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DEFORMATIONS OF TWISTED HARMONIC MAPS AND
VARIATION OF THE ENERGY

MARCO SPINACI

ABSTRACT. We study the deformations of twisted harmonic maps f with re-
spect to the representation p. After constructing a continuous “universal”
twisted harmonic map, we give a construction of every first order deformation
of f in terms of Hodge theory; we apply this result to the moduli space of
reductive representations of a Kéhler group, to show that the critical points of
the energy functional E coincide with the monodromy representations of polar-
ized complex variations of Hodge structure. We then proceed to second order
deformations, where obstructions arise; we investigate the existence of such
deformations, and give a method for constructing them, as well. Applying this
to the energy functional as above, we prove (for every finitely presented group)
that the energy functional is a potential for the Kéahler form of the “Betti”
moduli space; assuming furthermore that the group is Ké&hler, we study the
eigenvalues of the Hessian of E at critical points.

INTRODUCTION

Harmonic maps have a long history which dates back at least to 1964, when
Eells and Sampson [ES64] proved the existence of a harmonic representative in
every homotopy class of maps between compact manifolds of appropriate curvature.
Precise results about uniqueness and the variation of the energy have followed, in
[Har67] and [MazT73], respectively. It became evident that harmonic maps enjoy
especially good properties if one supposes in addition the starting manifold X to
be Kéhler; this is resumed in the Siu-Sampson Bochner’s formula, [Siu80, Sam86],
which implies that the harmonic map is in fact pluriharmonic.

While these concepts were perfectioned, Hitchin and Donaldson [Hit87, Don87|
constructed the moduli space of Higgs bundles over a Riemann surface ¥ and proved
it to be homeomorphic to the moduli space of representations of (a central exten-
sion of) the fundamental group of ¥. Thanks to the existence theorem for twisted
harmonic maps proved by Corlette [Cor88], Simpson [Sim92, Sim94] was able to
extend the results to higher dimensional projective manifolds X: The harmonic
metric constructed by Corlette gives a homeomorphism between the moduli space
Mg (X, G) of reductive representations of I' = 71 (X, 29) into G and the moduli space
Mpoi (X, G) of G-Higgs bundles (which are assumed polystable and with some van-
ishing of the Chern classes). Our purpose in this paper is to study the infinitesimal
behavior of the harmonic mapping with respect to the parameter p € Hom(T", G);
we apply this analysis to the infinitesimal study of the energy functional, which is
defined on Mp, (X, G) as the squared L?-norm of the Higgs field #, and has so far
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2 DEFORMATIONS OF TWISTED HARMONIC MAPS

been used intensively to study the topology of the moduli spaces in the case of a
Riemann surface ¥ (cfr. [Hit87]).

Let M be a closed, orientable Riemannian manifold and T' = 71 (M, zg); the
manifold will be denoted by X if we further suppose it to be Kéahler. Let G = G(R)
be a reductive linear group, K < G be maximal compact, and N = G/K. If
po: I' = G is a representation, we shall identify metrics on (V, D) = ((MXRT)/F, d)
with pg-equivariant maps f: M — N, where M — M is the universal cover. Then,
df naturally identifies with a g-valued 1-form (, such that D = D" 4+ (3 is the
decomposition into metric and self-adjoint parts (cfr. Proposition 1.6). Recall that
f is harmonic if and only if D*"*3 = 0, and in this case, if M = X is Kihler, then
B =60+ 6* and (V,0) gives a Higgs bundle.

We start by proving the existence of a continuous family of harmonic metrics,
and the continuity of the energy functional (which, at reductive representations,
where a harmonic metric f exists, is half the squared norm of df). Fix a point
Zo € M. Then Corlette’s theorem [Cor88] grants the existence of a well defined
map

H:Y x M — N,

where Y € N x Hom(T", G), such that J#(n, p,-) is the unique p-equivariant har-
monic map with J#(n, p,Z9) = n. We then prove (cfr. Proposition 2.3) that Y
is closed and 7 is a continuous map. Then, showing that the energy of a repre-
sentation equals the energy of its semisimplification, we conclude that the energy
functional is continuous on the whole of Hom(I', G) (Proposition 2.5).

The local study we carry through goes as follows: There are natural definitions of
infinitesimal deformations of a representation pg, induced by the group structures
of TG = G(R[t]/(t?)) and J?G = G(R[t]/(t?)), which can be rephrased as 1-
cocycles in group cohomology. Analogously, deformations of a map f: M — N are
naturally sections of the pull-back bundle f*T'N. We introduce the concepts of
harmonic and equivariant deformations (v, w) (with respect to a deformation of the
representation pg) in Definitions 3.3, 3.6, 5.4 and 5.5. We investigate the existence
of such deformations, aiming to give a way to construct them. This is completely
done in the first order case, and we prove:

Theorem A. Denote by c the 1-cocycle corresponding to a first order deformation
of po, and by {c} € HY(T',g) =~ HY(M, Ad(po)) the corresponding cohomology class
(where Ad(po) is the local system on M of fiber g). Let w € HY(M,Ad(pg)) be
its harmonic representative. Take any F': M — g such that dFF = w and that
F(vz) = Ad,, (1) F(Z) +c(7) and project it via the natural map N xg — T'N. Then,
we obtain a first order deformation v, which is harmonic and (po, ¢)-equivariant;
all such deformations are obtained in this way.

Thanks to this result, we are able to express the first variation of the energy at
po: Along the deformation determined by w, it becomes (Proposition 4.2):

0By _ J {, B)dVol.
t=0 M

(1) n

In his paper [Hit87], Hitchin investigated the case of rank n degree d vector
bundles on a Riemann surface M = ¥ with (n,d) = 1. This forces the moduli
space to be smooth and projective; he then proves the energy functional E to
be a moment map for the Sl-action t - (£,0) = (€,t0), which gives a matching
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between critical points of E and fixed points of the action (these are in turn the
so-called “complex variations of Hodge structures”, and their ubiquity makes them
intensively studied - cfr. [Sim92] for a definition and proof of the ubiquity). Using
(1), we can prove the following;:

Theorem B. The critical points of E are exactly the representations induced by
polarized complex variations of Hodge structure.

2By

ot 1t=0
ce Z1(T', g); at smooth points, this coincides with the usual definition.

The study of second order deformation is made harder by the presence of ob-
structions. It is well known (see [GMS87]) that the obstruction for a first order
deformation of py to be extended to the second order lies in the existence of an
Ad(po)-valued 1-form ¢ on M such that

(2) dyp = —[w,w].

We have to ask such a 1 to satisfy one more equation in order to assure the existence
of a deformation of the harmonic metric to the second order, but this actually grants
a little more:

Here for critical points we mean those such that = 0 along all directions

Theorem C. Suppose that G is a complex group. Then the following are equivalent:

(1) There exists a Ad(po)-valued 1-form 1+ satisfying both (2) and d*y =
—2w(E))* w(E;)], where {E;} is a local orthonormal frame and x de-
notes adjunction with respect to the harmonic metric;

(2) The harmonic 1-form w is a minimum of the L?-norm in its own orbit in
HY (M, Ad(po)) under the adjoint action of H = Zg(Image(po));

(8) There exists a map (F,Fy): M — g x g which is both equivariant and of
harmonic type (cfr. Definitions 5.4, 5.5);

(4) There exist two second order deformations (v,w) and (v',w") of f, both
harmonic, one equivariant along (some second order extension of) (po,c)
and the other along (po,ic).

Furthermore, any of the points above is true for every harmonic metric f if and
only if HO(M, Ad(po,c)) is a flat R[t]/(t?)-module (here, Ad(po,c) = Ad(po + tc)
is the adjoint local system with fiber g @ R[t]/(t?)).

If any of the conditions of the theorem is satisfied, then every second order
harmonic map is obtained by projection of (F, Fy), similarly to the first order
picture. Similarly to the first order case, we obtain a formula for the variation of
the energy along deformations constructed by the means of the theorem:

2
ot o= | i)+ [P Pav,
t=0 M

®) a

where wlPl; is the projection of w; on the subspace [p]; of g consisting of selfadjoint
elements.

Again, we want to make use of this result to prove the analog second order
statements as those Hitchin proved on a Riemann surface. Namely, Hitchin [Hit87]
proves the energy functional E to be a Kahler potential with respect to the complex
structure given by Mg (T, G), and also that it is a perfect Bott-Morse function. In
[Hit92], then, he gives a formula for the eigenvalues of the Hessian of F at a fixed
point as a function of the eigenvalues of the infinitesimal generator of the action of
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S1 which allow for example [BGPG03] and [GPGMiR13] to study the topology of
Mg (X, G) for some classes of group G. In the lines of the former result, we prove:

Theorem D. Let G be a complex group. At the smooth points of Mg(M,G),
the energy functional E is a Kdhler potential for the Betti complex structure on

Mg (X, G).

A similar plurisubharmonicity result for the energy functional on the Teichmiiller
space has been recently proved by Toledo (see [Toll2]). This work has been the
original source of our interest in the question .

In order to extend Hitchin’s result regarding the eigenvalues of the Hessian of
E (on a Kahler manifold X), we introduce the following notation, which is akin
to that in e.g. [Hit87): we set A = (wl¥)” and & = (wlPl). Furthermore, at a
point corresponding to a polarized variation of Hodge structure pg, for each & € g,
the Lie algebra of G, write £ = Zp E7PP for the decomposition according to the
induced variation of Hodge structures of weight 0 on X x g, so that the infinitesimal
generator of the circle action acts on {7PP with weight up.

Theorem E. Suppose that pg is induced by a polarized complex variation of Hodge
structure. Then, with the above notations, the second order of the energy along a
direction w can be written as

0%E, - QJXZ <7pHAfp7p}

ot?
Corollary. If we assume further that w takes values in gg, then the expression sim-
plifies in terms of the weight 1 (P, Q) Deligne-Hodge structure on H*(M,Ad(po))

as.
0F, 2
(%;LZO _ QJX S PP,

P even

‘h(1—p)d Pl

2) dvol.

In particular, if po is of Hermitian symmetric type, then the Hessian is semi-positive
definite, and the vanishing directions are exactly those that remain complex varia-
tions of Hodge structure to the first order.

Organization of the paper. In Section 1, we introduce the notion of “polarized
harmonic local systems” as local systems underlying harmonic bundles with a com-
patible involution. We prove a number of results about them, which will be needed
in the following sections. Although we only apply such results in a specific class of
examples (the pull-back of the “adjoint ones” on symmetric spaces), we state them
in general. In Section 2 we construct the universal twisted harmonic mapping 57,
then prove its continuity and the one of the energy functional E.

The infinitesimal study begins in Section 3, where the concepts of first order de-
formations are introduced, and Theorem A is proved. These results are then applied
in Section 4, in which we prove the formula for the first variation of the energy and
use it to obtain Theorem B. In Section 5 we introduce all the necessary definitions
regarding second order deformations, discuss the action of H on H(M, Ad(po))
and relate it with the existence of a pair (F, Fy). This existence implies that of
a second order deformations; in Example 5.13 we present some instances where a
second order harmonic and equivariant deformation cannot exist. The best part of
the section is devoted to the proof of Theorem C. Finally, in Section 6, we prove
(3) which we then exploit to give proofs of Theorems D and E.
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1. POLARIZED HARMONIC LOCAL SYSTEMS

Definition 1.1 ([Sim92]). Let M be a connected Riemannian manifold, M — M
its universal cover. A harmonic bundle is a real flat vector bundle (V, D) of rank n
with a metric h such that the associated map f: M — GL(n,R)/O(n) is harmonic.

Here, the map f is defined by choosing a base point xp € M and an isomorphism
V>~ M xpR" with ' = 71 (M, x0), so as to identify sections v, w with I'-equivariant
maps M — R™, and letting

(4) h(’U, w)i = <S(j)7l U, S(i‘)il ’ w>std
where the scalar product (-, )q is the standard scalar product on R™. Then the

composition f: M = G — G/K is well defined, and its harmonicity is independent
of the choices of £y and of the isomorphism.

Definition 1.2. A (real, even) polarized harmonic local system (phls for short) is
a triple (V, 0, .S) such that V is the local system of parallel sections of a flat bundle
(V,D), 0: V — V is an R-linear involution, S is a flat symmetric non-degenerate
quadratic form, which is positive-definite on the +1-eigenspace V1 of o and negative
definite on the —1-eigenspace V'~ and such that the positive-definite metric defined
by
h(v,w) = S (v, o(w))
makes (V, D) a harmonic bundle.

Remark 1.3. In both definitions, one can define complex objects by considering
hermitian quadratic forms, C-vector bundles, C-linear involutions, etc.; also, we
can consider real odd polarized harmonic local systems by considering a symplectic
form (@ instead of a symmetric one (then it will induce a hermitian form on the
complexification, hence, together with o, a metric therein, which may be asked to be
harmonic). In [Sim92], only the complex setting is analyzed, hence the definitions
are different from the ones above. In this section, we will always develop the theory
for a real even phls, the straightforward adaptation to the remaining cases are left
to the reader.

Given a real polarized harmonic local system, its complexification bears a corre-
sponding complex structure; furthermore, tensor products and duals (hence, endo-
morphisms) are defined naturally.

Definition 1.4 (Cfr. e.g. [BR90]). Let N = G/K be a Riemannian symmetric
space of the non-compact type, denote by g the Lie algebra of G, by £ that of K
and write g = €@ p for the symmetric decomposition. The Maurer-Cartan form
Bn € AL (g) is the right inverse of Y7y : N x g — TN defined by

Irn(n, &) = %(exp(tf) . n)‘

This 1-form gives an isomorphism at every point Sy, : T, N = [p], = Ad,(p).

t=0
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Definition 1.5. Let (V,0,S) be a polarized harmonic local system on M. We
define the canonical connection D" as the metric part of the flat connection D,
and write
D — DCaH + ﬁ’
so that 3 is a 1-form on M taking values in the selfadjoint part of End(V). We
denote by d, d°*" the exterior differential operators determined by the connections
can

D, D" respectively and by V x the covariant derivation by D" along a vector
field X.

The rest of this section is devoted to proving the following facts, which we regroup
in a proposition:
Proposition 1.6. Let (V,0,S5) be a polarized harmonic local system on the flat
bundle (V, D). Then:

(1) The pull-back of B to M coincides with the pull-back of By through the
metric f: M — N = G/K, where G/K is any totally geodesic subspace
of GL(n,R)/O(n) in which f takes values. In particular, it satisfies the
“Maurer-Cartan equation”:

(5) ds = [B, B].

(2) The canonical connection D™ commutes with o, so that, for every section

v of V, writing vt and v~ for its projections on VT and V™, respectively,
D (v) = (Der)Jr + (Dv7) .
(3) Let a be a V-valued 1-form. Suppose that M be compact and orientable.

Then the codifferential d*« may be computed (in terms of a local orthonor-
mal frame {E;} of M) as

(6) d*a=d"*a+ Zﬂ(Ej) a(E;) = —Z V 5,a(E;) - B(E;) - a(E).

(4) Let v be a section of V. Then the laplacian Av = d*dv can be computed in

terms of Ay = d°**q°My = — 2 (C$]Ej C%nEjv) and a local orthonormal
frame {E;} as
(7) Av = J(v) € A + 3 B(E)) - (B(E;) -v)
J

(the operator J will be called the Jacobi operator ).
(5) Denote by V the vector space of global sections of V (i.e. global flat sections
of V). Then o leaves V invariant, so that we can write V = VteVv-.

Notation 1.7. In the following, we will fix a base point o € M and an iso-
morphism V =~ M xp R™, so that we also have a monodromy representation
p: ' = m(M,z9) — GL(n,C). The map f is then I'-equivariant, where I acts
on N through p. We shall denote by Gy the Zariski closure of Image(p) (Gp is
called the monodromy group); by Corlette’s theorem [Cor88], Gy is reductive.
Because of the same theorem, there is at least one harmonic metric fy: M —
Go/Ko < GL(n,R)/O(n). We will always denote by so: M — G one of its lifts. If
f:M— G/K is any metric, we denote by H = Zg(Gg) the centralizer of Gy in G.
By the uniqueness part of Corlette’s theorem, then, f = h - fy, for some h e H. Of
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course, changing the metric the phls structure changes accordingly (with obvious
notations, S remains the same, but the involutions are related by V* = h - V1o),

Example 1.8. The main example we are interested in is the adjoint polarized
harmonic local system. Let G be the group of real points of a reductive algebraic
group, N = G/K the associated symmetric space, and consider V,q = N X g as a
bundle on N, with the trivial flat connection. Put on it the following structure:
Over a point n € N, the involution is the Cartan involution having as 4+ 1-eigenspace
[e]l, = Ad,(f) and as —l-eigenspace [p], = Ad,(p); writing g = g°* @ a for a
decomposition into a semisimple ideal and the center, the metric on a is just any
fixed positive definite metric while on g°® it is induced by taking as symmetric
form S the Killing form. The resulting metric is a totally geodesic embedding
N — GL(g)/O(g) induced by the adjoint action of G on g. In this case, 5 = ad(Sn)
and the “canonical connection” corresponds, via d7n, to the usual one (i.e. the
Levi-Civita connection associated to any invariant metric on N): This will follow
from Proposition 1.6, as the Maurer-Cartan equation (5) and the Jacobi identity
for dgla’s imply, for £: N — g,

[[8,8],¢]-

Furthermore, if one writes D = D% — ad(J), so that from (6) one has d*a =
—trace(Da), in this case the connection D is flat, too.

The main class of examples is constructed as follows: Taking any harmonic
mapping to a symmetric space f: M — N = G/K, we can pull-back the structure
on M. If we start with a representation p: I' = w1 (M,z9) — G and f is I-

equivariant, we can quotient the structure to obtain a (real, even) phls on M xpg —
M.

N =

Re™¢ = (d—ad(8)) ¢ = —[[8, 81,¢] + [8.18,€]] =

Example 1.9. The other main class of examples, when M = X is a compact
Kéhler manifold, is provided by variations of Hodge structure (VHS for short, see
[Sim92] §4). The complex ones give complex phls, while the real ones give even
or odd real phls depending on the parity of the weight. To this aim, one simply
disregards the Hodge decomposition, only considering as (the complexification of)
V7 (resp. V™) the direct sum of V77 for even (resp. odd) p. The harmonic metric,
then, is induced by the period mapping.

Lemma 1.10. Let (V,0,5) be a polarized local system and denote by go the Lie
algebra of Gy. Consider the flat vector bundle Wy = M xpgo. Then, the restrictions
to Wy of the two polarized local systems induced on M xt gl, (R) by End(V) and
by f*(Vaa) coincide.

Proof. Since f and fy induce the same metric on Wy, we can work with the latter.
Write go = @ g;Pag, with g; simple Lie algebras and ag abelian. A straightforward
check proves that the two metrics, one obtained by tensoring f with its dual metric
and the other one by composing f with the adjoint action, coincide. Working with
the metric fy, we can exploit the usual uniqueness argument for the Killing form
to deduce that the flat symmetric forms, which we temporarily denote by Sgnq and
Sad, coincide, up to some constant multiple, on each g;. This implies equality on
each g; since both involutions have as +1-eigenspace a compact Lie algebra, but
not as —1-eigenspace. O



8 DEFORMATIONS OF TWISTED HARMONIC MAPS

To prove points (1) and (2) of proposition 1.6, we introduce the connection DPP =
D — f*Bn, which by equivariance of f and of 8y descends to a connection on the
bundle V — M. We want to prove that D" = DPP. Define a = ds - s~ ! € A}, (g)
(the pull-back through s of the right Maurer-Cartan form 6, on G) and introduce
another auxiliary connection D* by D% = Dv — « - v.

Notation 1.11. Let ¢ € A%[(g) be any g-valued p-form. We define ¢[P! as the
composition of ¢ with the projection to the subbundle f*[p] of M x g. When
necessary, we will write explicitly qﬁc[ip] to denote that both ¢ and [p] are to be

considered at Z (i.e. the projection is to [p]z = Adzp). The form &l is defined
analogously.

Lemma 1.12. We have f*By = al®l. Furthermore, D®v = s-(D(s~')), and D*
is a metric connection which commutes with o.

Proof. The first assertion is a consequence of the identity 9?’] = p*Bn, where
p: G > G/K = N and o) is the projection of 6, onto p*[p], as in Notation
1.11. This identity comes from Jrn(0,(X)) = puX for all X € T,G, which by
equivariance can be proved only at g = e, where it is obvious. The expression for
D¢ is a straightforward computation:

s-D(s7'v)=Dv—s-571-d(s)-s-v=Dv—a-v.

By virtue of this formula, to prove that D respects o is equivalent to prove that
or = s 'ooosisflat, i.e. Doy = 0. To that aim, first reduce without loss of

generality to s = sg. Then, by Gp-invariance of S,
S(v,op(w)) = S(sv,0(sw)) = h(sv, sw) = <v,w>std.

Since both S and the standard scalar product are flat, oy must be, too. Finally, the
fact that D® is metric is immediate computing dh(v, w) = d{s v, s tw)sq. O

Lemma 1.13. Let V underlie a polarized harmonic local system (V,o,S). Then
the induced decomposition End(V) = End(V)* @ End(V)~ coincides with the de-

composition in anti-selfadjoint and selfadjoint endomorphisms, respectively.

Proof. On the subbundle W this follows from Lemma 1.10 and (4), since Wto =
fElol,(R)T], and gl,(R)* @ gl,(R)~ is the decomposition of anti-symmetric and
symmetric matrices. Now if for example A € End(V)™, then as in Notation 1.7,
h=tAh € End(V)*°, and one reduces to the previous case. (]

Thanks to Lemma 1.13, an endomorphism commutes with o if and only if it is
anti-selfadjoint; since by Lemma 1.12 we have DP® = D® + ol then, DP" both
commutes with o and is metric. Furthermore, since f*fy takes values in f*[p],
that is, the selfadjoint part, the decompositions D = D" + 8 = DPP 4 f*p3
must coincide. This gives point (1) of Proposition 1.6. To prove point (2), since
anti-commutes with o, we only need to prove that D" = DPP commutes with o.
But again, DP®? = D + ol and both commute with o.

Remark also that the Maurer-Cartan equation (5) (which is proved for example
in [BR90], Chapter 1), follows easily form the usual Maurer-Cartan equation for
Lie groups, which in our notations implies da = %[a, al:

dtq = da — [a[p],a] = %[a’ o] — [a[p],a] = %[a[f],a[ﬁ]] — %[a[p]’ CY[m]].
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This implies that d8 — [, ] = "8 = d°"(al?P]) = 0, since all terms on the right
hand side take values in [¢].

The formula for the codifferential (point (3) of Proposition 1.6) follows easily
from the formula for the codifferential of a metric connection (see [EL83], (1.20))

and selfadjointness of 5: Locally around a point, let {E;} be an orthonormal frame.
Then:

J (d*a, v)dVol = J {a,d“" v + B - v)dVol
M

can

JMZ < VEQ j)’v>+<ﬂ(Ej)'OZ(E]'),U>)dV01

(here we have abused notation since E; is only locally defined; it is to be meant
that one integrates the function that is given locally around every point in such a
way). The formula for d* follows.

To obtain the formula for the Laplacian (point (4) of Proposition 1.6), a straight-
forward computation using (6) and the functoriality of D" with respect to tensor
products and duals gives:

can

Av=Acanv+ZB(Ej) ZVE B(E
J

We claim that the vanishing of the last term is equivalent to f being harmonic:
Indeed, recall that a map f: M — N is harmonic if and only if its tension field

N N
7(f) = X; Ve;df (E;) vanishes, where V is the pull-back of the Levi-Civita con-

nection on N and Ej; is an orthonormal frame of M. Now Example 1.8 implies that
can

BN o V V o B, so that, since Sy 1s 1nJ€Ct1V6 and By odf is the pull-back of 8

to M, f is harmonic if and only if p v B,B(E;) =0.

Finally, point (5) of Proposition 1.6 is an integration by parts: Taking a v e V|
and denoting by v its projection on V7, it suffices to prove that D(v") = 0. By
(7), since Dv = 0, we have:

- f {Jv,v5dVol = f [ Doy dVol + f 18- v|*avol
M M M

Now both terms are non-negative, hence they must vanish. But since D" (v*) =
D2(p)T and 8- (vh) = (8-v)~, these quantities must vanish, as well, and so must
their sum D(v*). This concludes the proof of Proposition 1.6.

Let us now introduce the main object to which our techniques will be applied in
the next sections. Recall that if I' is a finitely generated group and G a algebraic
group, one has the representation space

Z(T,G) = Hom(T, G).

This is actually an algebraic variety (a subvariety of G", where r is the car-
dinality of a set of generators of I'); the group G acts on it by conjugation,
and one can construct the moduli space of representations as the GIT quotient
M(T,G) = Z(T,G)//G. When T' = m1(M,x0) this goes under the name of the
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“Betti” moduli space (cfr. [Sim94] §6), Mp (M, G). Then, we can define the “en-
ergy functional” E: Z(T',G) — R by:
(8)

1

E(p) = inf {E(f) = JM |df|*avol

f: M — N is smooth and p—equivariant}.

This is actually invariant under the conjugation action, so it descends to a functional
on Mg (M, G). We conclude the section by analyzing two special cases for M.

Example 1.14. If M = S, then harmonic mappings from M are geodesics. Let-
ting g = p(1), the existence of g-equivariant geodesics (i.e. elements realizing the
minimum in (8)) is then equivalent to g being semisimple. One can see easily that
in this case the energy is simply the square of the “translation length” (see [BH99)):

9) E(g) = L(g)* = ;?va dist (y,9 - v)°

(the > inequality is given by Cauchy-Schwarz, the other one is an approximation
argument starting by considering the unique geodesic arc connecting y and g - y).
The proof of this fact also implies that the infimum in (9) exists if, and only if, ¢
is semisimple (this fact is true in a much more general setting, see e.g. [Parll]).

Example 1.15. Suppose that M = X is a Kéhler manifold. Then, there is a corre-
spondence between harmonic bundles and some polystable Higgs bundles ([Sim92],
Theorem 1), which in our notations is as follows: The Higgs bundle (), ) is such
that 8 = 6 + 0* is the decomposition into (1,0) and (0, 1) parts, and the holomor-
phic structure (V,0) is given by d°*® = 0 + 0. Furthermore, for harmonic bundles
(hence, for phls), we have the generalized Kéhler identities (see [Sim92]). Two main
consequences we will be interested in are that a form is harmonic if and only if it is
A’ = D'D’* 4+ D"* D'-closed, and that the pull-back of a harmonic V-valued 1-form is
again harmonic. If we suppose further that X be a smooth projective variety, then
this correspondence gives a homeomorphism of moduli spaces between Mg (X, G)
and Mp (X, G), which is the moduli space of appropriate Higgs bundles; on the
latter, the energy functional is the L2-norm of #, hence it is continuous. In Section
2 we will prove E to be continuous on the whole of R (M, G) for every Riemannian
manifold M.

2. THE UNIVERSAL TWISTED HARMONIC MAP

Definition 2.1. Fix a base point zo of M, and let Zo € M be a preimage. Let
I = 71 (M,x0) and denote by Y the subset of N x Z(T',G) given by the points
(n, p) such that there exists a p-equivariant harmonic map [ satisfying f(Zg) = n.
Define #: Y x M — N the universal map obtained by gluing the (unique) maps
above, so that J#(n, p,-) is p-equivariant, harmonic and .77 (n, p, Ty) = n.

By Corlette’s theorem [Cor88], the projection of Y on the second coordinate
is Z(T', G)**, the set of reductive (also called semisimple) representations. Since
harmonic maps all have the same energy and are minimizers (of the expression in

(8) defining E), for p in Z(T', G)** we have E(p) = E(J7(n,p,-)), for any (n,p) € Y.

Lemma 2.2. Let p;: I' > G be a smooth family of representations, for t in some
smooth parameter space T' 3 0, and f: M — N a po-equivariant map. Then we
can always find a smooth family fi: M — N of ps-equivariant maps such that
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fo = f. In particular, the energy functional is upper semi-continuous on the whole

of ZT',G).

Proof. Maps f; correspond to metrics on the family of bundles V; = M x o R™.
These bundles are trivialized over common open subsets {U}, chosen independently
of ¢; fix a family of local trivializations ¢!, smooth in t. The metric f; induces
metrics on R™ on any local chart through ¢Y, with a compatibility relation between
charts. Composing them with ¢! gives the desired family of metrics on V;. The
semi-continuity follows easily: If f*: M — N is a minimizing sequence for F (po),
we deform each f™ to f;* as above. Then f;* converges to f™ in VV&)E ast — 0,
thus E(f;') converges to E(f™). Hence

E(po) = lim E(f") > lim B(f7) — =(t) > Ep) — (), e(t) =% 0.

O

Proposition 2.3. The subset Y = N x Z(T', G) is closed. The universal harmonic
mapping F€:Y x M — N is continuous.

Proof. Start from a converging sequence Y 3 (n¢, py) — (g, poo), and fix f;: M —
N, which are p;-equivariant and such that f;(Zg) = n;. By Lemma 2.2, the energy
of {f:} is bounded. We can apply [Lin99], Theorem A and Section 5, to deduce
that on any compact subset K < M the restrictions ft|x are Lipschitz maps,
with a uniform Lipschitz constant L. Together with the convergence of fi(Zo),
we obtain a uniform bound for f; on K. We can then apply the W?2P-estimates
(cfr. [GT77], Theorem 9.11) to the semi-linear second order elliptic equation of the
harmonic maps (cfr. [ES64], (5)), to get a uniform bound on the W?2P-norm of f;.
A “bootstrap” argument then gives uniform bounds in every W¥*P-norm. Then,
Sobolev embedding and Arzela-Ascoli theorem give a subsequence converging in C?
to some limit smooth map fo,. This is automatically ps-invariant, and satisfies
fo(Zo) = ng; furthermore, it must satisfy the harmonic map equation, hence
it is harmonic, and (ne,psy) € Y. Indeed, by uniqueness of such an harmonic
map, the whole sequence f; converges to fo; this allows us to conclude that 7 is
continuous. (I

Recall that, given any representation p: I' — G, there is a “semisimplification”
p%%: ' — G defined as the graded associated to any composition series. Slightly
abusing terms, we will call semisimplification of p any point in the unique closed
orbit inside the closure of the orbit G - p for the action of G on Z(T', G) by conju-
gation.

Lemma 2.4. Let p: T' — G be any representation. Then E(p) = E(p*®).

Proof. First remark that, thanks to the proof of Corlette’s theorem [Cor88], we can
construct a family f,, of p-equivariant maps such that E(f,) converges to E(p) and
also the LP-norms of the first two derivatives of f,, are bounded. Indeed, start by
any minimizing sequence f”, and define ft” the metric constructed via the heat flow
starting from f ™. In Corlette’s notations, if we call @} the moment map associated
to f (i.e. its tension field), we have |®7|L» ~=2> 0; thanks to the estimates in
Corlette’s paper, the W% norm of 87 = (df-(f7)~1)[P! (in his notations: 67') are,
for t = t(n) big enough, bounded by a constant depending only on E(f7*), hence
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by a constant, since both f" and the heat flow are energy-decreasing. Defining
fn = ft?n) gives the desired sequence.

Secondly, let g, be such that f, (7o) = g, K, and define p, = g;, ' pgn. We want
to prove that p, subconverges to some po,. By properness of G — G/K, it suffices
to prove that p,(7)K remains at bounded distance from eK for all v € T'. This
follows from the Lipschitz estimates on f,, (coming from those on f,), since:

dist (e K, pn(v)K) = dist (fn(Z0), fu(yE0)) < L(7) - dist(Zo, 7F0) = C(7).

Lastly, we want to prove that gy, = p®® and that E(p) = E(ps). It is clear that
Poo 1s in the closure of the orbit of p. Furthermore, arguing as in Proposition 2.3,
fn converges in WP to some fgo, which is at least C'. In fact, it is harmonic, since
it minimizes the energy: This follows from E(f,) = E(f,) —> E(f.), together
with the following chain of inequalities (here we use also Lemma 2.2 for the second
inequality):

E(fx) > E(px) = limsup E(fn) = E(p) = lim E(fn) = E(fx0)-
Remark that this also shows that F(p) = E(ps), which concludes the proof. (]

Proposition 2.5. The energy functional is continuous on the whole of Z(T', G).

Proof. Let py — py be a converging sequence. Firstly, if we assume that p; and
P are semisimple and that there exist a converging family ny — ne such that
(n¢, pt) € Y we can conclude at once by the proof of Proposition 2.3, since W2-
convergence implies convergence of the energies.

Secondly, suppose only that p; and ps, are semisimple, and let ny, be such that
(Neo, pos) € Y. Then there are g; € G such that p; = gipig; ' verify (ne, po) € Y.
Proceeding as in Lemma 2.4, a subsequence of this converges to some po,, which
is semisimple. Thus py is conjugated to po, since the quotient of semisimple
representations by conjugation is a Hausdorff space. Then E(p;) — E(po) follows
from the first point.

Now proceed to the general case. Without loss of generality, we may suppose
G = GL(n,C). Denote by pi* and pZ the corresponding semisimplifications, and
by {pi*} and {p5°} the closed points of Mp(M, G) they represent. Since the func-
tions on Mp(M,G) are generated by the traces, and trace(p;) = trace(p;®) con-
verges to trace(py) = trace(ps?), we have convergence of the closed points in
Mg (M, G). By the Kempf-Ness theorem [KN79], Mp(M,G) =~ p~(0)/K, with
p=1(0) € Z(I',G)*. Lifting the closed points to some p;*, which must then be
conjugated to p*, by properness of u=1(0) — p~1(0)/K, there is a subsequence
converging to some p53, which must be conjugated to p33, as well. Then we conclude
thanks to the second part and Lemma 2.4. O

Remark that, on the locus of the Zariski dense representations, these results are
trivially implied by the following:

Proposition 2.6 ([Cor91], Proposition 2.3). Let R be an irreducible component
of Z(T', @), and give its smooth part R°™ the C* structure induced by the reduced
structure on R. Denote by U the (possibly empty) open subset of R*™ such that
Image(p) = G is Zariski dense. Then, the restriction of 7 toY n (N x U) is
smooth, hence the same is true for the energy functional on U.
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3. FIRST ORDER DEFORMATIONS

Definition 3.1. A first order deformation v of a map f: M — N is a smooth
section of the bundle f*T'N.

We will often denote v by %| ,—o- Clearly, when f; is defined and smooth for

a real parameter ¢, this gives a class of examples of first order deformations v;
but interpreting ¢ as a formal parameter (seeing N as the set of real points of an
algebraic variety, and TN as the set of R[t]/(t?)-points of the same variety) we can
work in greater generality (e.g. allowing obstructions).

Definition 3.2. A first order deformation pgl) of po: I' = G is a representation

pgl): I' - TG projecting to pg via TG — G.

Here, T'G is given the group structure induced by G(R[t]/(t?)), where G = G(R).
Explicitly (see [BS72]), we can write elements of T'G as pairs (g,&) with g € G and
¢ € g, with the product structure (g,§) - (h,n) = (gh,§ + Adyn). Then we have
pgl) = (po, ¢) with ¢ a 1-cocycle of the adjoint representation, i.e. ¢: I' — g satisfies

0(777) = 0(7) + Adpo('y)c(n)'

Again, starting from a family p; of representations, we obtain its first order defor-
. . o4 _
mation by defining c(vy) = p{ggw ‘tzopo(w) L
We are interested in the following problem: Given a harmonic, pg-equivariant

map f: M — N and a first order deformation pgl) of pp, can we describe first

. . . . 1 o
order deformations which remain “harmonic” and “pg )-eqmvarlant” to the first

order? We first have to define such terms, introducing in passing auxiliary functions
F: M —g.

Definition 3.3. A first order deformation v of f is pgl)—equivariant if, and only if,
it is for the action of TG on T'N as in [BS72]. Explicitly, this writes

v(v2) = p(7)x0() + V7N (f(17), (7))
Definition 3.4. A function F: M — g is pgl)—equivariant if (f,F) is, under the
left action TG =~ G x g @ G x g/K = N x g. Explicitly, this means
F(vz) = Adyy () F(Z) + (7).

Lemma 3.5. If fi: M — N is a family of pe-equivariant maps, then %’t:o i
(1)

pgl)—equivariant. If F is a p; ' -equivariant function, defining v = Opn(f,F) gives

S

a pgl)-equivariant first order deformation of f.
The proof of both statements is immediate.

Definition 3.6 (See [Maz73],[EL83]). The Jacobi operator J: C*(f*TN) — C*(f*TN)
is defined in terms of a orthonormal local frame {E;} as

T ' =3 (Ve, Vi, + B (A(F)(E). 0)d(N(E)).

J

where RN is the curvature of the Levi-Civita connection on N. A first order
deformation v is said to be harmonic if 7 (v) = 0.
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Notation 3.7. Given a representation pp: I' — G and a harmonic pg-equivariant
map f: M — N, we will denote by V the vector bundle underlying the phls induced
on M as in Example 1.8. The corresponding local system will be denoted by
V = Ad(pg). Recall that in this case V = M xr g, and, slightly abusing notations,
we will write 8 € A}, (g) for the 1-form induced by § = f*Bx (so that what we
called 8 in Section 1 would be, in present notations, ad(/3)). For the sake of brevity,

can N

N
we will write (£, n) for the metric h(£,n). Recall that Sy oV = V o 8y, where V
is the pull-back connection of the Levi-Civita connection on f*T'N. It follows that
BnoJ = Jo BN, where J is defined as in (7). Coherently with Notation 1.11, we

may speak of projections §£p], ete.

Lemma 3.8. Let f: M — N be a family of harmonic maps, varying smoothly in

t. Then v = = |t=0 is a harmonic first order deformation.

Proof. We simply differentiate the identities 7(f;) = 0 covariantly along t. Write

N
for short % for V 25 then, with respect to a fixed local orthonormal frame {E,},

using the “symmegfy relations” (cfr. [dC92], Chap. 3, Lemma 3.4 and Chap. 4,
Lemma 4.1), we have:

D

N DN
Fr Z(VEsdft(Es))|t=0 = Z avEsdft(Es)h:O

S

= N \Ve SAfB),_y + RV (@F(E,). 0)df(B,)

= V5 Va0 + RY (B, 0Af (B, = —T (o).
[l

Remark that we can extend the definition of J in (7) to general function £ simply
can can

by defining A" = =31 Vg, V g,&.
Definition 3.9. A function F: M — g is called “of harmonic type” if J(F) = 0.

Then, defining v = Y7 (f, F') sends functions of harmonic type to harmonic first
order deformations: If J(F) = 0,

(T 0)) = (3w (0) = J(EW) = S 0,
since J respects the decomposition M x g = [¢] @ [p] = VT @ V™.

Notation 3.10. Let f be a pp-equivariant harmonic map, pgl) a first order defor-
mation of pg. We denote by w € H'(M,Ad(pg)) the harmonic 1-form represent-
ing the 1-cohomology class given by {c} € H*(I',g) =~ H'(M,Ad(po)). Keeping
the same notation as in 1.7, denote by h the Lie algebra of H, and remark that
h = HO(M,Ad(po)) is the space of global sections of Ad(pg); hence by point (5)
of Proposition 1.6, it splits in a direct sum which we denote h = h* @ P, since
bt =h'=hntandh~ =h* =hnp.

The main result on first order deformations is then the following;:
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Theorem 3.11. Let M be a compact Riemannian manifold, G an algebraic reduc-
tive group, G = G(R) the Lie group of its real points, p,(gl) = (po,c): m(M) > G a
first-order deformation of py and f: M — N a harmonic and po-equivariant map.
Then the set of pgl -equivariant F such that dF = w is non-empty; in fact, it is an
affine space over by, and every harmonic first order deformation v is constructed as
Yrn(f, F). More precisely, the map:

{ F: M —g : dF = w is harmonic } I { v e CP(f*TN) harmonic }

and F(yx) = Ad, (1 F(Z) + c(7) and pgl)-equivariant.

is affine and surjective, and corresponds to the linear projection on the associated
vector spaces:

b= H°(M,Ad(po)) — H"(M, Ad(po)) np = bP.

Remark that, since the isomorphism H'(M, Ad(po)) =~ H'(T,g) is induced by
integration, if F is of harmonic type and p\"-equivariant then ngo dF = ¢(vy) +
0(F(Zo))(7y), where ¢ denotes the group codifferential, hence necessarily dF = w.

The fact that pgl)—equivariant primitives F' of w exist, and that they form an affine
space over [ is a consequence of the following lemma:

Lemma 3.12. Let V be a fixed vector space of finite dimension, and 7: T' — GL(V)
a representation. Denote by V the associated local system and let ¢ € Z1(M,V) be
a closed 1-form (which we interpret as a T-equivariant closed 1-form on M); let
ze ZYT, V) be a 1-cocycle such that the cohomology classes of ¢ and z correspond
through the isomorphism HY(M,V) =~ H*(T', V). Then the set

(10) {F:MHV : dF = ¢ and F(’yi)zT('y)-F(:i)+z('y)}
is an affine space over VI = HO(M,V).

Proof. Taking any F' such that ¢ = dF', by equivariance the 1-cocycle zp defined
by zr(v) = F(yZ) — 7(v) - F(z) is independent of . By hypothesis, the cocycle
.

v if” ¢ = F(yZo) — F(Zo) is cohomologous to z; but it is also cohomologous to

zF, since:
F(yZo) — F(Zo) = zr(y) + 7(7) - F(Zo) — F(Zo) = zr(7) + 6(F(Z0)) (7).

Now if dF = dF = ¢, the difference between F and F is a fixed element v € V, and
the difference between zp and zz is the coboundary §(v). Hence we can find one F'
such that zp = z (that is, which is pgl)—equivariant) and the difference of any two
such choices must be I'-invariant, as claimed. O

Proof of theorem 3.11. The lemma gives the first part, hence the existence of at
least one harmonic pgl)—equivariant first order deformation v. To conclude the
proof, we only need to show that the difference of any two such deformations v, v’
is in h?. Equivariance implies that & = Sy (v—0") is Ad(pp)-equivariant; harmonicity
implies J(¢) = 0. Since J = d*d, an integration by parts give d(§) = 0. Hence
¢ € h. On the other hand, both Sy (v) and Sy (v") are sections of [p], hence £ € h?,
as claimed. Conversely, adding an element of h® to Sy (v) gives another harmonic

pgl)—equivariant first-order deformation, hence the space of such deformations is
affine over h? (and non-empty by the existence of F' above), as claimed. O
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Remark 3.13. One can easily prove that if X, X’ are Kahler manifolds and ¢: X' —
X is holomorphic, then the construction of theorem 3.11 is functorial under pull-
back by ¢ (i.e. the surjective arrow fits in a square diagram with ¢* as vertical
arrows). The only non-trivial part are harmonicity of f o ¢, which is classic (see
[ABC*196], chapter VI and [Lou99]) and of p*w (cfr. Example 1.15).

Example 3.14. We see readily that when G = C* is abelian one finds usual
abelian cohomology and harmonic functions. In this case D = D" is metric,
and a representation pg: I' — C* decomposes into a real and a unitary factor.
The logarithm of the former gives a 1-cohomology class on M, whose harmonic
representative may be integrated to give a harmonic map f: M — N =~ R. Then
J = A is the usual Laplace-Beltrami operator (up to a sign), hence functions F' of
harmonic type are just harmonic complex functions; the projection 97y of theorem
3.11 simply consists in taking the real part.

4. C-VHS AS CRITICAL POINTS OF THE ENERGY

Let f and pgl) be as above, and v a pgl)-equivariant deformation of f. Remark

- N
that the function defined on M by (Vv,df) is T-invariant: Applying Sy everywhere,
at a point vz it equals

1) (D (Adyy B () + e0)). AdyyB)_

Now the metric is -equivariant, hence the first summand reduces to (D" B (v), B>55,

N
which is exactly the value of (Vv,df) at Z. The second summand vanishes, because
Deare(y) Pl = —[3, ¢(v)[¥], whose scalar product with § equals the scalar product

of ¢(v)¥ with trace[, 5] = 0. Hence we can define:

Definition 4.1. Let v be a pgl)-equivariant first order deformation of f. We define
the energy of (f,v) as

E(f,v) = E(f) + tJM (Vo,df5dVol € R[E]/(12).

It is easy to see that when f; is ps-equivariant, the two definitions for %

coincide.

t=0

Proposition 4.2. Let v be a harmonic and pgl)-equivariant deformation of f.

Then, keeping the notations in 3.10, we have

OE(f,v)
T ’t:o = J-M <w, ﬁ>dVol

Proof. By Theorem 3.11, we have FI*l = gy (v), for some pgl)—equivariant F: M —
g such that dF' = w. By definition, then,

(w,BydVol = | ({(D*"F,3) + ([, F], B))dVol.
M M/T

Now the second summand vanishes since trace[B , B] = 0, as above. By orthogonality
of [p] and [€], then, the first one equals (D°** F?] 8% which is what we wanted. [J
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Example 4.3. When M = X is a Kahler manifold, the expression is independent
of the chosen metric in its Kéhler class. Denoting by €2 the Kéhler form in the
notations of Example 1.15, we can write the first variation of the energy as:

0F; 1 -
T 8= [ el n @ - 0) a0
(since *3 = (6% — 0) A Q"1 takes values in the anti-selfadjoint part of g® C). To

prove the closeness of trace(w A (0* — 0)), one simply observes that dw = 0 and
dg = d(6*) = [0, 0*].

From now on, let M = X be a Kihler manifold and G = K€ a complex group.
We want to analyze the critical points of the energy functional on the representation
space Z(I", G). We start by two easy examples:

Example 4.4. When G = C*, the formula of Proposition 4.2 is essentially trivial,
at least for smooth families of harmonic functions f;, since then w = %‘ o (
this case, B = dlog(f:)). Furthermore, when M = X is smooth projective, the
Dolbeault moduli space splits as Mpq (X, C*) = Pic’(X) ® HO(X,QL), so that
the C*-action (see [Sim92|, §4) defined by t - (V,0) = (V,t0) has as only fixed
points those with § = 0. These points are also the global minima of the energy
E(V,0) = |02, which are actually the only critical points. So, in this case, critical

points, global minima and C-VHS are synonymous.

n

Example 4.5. When X = ¥ is a Riemann surface of genus g > 2, the energy
functional has be intensively studied starting with [Hit87]. In that case, it is a
moment map for the circle action, hence the (smooth) critical points are exactly
those induced by a C-VHS. Remark that this implies the same for general smooth
projective X (with very ample metric): The energy can be expressed as E(V,60) =
§y trace(6 A0*) AQ"~! and the cohomology class determined by ©2"~! can be taken
as that of a smooth curve which is the complete intersection of n — 1 hyperplane
sections. Then Simpson ([Sim92], §1) proves the functoriality with respect to pull-
backs of the Higgs bundle associated to a representation and (loc. cit., §4) of the
fixed points of the C*-action with respect to restrictions to a complete intersection,
thus we can reduce to the case of curves.

Recall that when pg is induced by a C-VHS, there is a harmonic map fo: X —
Go/Ko induced by the period mapping ®o: X — Go/Vy. Suppose that f: X —
G/K is induced by this map (after some totally geodesic embedding Go/Ky <
G/K). Then, the vector bundle X x g on which the pull-back of the adjoint phls
lives has a Hodge decomposition of weight 0, X x g = (—Bp[g_m’]. Denote by ~
the infinitesimal generator of the circle action, that is a section of the subbundle
[0o] € X x g (here vy C & is the Lie algebra of V;). It is determined by:

(12) [1.6] = DJipe ", where £ = Y170, £ e [g ).
p p

Theorem 4.6. A smooth point of the moduli space M (X, Q) is a critical point of
the energy functional if, and only if, it is induced by a complex variation of Hodge
structure.

Proof. For the “if” part, let pg be induced by a C-VHS, and give Ad(pg) the metric
induced by the period mapping. Any tangent direction to {po} can be lifted to a
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pgl), hence giving rise to a harmonic 1-form w. Remark that since § € A0 ([g=1])
and 0* € A% ([g-~1]), (12) implies

(13) B=0+0%=iD"y—iD'~v = D.

Thanks to Proposition 4.2, we can then compute the variation of the energy along
that direction:

a_E‘ - J {w, Dy )dVol = J (D*w,~)ydVol = 0.
ot t=0 X X

For the “only if” part, consider the variation of the energy with respect to the
C*-action. Actually, we will work with the action of R.g only, since the energy
is invariant under the circle action; so take the family of Higgs bundles (V, ) for
t € (1—e,1+¢). The first order of this family corresponds to an element of the first
cohomology group of the complex (A*(V), D"); clearly, this element is represented
by 6 itself. Hence, the harmonic 1-form to which it corresponds (cfr. [Sim92],
Lemma 2.2) is w = 6 + D"n, for some n € C*(V). We obtain:

WL:O = L{ <w, 0+ 9*>dV01 = JX (<w, 9> + <gn’ 9*>) dVol.

Now the first summand equals the L2-norm of w, since the harmonicity of w implies
{{w, D"nydVol = 0; the second one vanishes, through an integration by parts, Stokes
theorem and the identity 00* = 0. Now by hypothesis the first variation of the
energy vanishes, hence w = 0. This implies § = —D"n = —[#,n]. Consider the
1-parameter group of automorphisms of V defined by ¢; = exp(¢n); then Adg, () =
e~t0. Thus, g (V,0) = (V, '), hence py is induced by a C-VHS. O

Remark 4.7. At singular points, we can define a critical point of the energy as a
representation such that {(w,3)dVol = 0 for all w € H*(X,Ad(py)). In that case,
the theorem holds without any smoothness hypothesis.

5. SECOND ORDER DEFORMATIONS
5.1. Equivariant and harmonic deformations.

Definition 5.1. A second order deformation of a map f: M — N is a pair of
tangent fields along f which we denote by

(vn:ot%‘ wngQ%‘
ot lt=o’ ot 0t =0

Through the canonical connection, this description is equivalent to taking a
section of the second jet bundle J2N, which is a homogeneous space acted upon by
the group J2G = G(R[t]/(t?)), that is in bijection with G x g x g and whose group
structure is, under this “right trivialization r”, (cfr. [Ber08], §23):

(15) (gagaﬂ) . (ha 77? V) = (gh,f + Adg(n)a ,U, + Adg(”) + [65 Adg(n)])

Definition 5.2. A second order deformation pEQ) of po (resp. of pgl)) is a repre-
sentation pEZ): I' — J2@ projecting to pg (resp. to pgl)).

(14) ) € F*(TN xx TN).

Through the above trivialization, we can write p§2) = (po, ¢, k). Then one ob-

serves that p,(f) is a deformation of pgl) = (po,c) if and only if k: T' — g makes
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the pair (c,k) a 1-cocycle for the adjoint action of I' on g ® R[t]/(t?), that is,
(c+th)(ym) = c(y) + th(y) + - (c(n) + th(n)), where

(16) 7+ (€ +tn) = Aduy ) () + £(Adyy ) (1) + [e(1), Ad o) (€)]).

Lemma 5.3. Keeping the same notations as in 1.11, define a map ¥ j25: N X g X
g— TN xnyTN by

ﬂJZN(na €a M) = (U = 19TN(na €)a w = 79TN (na n+ [g[E]a g[p]]))
Then the following diagram commutes:

J2G——=Gxgxg

l/K

JPrN Nxgxg

l”gﬂz\z

J?:N ——=TN xy TN

Proof. Starting from a n(t) = J?nx or~1(g,&, i), and recalling that the canonical
connection is given by D" = D — [, -], its image in TN xy T'N is (v,w) where
by definition Sy (v) = £ and By (w) is the projection to [p] of u — [ﬂ(%),f] =
w— [Bn(v),€]. In turn, this equals u — [¢[P] €[] which is the same as above. [

To define equivariant deformations (which are maps form M to TN xy TN),
either one follows the diagram of Lemma 5.3 to identify actions, or one works out
the formulas on the right hand side of the diagram only by considering a smooth
family f;: M — N of pe-equivariant maps and then checks that they match trough

¥ j2y; either way involves some computations. We limit ourselves to giving the
resulting formulas; the details can be found in [Spil3], §5.8.

Definition 5.4. A second order deformation (v, w) € C*(f*(T'N x yTN)) is called
equivariant if v is, as a first order deformation, and w satisfies:

w(yE) = po(7)sw ()
+ 0o (FG2), k() + 28 Adyy ) B (0(@)] + e )],

A function (F, Fy): M — g x g is called p§2)—equivariant if Fis pgl)—equivariant and

Fy(vZ) = Adyy () F2 () + [c(7), Adyo () F(E)] + k(7).

Definition 5.5. A second order deformation (v,w) of f is harmonic if J(v) = 0
and, in terms of a local orthonormal frame {E;},

J(w) = 4ZRN(df(Ej),U)%EjU.

Fix w as in Notation 3.10; then we define two operators Do : A’]D\Z (gxg) — A’;\;l (gx
g) and Dy 4: A}M (gxg)— A(J)\Z(g x g) and functions of harmonic type (F, Fy) by:

d d* F
D2 = (ad(w) d) ) DQ,* = (C’u*4 d*) ’ DQ,*DQ (FQ) = 0)
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where w*_. denotes contraction by the adjoint w* = wl®l — wl¥ of w: In terms of a
local orthonormal frame {E;} and for & € A}\Z (9),

w* _a =) (o) —a(E)Y, a(B;)].
J
Remark 5.6. The operator D actually defines a flat connection on M x g x g. The

contraction w* _ is defined so that for every V-valued 1-form « and every section £
of V, we have {[w,{], a) = (&, w* _ a).

The proof that if f; is a family of harmonic maps then defining (v, w) as in (14)
gives a harmonic second order deformation follows along the same lines as Lemma
3.5, covariantly differentiating the expression found for %T( f+) and using the local

N
symmetry condition V(RY) = 0 whenever needed.

Lemma 5.7. Let (F, Fy): M — g xg be p§2)-equivariant and of harmonic type.
Then defining (v,w) = O j25(F, F2) gives a p§2)—equivariant and harmonic second

order deformation of f.

Proof. The proof that equivariance conditions match is tedious but straightforward
(it is more agile to prove that Sy (w) has the same kind of equivariance as FQ[p] +
[FLE L] for details, we refer to [Spil3], §5.2). To prove that (v, w) is harmonic,
first observe that our hypotheses force dFF = w. Then, harmonic type condition
gives the following expression for J(F»):

(17) J(Fp) = Y [w(E)), Vg, F] —w* _w
J
(recall that D = D" — ad(f)). Writing w = D®"F + [3, F], and substituting
everywhere in (17), one gets
J(FQ[p]) _ J(Fg)[p] — 24[[5(E].)7F[P]], VEjF[P]] + Q[VEJ.F[E], VEjF[P]]
J
—2[[8(Ey), FU], [8(E;), F] .
Recalling that J(£) = —trace(Dd¢) and that J(F) = 0, we obtain:

J([F[e]vF[P]]) = 22[[5(];]_),}:[8]]7 [ﬂ(Ej)vF[p]]] 7 2[C%HE]-F[E],C%HEJ.F[F]]'
J

Adding the two expressions together one obtains exactly
v, FIP]
J(B(w) = 4 ) [[B(E)), P}, V g, FIPT].
J

O

5.2. Construction of F,. From now on, we are given a second order deformation
pg2) of pp and a harmonic and pg-equivariant f: M — N, and we try to construct

a second order deformation of f. By lemma 5.7, it is enough to construct a (F, F3)
both pg2)—equivariant and of harmonic type. Remark that the centralizer H (cfr.
Notation 1.7) acts on H'(M,Ad(po)) by conjugation. This action preserves the
subspace of harmonic 1-forms: Indeed, if w is harmonic and h € H n K it is easy
to see that Adj(w) is still harmonic (after reducing from f to fo, h € K becomes
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unitary). To conclude, as H = H°-(H n K ), we need only to prove that the adjoint
action of b preserves harmonic forms, i.e. that for every ¢ € h the 1-form [w,£] is
still harmonic. This follows as in the proof of point (5) of Proposition 1.6, since &
is both D"-closed and satisfies [3,£] = 0.

Denote by Ad(pgl)) the local system given by the adjoint action of ' on g ®
R[t]/(t?), as in (16). Then we have an exact sequence of sheaves:

(18) 0 — Ad(po) =5 Ad(p!") 2245 Ad(po) — 0.

Lemma 5.8. In the long exact sequence associated to (18), the image of the map
HO(M, Ad(pgl))) — HY(M, Ad(po)) = b is the subspace b’ < b made of those £ € b
such that [w,&] = 0.

Proof. The condition for £ + tu to be a global section of Ad(pgl)) is that £ € h and
Ad,,(yp = p—[c(),€]. This last condition can be rewritten as [c, &] = d(u), where
0 denotes the coboundary in group cohomology. This means exactly £ € . 0

Suppose we already have (F, F») that is both p,EQ)-equivariant and of harmonic

type. Then we can define a 1-form ¢ = (F, Fy) € AL, (V) as

()= (5) = (an ti )

By flatness of Dy and harmonic type condition we obtain equations for :

(19) Ay = —w* Jw =23 [w(B)Y, ()P € (M, [p]).

Thus the existence of a solution to (19) is a necessary condition for the existence
of (F, Fy). We shall prove that it is also necessary (cfr. Proposition 5.10). First of
all, we investigate on uniqueness:

Lemma 5.9. Let (F,Fy) be p§2)—equivariant and of harmonic type. Then every
other (F', F3) both p§2)—equivariant and of harmonic type write as:

(20) (F',Fy) = (F+ & Py + [F.€] +1),
(2)

where €, n are in . Conversely, every such expression gives a p;  -equivariant
function of harmonic type. In particular, the 1-form ¢ = (F, Fy) is unique if and
only if h = 1.

Proof. One checks readily that (F', F3) defined as in (20) is both equivariant and
of harmonic type (for the latter, one finds that ¢(F’, F}) = ¢(F, F2) + 2[w, ] and
uses that [w, ] is harmonic). Theorem 3.11 states that necessarily F' = F + £ for
some ¢ € . One then reduces to F' = F”, in which case Fy — F}: M — g becomes a
(po, k)-equivariant map of harmonic type, and one applies again the same theorem.
The condition for uniqueness of v is that for every £ € b, [w,&] = 0,ie,h=0. O

Now we investigate the existence of a solution to (19). It is well known (cfr.
[GMB88], §4.4) that the condition for [w,w] to be null in cohomology is implied by
the representation pt1 extending to the second order to some p§2). Thus, under our

hypotheses, we can always find at least a solution to the first equation of (19). Also
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remark that by Hodge theorem on Riemannian manifolds the self-adjoint operator
J determines an orthogonal splitting

C*(V) = h @ Image(J),

since h = ker(d) = ker(d*d). Furthermore, this splitting is compatible with projec-
tions to [p] and [¢], by point (5) of Proposition 1.6. We can now prove the main
result about the existence of (F, F»):

Proposition 5.10. The following are equivalent:

(1) The system of equations (19) admits a solution;

(2) The section w* _ w e C*(V) is orthogonal to b;

(3) The harmonic 1-form w is a critical point for the L?-norm in its H-orbit;

(4) There is a pair (F, Fy) which is both p§2)—equivariant and of harmonic type;

(5) Every F': M — g both pgl)—equivariant and of harmonic type extends to a
(F, Fy) as in point (4).

Proof. Let £ be in h. Then, if ¢ is a solution to (19), (w* _w,&) = —(,d&) = 0,
hence (1) = (2). Furthermore, since (w* _ w,§) = *%%HAdexp(tg) (w)Mt:O, we
have (2) <= (3). The implication (4) = (1) is the definition, and (4) <= (5) is
Lemma 5.9. We are left with proving that (2) implies (4). Start from an FO: M — g
that is both pgl)—equivariant and of harmonic type, so that dF® = w. There exists
a g-valued 1-form w9 such that w + twY is closed, Ad(p{")
c+tk (i.e. the classes represented in H!(M, Ad(p{")) by w+tw§ and c+tk coincide).
Define two V-valued 1-forms 1%, v by:

Y0 =wd — [F°w], o =v"+dn where J(n) = —w* _w—d*y°

-valued and it represents

(such an 7 exists because —w* _ w € h' = Image(J) by hypothesis). Then v
satisfies (19), and letting wy = w) + dn, again w + tws is an Ad(pgl))—equivariant,
closed 1-form that represents ¢ + tk. We apply lemma 3.12 with this 1-form as ¢
and 7 = pgl), to construct a F + tFy: M — g @R[t]/(t?). This pair (F, F3) is then
pEQ)-equivariant and of harmonic type. O

Remark that by the usual theory of moment maps (cfr. [Kir84], Part 1), when
G is a complex group, defining the moment map p(w)(&) = —% §, {[£,w], w)dVol
for ¢ € b, we find that point (3) can be strengthened to “w is a minimum of the
L?norm”. Such a minimum exists if and only if w is a polystable point of the
action.

5.3. Existence of w. We have discussed the existence of an equivariant pair (F, F)
of harmonic type, since its existence would imply the existence of a harmonic and
equivariant second order deformation w. Now we investigate the existence of w
directly. For the sake of brevity, we introduce the following terminology (the reason
of which will become clear in Proposition 5.12).

Definition 5.11. A map f: M — N is deformable along pgl) = (po,c) if there
exists second order deformations p§2) of pgl) and (v, w) of f, the latter being p§2)—
equivariant and harmonic. It is called C-deformable if there exists a p§2) as above

and a p§2)-equivariant (F, F») of harmonic type.
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We claim that the existence of these objects only depends on f and pgl) only (i.e.
not on the chosen p§2) nor on the first order deformation of f). That the existence
of F; is independent on the F' chosen, is lemma 5.9. The fact that the existence of

w depends on pgl) only has a similar proof: If p,EQ) and /3,(52) are two second order

deformations of pgl), then the equations for the corresponding w and w are such that
w—w is a (po, k — k)-equivariant first order deformation, hence we apply theorem

3.11. Now fix p,EQ), and suppose that there exists a second order deformation (v, w)

of f. Let v' be any other pgl)—equivariant harmonic first order deformation of f.
Then there exists a £ € b such that v = dpn(f, F) and v/ = drn(f, F + ). One
checks easily that

w' = w+2[FI, €]+ [¢F, €7

makes (v/,w’) into a p§2)—equivariant harmonic second order deformation. This

concludes the proof that Definition 5.11 is well posed.

In the following, suppose that G is a complex algebraic group. Recall that in
this case multiplication by ¢ anticommutes with adjunction, since i[¢] = [p]. Then
we have:

Proposition 5.12. Consider the two first order deformations of po given by pgl) =
(po,c) and ﬁgl) = (po,ic). Then [ is C-deformable along pgl) if and only if it is
along ﬁgl). Furthermore, this is equivalent to f being deformable both along pgl)

and ﬁgl).
Proof. Since (iw)* = —iw*, we have (iw)* _ (iw) = w* _w. Thus the condition (2)
of Proposition 5.10 is invariant under passing from pgl) to ﬁgl). In alternative, one

can explicitly compute that if p,EQ) = (po, ¢, k) is a second order deformation of pgl),

then 5,52) = (po,ic, —k) is one of ﬁgl), and if (F, Fy) are what we seek the former,
then (F, Fy) = (iF, —F, —n) are for the latter, for any n such that J(n) = 2w* _ w.

To prove that if f is deformable along both directions then it is C-deformable,
suppose that (v, w) are defined along p,EQ) and (9, w) along /3,(52) (defined as above).

A long but straightforward computation, then, proves that defining

—n = Bn(w) + 2i[Bn (D), Bn (v)] + B (D)
then J(n) = 2w* _ w, as claimed. O

So far, we do not know of any example of a deformable f which is not C-
deformable. There are, however, plenty of obstructed (i.e. not deformable) first
order deformations:

Example 5.13. Consider the trivial representation pp: I' — SL(n,R) and a sec-
ond order deformation p§2) such that ¢ and k are strictly upper triangular. The
metrics f: M — N = SL(n,R)/O(n) are constant maps, hence § = 0 and the
canonical connection is just flat differentiation. A short computation proves that
d* is independent of the chosen metric and A = d*d is (up to sign) the usual
Laplace-Beltrami operator on M. Thus harmonic first and second order defor-
mations Sy (v), By(w) are just matrices with harmonic functions as entries. If
f, [ = g- [ are two metrics, with g € GG, ones sees easily that multiplying by ¢
sends (po, ¢, k)-equivariant and harmonic deformations of f to (pg, Adgy(c), Ady(k))-
equivariant and harmonic deformations of f’, so we can suppose f = eK; in this
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way, Oy (v) and By (w) are symmetric matrices. Writing down explicitly the equiv-
ariance conditions, we obtain, for example for the first component wq1 of w:

n

w11 (YZ) = w11 (T Z V) Fi;(z

[\3|H

Z A(wll) = 0,

where \;;(y) are the components of c¢(y) and Fj; is the (i,7)-th component of
the upper triangular matrix F with dF = w (whose symmetrization is Sy (v)).
However, one sees readily that this is the same kind of equivariance as that of
13" | F;(+)?, which is subharmonic. Thus the difference 1 37" | Fi(-)2 — wy; is a
subharmonic function defined on M, which is compact, hence constant. It follows
that £ 3.7 | F;(-)? is harmonic, as well, which forces it to be constant and all of the

A1,j’s to vanish. Proceeding inductively on the other diagonal members wj;, one

eventually finds out that, unless ¢ = 0, no p( )

deformation can exist.

-equivariant harmonic second order

Clearly, the same proof works with SL(n,C) in place of SL(n,R), but in any of
these examples if f is not deformable along (pg,c) then it is not along (po,ic) as
well. Some other example has to be investigated in order to find a deformable non
C-deformable f.

5.4. Conclusions. To conclude, we collect the main results in the following theo-
rem, and then we investigate the conditions on pgl) for which every pg-equivariant

metric every is deformable to the second order.

Theorem 5.14. Let pEQ) (po, ¢, k) be a second order deformation of po, and f
a harmonic metric. If one of the equivalent conditions in proposition 5.10 holds,
then the map

. F p(2)-equivariant v ( )—equwarzant
19J2N . t .
F> ) of harmonic type w and harmonic
F
(Fz) — (%zv(f, F), 97N (f, F2 + [F[E],F[P]]))

is surjective, and in fact every pgl)-equivariant and harmonic first order deforma-

tion (f,v) extends to a second order p§2)-equivariant and harmonic (f,v,w). When
G is a complex algebraic group, the condition above is equivalent to the existence of
two harmonic and equivariant second order deformations, one along (po,c) and the
other along (po,ic). In this case, up to changing f to h=1f, for some h € H, the

condition can be satisfied if and only if the orbit H - w is closed in H'(M, Ad(po)).

Proposition 5.15. Let G be a complez algebraic group and pgl) a first order defor-
mation of pg. Then the following conditions are equivalent to every pg-equivariant

f: M — N being C-deformable along pgl):
(1) The R[t]/(t2)-module HO (M, Ad(p{")) is flat;

(2) There is an exact sequence in cohomology:

mod ¢t

0 — H(M, Ad(po)) = HO(M, Ad(p{")) 2225 HO(M, Ad(po)) — 0,
i.e. h =0 (otherwise said, the orbit H -w < HY(M,Ad(po)) is discrete).
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Proof. We start by proving that (1) <= (2). The only non trivial ideal of A =
R[t]/(t?) is (t), so writing M = H°(M, Ad(pgl))), flatness is equivalent to the
injectivity of () ®4 M — M, that is, to the preposition:

Vine M, t®tn=0¢ (t)®a M.

Now t®tn = 0 in (t) ®4 M if and only if n € M, while tn € M is equivalent to
7 € h. Thus flatness is equivalent to h < M, as wanted. Then, if we assume point
(2), that is, h = §’, we have [w,£] = 0 for all £ € b, hence {(w, [w,&]) = 0. Thus
w* L w L b, and Proposition 5.10 implies C-deformability.
To prove the converse (namely that flatness is also necessary for the C-deformability

of every metric), we make use of the theory of moment maps. By hypothesis, w
must be a critical point for every metric; since the metrics are of the form A - fy, for
a fixed fo and h € H, this is tantamount to saying that Ad,(w) must be critical in
the norm induced by fy for every h, that is, that the orbit has constant L?-norm.
But the minimal locus is also a (H n K)-orbit, hence we get H = (H n K) - H',
where H' is the subgroup of H fixing w (its Lie algebra is thus b’); at the level of
Lie algebras, h = h* + b’. Furthermore, we know that h’ = (h' n b*) @ (§’ n b?)
is a reductive and complex Lie algebra. By elementary linear algebra, these facts
together imply that h = b’ O

6. THE SECOND VARIATION OF THE ENERGY FUNCTIONAL

Let p§2) be a second order variation of pg, and suppose that (v,w) is a p§2)—

equivariant second order deformation of f. Remark that, given a local orthonormal
frame {F,}, the expression

(Vw,df + S (RN (af(By),v) v df (E)) ) + Vo

is I-invariant. The proof follows the same lines as for (11) (for details, see [Spil3],
Lemma 6.1.2).

Definition 6.1. The energy of a p§2)—equivariant second order deformation (f, v, w)
is defined as:

E(f,v,w)=E(f)+ tJ-<Vv,df>+
(21) §J<%w,df> + Z<RN(df(Ej),v)v,df(Ej)> T [Vl

Again, one sees directly that when (v, w) are induced by a smooth family f;, this
coincides up to the second order with E(f;). Applying Sy to every term in (21),
we find the alternative expression for the second order:

PE(f,v,w

. or? )Lo B f<C%HﬁN<w>,B> + B sy @I + |V FPI?

Proposition 6.2. Let p§2) be a second order deformation of po, and suppose that

(v,w) is a second order deformation of f induced by a pEZ)-equivariant (F, Fy) of

harmonic type as in Theorem 5.14. Set 1) = 1)(F, Fy); then, the second order of the
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energy E(f,v,w) may be written as:

°E
(23) Sl = JM W, B) + w2,

Proof. Recall that, using Notation 1.11, the relation between (v, w) and (F, F3) is:
(24) Br(v) = FW; By (w) = B 4 [F1Y, FIT).
Since wlPl = Deanplel 4 (3, FIH], we have

Jwle)|? = HC%“F[;:] I? + (3, Ft) + 2<C%“F[p], 6, FI]).
Thus, comparing (22) to (23), we are reduced to proving that

(25) (VB (w), By + 1B, Bx (0)]|2 = (b, By + |[B, FU|2 + 2(V FI¥), [, FLE),
Using D" Fy + [, Fy] = DFy = ¢ + [F,w] and (24):
[p]

can

Vion(w) = (¢ + [Fe] =[5, F]) +[VFU,FE] 4+ [PV FR)

Substituting this expression into (25), and writing w = D" F + [B, F] in terms of
FI¥ and FIP] gives the result (remark also that {[f, F3], 8) = 0 as in the proof of
Proposition 4.2). O

The fact that when M = (X, ) is a Kdhler manifold the expression in (23) is
independent of the metric chosen in its Kéhler class follows from the next lemma
(which implies the analogous statement for the first order, too).

Lemma 6.3. Let oy, as be two g-valued 1-forms on a compact Kdhler manifold
(X,Q), and suppose that at least one of them takes values in the subbundle [p].
Then their L? product

(26) | Ganany 0n = [ ar nsan)

is independent of the metric chosen in the Kdhler class €.

Proof. Without loss of generality, both a; and «s take values in [p]. Hence as =
© + ¢*, where ¢ is the (1,0)-part of as. We get xas = (p* — ) A Q1. Thus,
up to some constant, (26) is § trace(a; A (¢ — ¢*)) A Q"1 We are only left to
prove that trace(ay A (¢ — ¢*)) is a closed 2-form. Now ¢ — ¢* takes values in
[€C] = [E@ip], the anti-selfadjoint part of g® C. Then, by orthogonality:

trace(d(al A (o — @*))) = trace([ﬂ,ozl] A (o — gp*)) ftrace<a1 A [ﬂ, (p— gp*)])

Combining the cyclic symmetry of the trace with the basic symmetry for every two
1-forms [/, o] = [@”, /], this expression vanishes. O

Example 6.4. Continuing the case G = C* from Example 4.4, one sees that in

that case ¥? is simply %;‘ thus equation (23) becomes the following trivial

=0

expression:
?E(t) 0,08 - 25, . 0B I?
at2 =0 - J;{ & %a ﬂt> t=0dV01 = JX << 6t2 t=075> + ’E o )dVOI
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6.1. Plurisubharmonicity of the energy.

Definition 6.5. The Betti complex structure on the tangent space Z1(T', g) to the
representation space Z (', G) at po is defined, for every 1-cocycle ¢, by Jg(c) = ic.
The metric on the same tangent space is given by the L? scalar product of the
corresponding harmonic representatives in H*(M, Ad(po)).

Theorem 6.6. The energy functional is a Kdhler potential for the Kdhler structure
on the moduli space Mg (M, G). In particular, the energy functional is plurisubhar-
monic on the smooth points of Mp(M,G), and thus defines a plurisubharmonic
function on the normalization of the moduli space.

Proof. For the consequence on the normalization, see the argument in [FN80], sec-
tion 3. Let a% € T,,Hom(T', G) be a tangent direction to the representation space,
and define as usual % =J Ba%' Then we need to prove that
we(z5) = (G ap) o= 15l
oz’ Oy 0x2’ 0y? ox
In the same notation we have used so far, this reduces our proof to showing that,
for every harmonic map f deformable both along % and along J B%, we have

& 9 2) f ,
— + |JB= E = w||“dVol, = 0.
(52 + (05) ) B = [ elpavel

By Theorem 5.14, f is C-deformable, hence (v,w) = ¥ j2n(F,Fs) for some
(F, Fy). As in the proof of Proposition 5.12, if n is such that J(n) = 2w* _ w,
then the pair (F', F3) = (iF, —F3 — n) induces the deformation along (po,ic). The
corresponding 1-form is ¢¥(F’, F3) = —1) — dn. Thus we compute:

(% * (‘]B%)2>E(ft) = J@),ﬂ} + Hw[p]||2 + (=t — dn, B) + | (i) ¥] H2
= f!lw“’] I? ~ ¢dn, By + [iw®]* = f ]2,

since d*3 = 0 is one way to express the harmonicity of f. O

Remark 6.7. It is a well-known consequence of Uhlenbeck’s compactness theorem
that the energy functional is proper on Mp (M, G); this fact, combined with Theo-
rem 6.6, gives another proof that Mp (M, G) is Stein.

6.2. Positivity of the Hessian of the energy. Recall that Hitchin [Hit87] con-
structed the moduli space of solutions to the self-duality equations on a Rie-
mann surface ¥ as the quotient of the infinite dimensional affine space A x Q01
where A is the space of flat connections on a principal bundle P (modeled on
AL ad(P)®C)) and Q%! = A%1(2, ad(P)®C). Tangent vectors to the moduli
space lift to pairs (A, <I>) belonging to the associated vector space. One can see
easily that in our notations a direction determined by w corresponds to

(27) A= (W) @ = (),

where a = o/ +a” stands for the (1,0) and (0, 1) parts of a 1-form a and al* is such
that al*(y) = a(x)!¥! for real tangent fields x € Z(X) (for the case of G = C*, cfr.
[GX08] §4.2 for this passage “from harmonic coordinates to Higgs coordinates”).
For general Kiihler manifolds X, we will take (27) as a definition of A, ® and we
aim to generalize the result in [Hit92], §9. What we prove is the following:
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Theorem 6.8. Let G be a complex algebraic group, and suppose that py: I' — G
is representation which is induced by a C-VHS (i.e. a critical point of the energy).
Denote by fo: M — Go/Ko c G/K the map induced by the period mapping, as in
Notation 1.7. Then, denoting by (A, q)) a tangent direction to the moduli space and
by g = Pla~??] the Hodge structure on M x g, along C-deformable directions we
have

E(ft)

(28) pYe

t=

0 QJXZ ( —pl A" + (1 - p)H(ifp*pHQ)dvoL

Corollary 6.9. If we suppose further that the deformation takes place in Go only,
that is, that w € A'(go), then the following more convenient expressions are avail-
able (the last two are in terms of the weight 1 Hodge-Deligne (P, Q)-decomposition
of HY (M, Ad(po)), cfr. [Zuc79]):

PE(fr) ) D, if p is even,
o lizo ZQJ 2al@) ™ e =4 fp is odd
= x5 —p, if pis odd.
= Z cp|wP|? = f Z 2P||w P2,
X P+Q=1 X P even

Proof. Equalities between all the stated expressions follow from the hypothesis of
w being real (i.e. in gg) by making use of

o™ = )72 + )77 = )™+ =2
and [[(W")P P2 = (@) PP O

Corollary 6.10. In the moduli space Mp(X,PSL(2,R)), at every critical point the
Hessian of the energy is semipositive definite.

Proof. At every such point, either the energy is zero or we have v € [g°°] and

0 e AY%([g711]), and since g has complex dimension 3, there can be nothing in
[07PP] for |p| = 2. Thus any expression in Corollary 6.9 proves the claim. O

Definition 6.11. Suppose f to be induced by a C-VHS as above, and let v be a
pgl)—equivariant and harmonic first order deformation of f. We say that v is C-VHS

to the first order if d3(v) € AM0([g=1]), since I8y (v) = %9t|t=o'

One can see easily that this is the first order condition for 8; = (df: - ftfl)[lﬂ] to
remain in AM0([g~ 1)) @ A% ([g51)).

Corollary 6.12. Let pg be induced by a C-VHS, and denote by Gy its real Zariski
closure. If pg is of Hermitian type, then the Hessian is semipositive definite along

Mg (X, Gy). The directions along which it vanishes are exactly those which are
C-VHS to the first order.

Proof. By Corollary 6.9, since the Hodge structure on g has only weights +1 and
0, the second variation is 4 { |(w")"~1||*dVol. Now w(0;) = 0;F + [0(d;), F], the
second summand of which must take values in [g=*1] @ [g®°], hence it plays no
role in [(w")V~1|2. Thus

D
w(@)' Tt =0Ft T =0 = Eet e oFPl ¢ Al,O([g—M]).
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Lemma 6.13. Let p§2) be a second order deformation of py a representation, sup-
posed to be induced by a C-VHS. Let f be induced by the period mapping, as above,
and suppose that it is C-deformable along pgl). Then, the second variation of the

energy reads

32E(ft)‘

(29) pr

= [p]||2

o= | (i) + o) avol

Proof. Thanks to the Kahler identities (cfr. [Zuc79] or [Sim92]), equation (13) and
the identity di¢p = —[w,w] in (19), we have

Jaw.8y " [ Do) = [0 2 [¢-[A oy 2 [cAlwo,wl .
O

Proof of Theorem 6.8. Denote as usual by Gp the monodromy group, and denote by
Gg its complex Zariski closure. By hypothesis, pg being induced by a C-VHS means

that there is a faithful linear representation G5 < GL(r, C) such that the resulting
vector bundle V = (X x C")/T supports a C-VHS; we give End(V) = (X x gl,,(C))/T
the induced C-VHS structure of weight 0. Then we know that G is the intersection
of G§ with the subgroup U(p,q) of GL(r,C) respecting the polarization, and that
if we set &, = un @,_g0 " and py = un @H,_,9 PP we obtain a Cartan
decomposition for u. We define € = ¢, ®ip, and p = p, Pk, for the induced Cartan
decomposition on g. Then since f takes values in Gy/Ky, every two terms of the
decomposition g = &, @ p, P ik, @ ip, are orthogonal with respect to the metric on
X x g, which is twice the real part of the Hermitian extension (-, )¢ of the metric
-,y induced on u by f. Taking an adequate faithful representation, then, we can
suppose without loss of generality that g = gl,.(C).

Fix a local orthonormal frame on X of the form {a%, o
J

— ;0 i
i }, and write for

brevity (dropping the j in the notation):

0 , 0 .

w<a—) =&+ iy w(—) =m +inz, &8, m,p2EU
Z; 0y;

Write & = > & for the projection & € [g7"P] (which is no more in u), and

similarly for the n’s. We aim to prove that both (28) and (29) reduce to:

[ S (rrwmn(@ e - @) + X ez + 20z
) p p=1

(30

+ Y 2z + QIUQI%)dVol.
p=0

Indeed, the first term of (29) equals the term in (30) involving the imaginary part,
and the second one the part involving the squares. The latter claim is proved
explicitly by computing [w(?]|2 = 33 [&)|> 4 [ (i€2) U012 4+ i1 + [ (imz) %
and using that [p, @ ipu] = @,—;[g77"] to get the result. The former is a bit
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longer; first of all, {(A[w,w], ) equals:
| Re(( =206+ me + ilea = m). [ (62 = e+ (62 + m)) D)
X
@) =2 o g D+ o= et —mDe

(here we have disregarded the purely imaginary terms and the last expression is,
in fact, real). Remark that, & being real (that is, in u), & = Zp(—l)p“«ff, and
similarly for &, n¥ and n3; thus:

1) =2 [ F-1rin(( e + e + e + e )
+ D170 e — e — G e+ (il B)e ).

Since the result must be real, the terms (&7, &5 ). + (&5, €7 ). (and the respective
ones for the 7’s) cancel out. This finishes the first half of the proof.

To prove that (28) equals (30), the usual relations between Cartan and Hodge
decompositions give

471" = 007l = 23 I+ il + 3, 68—l

62| = [ubl(20y) o~ Z i+ gl + 3 et — il
p=1

Substituting into (28) and using the identity |a + ib|Z = |a|2 + 0|2 + 2Zm{a, b)c,
we get:

23 - p([117 + [nR12 + 2Zmdeh by ) + (1= p) (512 + [ + 22mnt, €8 )
+2 ), (|2 + 812 + 2Zm(eB, ) ) + (1 =) (JF12 + 2 + 2Zmn? €0 )-
p=1

Finally, as & is real, [|€7|2 = |& 7|2, so that summing over positive and negative
p’s cancel out (and similarly for the other norms). For the same reason, the terms
of the form Zm{&%, nb ¢ cancel out unless they are multiplied by p. Removing the
vanishing terms gives (30). O

Remark 6.14. Avoiding technical complications, the same ideas in this proof can
be used directly to prove Corollary 6.9 for variations inside gg only; the resulting
computations simplify significantly (cfr. [Spil3], Proposition 6.3.4).
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