: Realizations of the energy ratio in a 3D graph considering the ordered values of
C1, with δC1

= 0.3.
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Figure 15: Confidence interval related to the energy ratio rE(t) at t = +∞ versus initial energy
h for different values of the dispersion coefficient of the random variable C2. (a) δC2

= 0.05.
(b) δC2

= 0.1. (c) δC2
= 0.2. (d) δC2

= 0.3

Figure 16 shows the confidence interval related to the energy ratio for dif-
ferent values of the dispersion coefficient δC2

.
One can say that the system is still robust considering the uncertainties of

this parameter, but less robust when compared with values obtained when the
random variable C1 is considered.

Figure 17 shows the particular case of the confidence interval in which δC2
=
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Figure 16: Confidence interval related to the energy ratio rE versus time t for different values
of the dispersion coefficient. (a) δC2

= 0.05. (b) δC2
= 0.1. (c) δC2

= 0.2. (d) δC2
= 0.3.

Initial energy h = 0.15.

0.3, including the nominal and mean values of the energy ratio. Again, the
mean and the nominal values for the energy ratio are not in the middle of the
confidence interval, in the same way as it happened when K was considered as
random variable. C2 is the damping of the nonlinear part of the system.

Comparing the graph of Fig. 17 with the ones in Figs. 9 and 13 it can be
noted that the confidence interval presented here is shorter than those ones. In
addition, maybe it is not difficult to note that it shows less realizations below
the level one than those ones. Then, one can risk saying that the system is more
robust related to the parameter c2 than the other two analyzed, k2 and c1. It
means that, the variation of the energy ratio is less sensitive in relation to the
variation of c2 than k2 and c1.
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Figure 17: Confidence interval related to the energy ratio rE versus time t considering δC2
=

0.3, the nominal value (thick line) and mean value (dashed line) of the energy ratio. Initial
energy h = 0.15.

Figure 18 shows a 3D graph containing some realizations of the energy ratio,
in relation to time, obtained from realizations of C2 when it is considered the
only random variable of the system.
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Figure 18: Realizations of the energy ratio in a 3D graph considering the values of C2 ordered.

This graph help us to obtain the maximum value of the energy ratio, which
occurs for values of C2 near to 0.014, indicating which values of C2 can be
considered to increase the energy pumping.

4.4. The three parameters chosen as uncertain

Now, all the three uncertain parameters are considered in the stochastic
system. Figure 19 shows the confidence interval of the energy ratio in relation
to the variation of the initial energy (h).

It is interesting to note that, although the confidence interval has a limit, it
is not a robust limit like with the variable K.
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Figure 19: Confidence interval related to the energy ratio rE(t) at t = +∞ versus initial
energy h for different values of the dispersion coefficient of the random variables K, C1 and
C2, with δ = δK = δC1

= δC2
. (a) δ = 0.05. (b) δ = 0.1. (c) δ = 0.2. (d) δ = 0.3

Figure 20 shows the confidence interval of the energy ratio in relation to time
variation. Up to δ = 0.2 many realizations are over the level 1 for the energy
ratio. Only for δ = 0.3 it can be seen more realizations below level 1 showing
that the energy pumping does not occur.
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Figure 20: Confidence interval related to the energy ratio rE versus time t for different values
of the dispersion coefficient. (a) δK = δC1

= δC2
= 0.05.(b) δK = δC1

= δC2
= 0.1. (c)

δK = δC1
= δC2

= 0.2. (d) δK = δC1
= δC2

= 0.3. Initial energy h = 0.15.
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5. A special case

Considering all the study performed, mainly regarding the 3D graphs plot-
ted, new values for the uncertain parameters were considered in order to try to
obtain a greater value for the energy ratio, consequently greater energy pump-
ing. The parameters were chosen so that the maximum values of the energy
ratio were obtained. Two cases were considered, with two different values for
k2: 0.1 N m−3 and 0.07 N m−3. The other values considered were m = 1 kg
, ǫ = 0.1 , k1 = 0.9 N m−1, γ = 0.05 N m−1, c1 = 0.025 N s m−1 and
c2 = 0.014 N s m−1. It is important to highlight that the values of k2, c1
and c2 are the ones modified in relation to the values considered for the first
simulation in this paper considering the deterministic case. Figure 21 shows the
two plots.
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Figure 21: Energy ration rE(t) at t = +∞ versus initial energy h in order to increase the
value of the energy ratio.

It can be noted that the value of the energy non dimensional ratio was
increased in both cases, comparing with the values obtained in the preceding
sections. In the second case, with k2 = 0.07, the maximum value of the energy
ration (rE) was obtained for h near to 0.25. This value is different from the
one considered in all the simulations used in this paper. However, for the first
case (k2 = 0.1 N m−3), the value of h corresponding to the maximum of the
energy non dimensional ratio was near to 0.15. Then, it was possible to obtain
a greater value for the energy ratio; that is, it was possible to increase the
energy pumping, changing the values of the parameters and using all the study
described in this paper.
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6. CONCLUSIONS

This paper analyzes energy pumping using a system composed of two sub-
systems, one linear and another nonlinear, to take into account the uncertainties
in some parameters. The main objective was to analyze the robustness of the
energy pumping. So, three parameters were considered as uncertain: the nonlin-
ear stiffness and the two damping, one of the linear subsystem and the other of
the nonlinear subsystems. Probability density functions (p.d.f.) were assigned
to the random variables related to these parameters.

The main conclusions obtained were that the system is more robust when
uncertainties related to the dampers are taken into account, because with a
greater level of dispersion in this parameter, the energy pumping phenomenon
could still be observed. For the same level of dispersion, the effects of the three
random variables were compared and the system results were more sensitive to
variations of the random variable associated to the stiffness associated to the
nonlinear system. In addition, the displacements of the linear subsystem are less
sensitive to the variations of the uncertain parameter than the displacements of
the nonlinear subsystem.

It was also possible to verify that, in some cases, there are limitation for the
energy pumping. As an example, when only the stiffness associated to the non-
linear system was considered, it was not possible to increase the energy pumping
varying the value of the random variable associated to the corresponding stiff-
ness. However, it was possible to increase the energy pumping modifying the
parameters of the system, according to all the study performed in the paper,
considering the uncertain parameters, the random variables associated to them
and the corresponding stochastic system.

An idea for a future study is to consider other parameters as uncertain and
employ other methodologies to take it into account. The sensitive analysis can
be performed considering Other quantities, for example, the energy variation of
the system.
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