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DEFORMATIONS OF TWISTED HARMONIC MAPS AND

VARIATION OF THE ENERGY

MARCO SPINACI

Abstract. We study the deformations of twisted harmonic maps f with re-
spect to the representation ρ. After constructing a continuous “universal”
twisted harmonic map, we give a construction of every first order deformation
of f in terms of Hodge theory; we apply this result to the moduli space of
reductive representations of a Kähler group, to show that the critical points of
the energy functional E coincide with the monodromy representations of polar-
ized complex variations of Hodge structure. We then proceed to second order
deformations, where obstructions arise; we investigate the existence of such
deformations, and give a method for constructing them, as well. Applying this
to the energy functional as above, we prove (for every finitely presented group)
that the energy functional is a potential for the Kähler form of the “Betti”
moduli space; assuming furthermore that the group is Kähler, we study the
eigenvalues of the Hessian of E at critical points.

Introduction

Harmonic maps have a long history which dates back at least to 1964, when
Eells and Sampson [ES64] proved the existence of a harmonic representative in
every homotopy class of maps between compact manifolds of appropriate curvature.
Precise results about uniqueness and the variation of the energy have followed, in
[Har67] and [Maz73], respectively. It became evident that harmonic maps enjoy
especially good properties if one supposes in addition the starting manifold X to
be Kähler; this is resumed in the Siu-Sampson Bochner’s formula, [Siu80, Sam86],
which implies that the harmonic map is in fact pluriharmonic.

While these concepts were perfectioned, Hitchin and Donaldson [Hit87, Don87]
constructed the moduli space of Higgs bundles over a Riemann surface Σ and proved
it to be homeomorphic to the moduli space of representations of (a central exten-
sion of) the fundamental group of Σ. Thanks to the existence theorem for twisted
harmonic maps proved by Corlette [Cor88], Simpson [Sim92, Sim94] was able to
extend the results to higher dimensional projective manifolds X : The harmonic
metric constructed by Corlette gives a homeomorphism between the moduli space
MBpX,Gq of reductive representations of Γ “ π1pX, x0q intoG and the moduli space
MDolpX,Gq of G-Higgs bundles (which are assumed polystable and with some van-
ishing of the Chern classes). Our purpose in this paper is to study the infinitesimal
behavior of the harmonic mapping with respect to the parameter ρ P HompΓ, Gq;
we apply this analysis to the infinitesimal study of the energy functional, which is
defined on MDolpX,Gq as the squared L2-norm of the Higgs field θ, and has so far
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2 DEFORMATIONS OF TWISTED HARMONIC MAPS

been used intensively to study the topology of the moduli spaces in the case of a
Riemann surface Σ (cfr. [Hit87]).

Let M be a closed, orientable Riemannian manifold and Γ “ π1pM,x0q; the
manifold will be denoted by X if we further suppose it to be Kähler. Let G “ GpRq
be a reductive linear group, K ă G be maximal compact, and N “ G{K. If

ρ0 : ΓÑ G is a representation, we shall identify metrics on pV , Dq “
`

pM̃ˆRrq{Γ, d
˘

with ρ0-equivariant maps f : M̃ Ñ N , where M̃ ÑM is the universal cover. Then,
df naturally identifies with a g-valued 1-form β, such that D “ Dcan ` β is the
decomposition into metric and self-adjoint parts (cfr. Proposition 1.6). Recall that
f is harmonic if and only if Dcan˚β “ 0, and in this case, if M “ X is Kähler, then
β “ θ ` θ˚ and pV , θq gives a Higgs bundle.

We start by proving the existence of a continuous family of harmonic metrics,
and the continuity of the energy functional (which, at reductive representations,
where a harmonic metric f exists, is half the squared norm of df). Fix a point

x̃0 P M̃ . Then Corlette’s theorem [Cor88] grants the existence of a well defined
map

H : Y ˆ M̃ Ñ N,

where Y Ď N ˆ HompΓ, Gq, such that H pn, ρ, ¨q is the unique ρ-equivariant har-
monic map with H pn, ρ, x̃0q “ n. We then prove (cfr. Proposition 2.3) that Y
is closed and H is a continuous map. Then, showing that the energy of a repre-
sentation equals the energy of its semisimplification, we conclude that the energy
functional is continuous on the whole of HompΓ, Gq (Proposition 2.5).

The local study we carry through goes as follows: There are natural definitions of
infinitesimal deformations of a representation ρ0, induced by the group structures
of TG “ GpRrts{pt2qq and J2G “ GpRrts{pt3qq, which can be rephrased as 1-

cocycles in group cohomology. Analogously, deformations of a map f : M̃ Ñ N are
naturally sections of the pull-back bundle f˚TN . We introduce the concepts of
harmonic and equivariant deformations pv, wq (with respect to a deformation of the
representation ρ0) in Definitions 3.3, 3.6, 5.4 and 5.5. We investigate the existence
of such deformations, aiming to give a way to construct them. This is completely
done in the first order case, and we prove:

Theorem A. Denote by c the 1-cocycle corresponding to a first order deformation
of ρ0, and by tcu P H1pΓ, gq – H1pM,Adpρ0qq the corresponding cohomology class
(where Adpρ0q is the local system on M of fiber g). Let ω P H1pM,Adpρ0qq be

its harmonic representative. Take any F : M̃ Ñ g such that dF “ ω and that
F pγx̃q “ Adρ0pγqF px̃q`cpγq and project it via the natural map NˆgÑ TN . Then,
we obtain a first order deformation v, which is harmonic and pρ0, cq-equivariant;
all such deformations are obtained in this way.

Thanks to this result, we are able to express the first variation of the energy at
ρ0: Along the deformation determined by ω, it becomes (Proposition 4.2):

(1)
BEt

Bt

ˇ

ˇ

ˇ

t“0
“

ż

M

@

ω, β
D

dVol.

In his paper [Hit87], Hitchin investigated the case of rank n degree d vector
bundles on a Riemann surface M “ Σ with pn, dq “ 1. This forces the moduli
space to be smooth and projective; he then proves the energy functional E to
be a moment map for the S1-action t ¨ pE , θq “ pE , tθq, which gives a matching
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between critical points of E and fixed points of the action (these are in turn the
so-called “complex variations of Hodge structures”, and their ubiquity makes them
intensively studied - cfr. [Sim92] for a definition and proof of the ubiquity). Using
(1), we can prove the following:

Theorem B. The critical points of E are exactly the representations induced by
polarized complex variations of Hodge structure.

Here for critical points we mean those such that BEt

Bt

ˇ

ˇ

t“0
“ 0 along all directions

c P Z1pΓ, gq; at smooth points, this coincides with the usual definition.
The study of second order deformation is made harder by the presence of ob-

structions. It is well known (see [GM87]) that the obstruction for a first order
deformation of ρ0 to be extended to the second order lies in the existence of an
Adpρ0q-valued 1-form ψ on M such that

(2) dψ “ ´rω, ωs.

We have to ask such a ψ to satisfy one more equation in order to assure the existence
of a deformation of the harmonic metric to the second order, but this actually grants
a little more:

Theorem C. Suppose that G is a complex group. Then the following are equivalent:

(1) There exists a Adpρ0q-valued 1-form ψ satisfying both (2) and d˚ψ “
´

ř

jrωpEjq
˚, ωpEjqs, where tEju is a local orthonormal frame and ˚ de-

notes adjunction with respect to the harmonic metric;
(2) The harmonic 1-form ω is a minimum of the L2-norm in its own orbit in

H1pM,Adpρ0qq under the adjoint action of H “ ZGpImagepρ0qq;

(3) There exists a map pF, F2q : M̃ Ñ g ˆ g which is both equivariant and of
harmonic type (cfr. Definitions 5.4, 5.5);

(4) There exist two second order deformations pv, wq and pv1, w1q of f , both
harmonic, one equivariant along (some second order extension of) pρ0, cq
and the other along pρ0, icq.

Furthermore, any of the points above is true for every harmonic metric f if and
only if H0pM,Adpρ0, cqq is a flat Rrts{pt2q-module (here, Adpρ0, cq “ Adpρ0 ` tcq
is the adjoint local system with fiber gb Rrts{pt2q).

If any of the conditions of the theorem is satisfied, then every second order
harmonic map is obtained by projection of pF, F2q, similarly to the first order
picture. Similarly to the first order case, we obtain a formula for the variation of
the energy along deformations constructed by the means of the theorem:

(3)
B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

M

@

ψ, β
D

`
›

›ωrps
›

›

2
dVol,

where ωrps
x̃ is the projection of ωx̃ on the subspace rpsx̃ of g consisting of selfadjoint

elements.
Again, we want to make use of this result to prove the analog second order

statements as those Hitchin proved on a Riemann surface. Namely, Hitchin [Hit87]
proves the energy functional E to be a Kähler potential with respect to the complex
structure given by MBpΓ, Gq, and also that it is a perfect Bott-Morse function. In
[Hit92], then, he gives a formula for the eigenvalues of the Hessian of E at a fixed
point as a function of the eigenvalues of the infinitesimal generator of the action of
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S1 which allow for example [BGPG03] and [GPGMiR13] to study the topology of
MBpΣ, Gq for some classes of group G. In the lines of the former result, we prove:

Theorem D. Let G be a complex group. At the smooth points of MBpM,Gq,
the energy functional E is a Kähler potential for the Betti complex structure on
MBpX,Gq.

A similar plurisubharmonicity result for the energy functional on the Teichmüller
space has been recently proved by Toledo (see [Tol12]). This work has been the
original source of our interest in the question .

In order to extend Hitchin’s result regarding the eigenvalues of the Hessian of
E (on a Kähler manifold X), we introduce the following notation, which is akin

to that in e.g. [Hit87]: we set 9A “ pωrksq2 and 9Φ “ pωrpsq1. Furthermore, at a
point corresponding to a polarized variation of Hodge structure ρ0, for each ξ P g,
the Lie algebra of G, write ξ “

ř

p ξ
´p,p for the decomposition according to the

induced variation of Hodge structures of weight 0 on X̃ˆg, so that the infinitesimal
generator of the circle action acts on ξ´p,p with weight ip.

Theorem E. Suppose that ρ0 is induced by a polarized complex variation of Hodge
structure. Then, with the above notations, the second order of the energy along a
direction ω can be written as

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“ 2

ż

X

ÿ

p

´

´ p
›

› 9A´p,p
›

›

2
` p1 ´ pq

›

› 9Φ´p,p
›

›

2
¯

dVol.

Corollary. If we assume further that ω takes values in g0, then the expression sim-
plifies in terms of the weight 1 pP,Qq Deligne-Hodge structure on H1pM,Adpρ0qq
as:

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“ 2

ż

X

ÿ

P even

P
›

›ωpP,Qq
›

›

2
.

In particular, if ρ0 is of Hermitian symmetric type, then the Hessian is semi-positive
definite, and the vanishing directions are exactly those that remain complex varia-
tions of Hodge structure to the first order.

Organization of the paper. In Section 1, we introduce the notion of “polarized
harmonic local systems” as local systems underlying harmonic bundles with a com-
patible involution. We prove a number of results about them, which will be needed
in the following sections. Although we only apply such results in a specific class of
examples (the pull-back of the “adjoint ones” on symmetric spaces), we state them
in general. In Section 2 we construct the universal twisted harmonic mapping H ,
then prove its continuity and the one of the energy functional E.

The infinitesimal study begins in Section 3, where the concepts of first order de-
formations are introduced, and Theorem A is proved. These results are then applied
in Section 4, in which we prove the formula for the first variation of the energy and
use it to obtain Theorem B. In Section 5 we introduce all the necessary definitions
regarding second order deformations, discuss the action of H on H1pM,Adpρ0qq
and relate it with the existence of a pair pF, F2q. This existence implies that of
a second order deformations; in Example 5.13 we present some instances where a
second order harmonic and equivariant deformation cannot exist. The best part of
the section is devoted to the proof of Theorem C. Finally, in Section 6, we prove
(3) which we then exploit to give proofs of Theorems D and E.
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Joseph Fourier (Grenoble), which is publicly available at [Spi13]. The author would
like to thank his advisor, Philippe Eyssidieux, for introducing him to the subject and
for his invaluable support; the Ph.D. thesis referees, Olivier Biquard and Domingo
Toledo, for their useful comments.

1. Polarized harmonic local systems

Definition 1.1 ([Sim92]). Let M be a connected Riemannian manifold, M̃ Ñ M

its universal cover. A harmonic bundle is a real flat vector bundle pV , Dq of rank n

with a metric h such that the associated map f : M̃ Ñ GLpn,Rq{Opnq is harmonic.

Here, the map f is defined by choosing a base point x0 PM and an isomorphism
V – M̃ˆΓR

n, with Γ “ π1pM,x0q, so as to identify sections v, w with Γ-equivariant

maps M̃ Ñ Rn, and letting

(4) hpv, wqx̃ “
@

spx̃q´1 ¨ v, spx̃q´1 ¨ w
D

std

where the scalar product x¨, ¨ystd is the standard scalar product on Rn. Then the

composition f : M̃
s
ÝÑ GÑ G{K is well defined, and its harmonicity is independent

of the choices of x0 and of the isomorphism.

Definition 1.2. A (real, even) polarized harmonic local system (phls for short) is
a triple pV, σ, Sq such that V is the local system of parallel sections of a flat bundle
pV , Dq, σ : V Ñ V is an R-linear involution, S is a flat symmetric non-degenerate
quadratic form, which is positive-definite on the `1-eigenspace V` of σ and negative
definite on the ´1-eigenspace V´ and such that the positive-definite metric defined
by

hpv, wq “ S
`

v, σpwq
˘

makes pV , Dq a harmonic bundle.

Remark 1.3. In both definitions, one can define complex objects by considering
hermitian quadratic forms, C-vector bundles, C-linear involutions, etc.; also, we
can consider real odd polarized harmonic local systems by considering a symplectic
form Q instead of a symmetric one (then it will induce a hermitian form on the
complexification, hence, together with σ, a metric therein, which may be asked to be
harmonic). In [Sim92], only the complex setting is analyzed, hence the definitions
are different from the ones above. In this section, we will always develop the theory
for a real even phls, the straightforward adaptation to the remaining cases are left
to the reader.

Given a real polarized harmonic local system, its complexification bears a corre-
sponding complex structure; furthermore, tensor products and duals (hence, endo-
morphisms) are defined naturally.

Definition 1.4 (Cfr. e.g. [BR90]). Let N “ G{K be a Riemannian symmetric
space of the non-compact type, denote by g the Lie algebra of G, by k that of K
and write g “ k ‘ p for the symmetric decomposition. The Maurer-Cartan form
βN P A

1
N pgq is the right inverse of ϑTN : N ˆ gÑ TN defined by

ϑTN pn, ξq “
B

Bt

´

expptξq ¨ n
¯ˇ

ˇ

ˇ

t“0
.

This 1-form gives an isomorphism at every point βN,n : TnN – rpsn “ Adnppq.
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Definition 1.5. Let pV , σ, Sq be a polarized harmonic local system on M . We
define the canonical connection Dcan as the metric part of the flat connection D,
and write

D “ Dcan ` β,

so that β is a 1-form on M taking values in the selfadjoint part of EndpVq. We
denote by d, dcan the exterior differential operators determined by the connections

D, Dcan, respectively and by
can

∇X the covariant derivation by Dcan along a vector
field X .

The rest of this section is devoted to proving the following facts, which we regroup
in a proposition:

Proposition 1.6. Let pV, σ, Sq be a polarized harmonic local system on the flat
bundle pV , Dq. Then:

(1) The pull-back of β to M̃ coincides with the pull-back of βN through the

metric f : M̃ Ñ N “ G{K, where G{K is any totally geodesic subspace
of GLpn,Rq{Opnq in which f takes values. In particular, it satisfies the
“Maurer-Cartan equation”:

(5) dβ “ rβ, βs.

(2) The canonical connection Dcan commutes with σ, so that, for every section
v of V, writing v` and v´ for its projections on V` and V´, respectively,

Dcanpvq “
`

Dv`
˘`
`

`

Dv´
˘´
.

(3) Let α be a V-valued 1-form. Suppose that M be compact and orientable.
Then the codifferential d˚α may be computed (in terms of a local orthonor-
mal frame tEju of M) as

(6) d˚α “ dcan˚
α`

ÿ

j

βpEjq ¨ αpEjq “ ´
ÿ

j

can

∇ Ej
αpEjq ´ βpEjq ¨ αpEjq.

(4) Let v be a section of V. Then the laplacian ∆v “ d˚dv can be computed in

terms of ∆canv “ dcan
˚
dcanv “ ´

ř

jp
can

∇ Ej

can

∇ Ej
vq and a local orthonormal

frame tEju as

(7) ∆v “ Jpvq
def
“ ∆canv `

ÿ

j

βpEjq ¨
`

βpEjq ¨ v
˘

(the operator J will be called the Jacobi operator).
(5) Denote by V the vector space of global sections of V (i.e. global flat sections

of V). Then σ leaves V invariant, so that we can write V “ V ` ‘ V ´.

Notation 1.7. In the following, we will fix a base point x0 P M and an iso-
morphism V – M̃ ˆΓ Rn, so that we also have a monodromy representation
ρ : Γ “ π1pM,x0q Ñ GLpn,Cq. The map f is then Γ-equivariant, where Γ acts
on N through ρ. We shall denote by G0 the Zariski closure of Imagepρq (G0 is
called the monodromy group); by Corlette’s theorem [Cor88], G0 is reductive.

Because of the same theorem, there is at least one harmonic metric f0 : M̃ Ñ
G0{K0 Ď GLpn,Rq{Opnq. We will always denote by s0 : M̃ Ñ G0 one of its lifts. If

f : M̃ Ñ G{K is any metric, we denote by H “ ZGpG0q the centralizer of G0 in G.
By the uniqueness part of Corlette’s theorem, then, f “ h ¨ f0, for some h P H . Of
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course, changing the metric the phls structure changes accordingly (with obvious
notations, S remains the same, but the involutions are related by V` “ h ¨ V`0).

Example 1.8. The main example we are interested in is the adjoint polarized
harmonic local system. Let G be the group of real points of a reductive algebraic
group, N “ G{K the associated symmetric space, and consider Vad “ N ˆ g as a
bundle on N , with the trivial flat connection. Put on it the following structure:
Over a point n P N , the involution is the Cartan involution having as `1-eigenspace
rksn “ Adnpkq and as ´1-eigenspace rpsn “ Adnppq; writing g “ gss ‘ a for a
decomposition into a semisimple ideal and the center, the metric on a is just any
fixed positive definite metric while on gss it is induced by taking as symmetric
form S the Killing form. The resulting metric is a totally geodesic embedding
N ãÑ GLpgq{Opgq induced by the adjoint action of G on g. In this case, β “ adpβN q
and the “canonical connection” corresponds, via ϑTN , to the usual one (i.e. the
Levi-Civita connection associated to any invariant metric on N): This will follow
from Proposition 1.6, as the Maurer-Cartan equation (5) and the Jacobi identity
for dgla’s imply, for ξ : N Ñ g,

Rcanξ “
`

d´ adpβq
˘2
ξ “ ´

“

rβ, βs, ξ
‰

`
“

β, rβ, ξs
‰

“
1

2

“

rβ, βs, ξ
‰

.

Furthermore, if one writes D̃ “ Dcan ´ adpβq, so that from (6) one has d˚α “

´tracepD̃αq, in this case the connection D̃ is flat, too.
The main class of examples is constructed as follows: Taking any harmonic

mapping to a symmetric space f : M̃ Ñ N “ G{K, we can pull-back the structure

on M̃ . If we start with a representation ρ : Γ “ π1pM,x0q Ñ G and f is Γ-

equivariant, we can quotient the structure to obtain a (real, even) phls on M̃ˆΓgÑ
M .

Example 1.9. The other main class of examples, when M “ X is a compact
Kähler manifold, is provided by variations of Hodge structure (VHS for short, see
[Sim92] §4). The complex ones give complex phls, while the real ones give even
or odd real phls depending on the parity of the weight. To this aim, one simply
disregards the Hodge decomposition, only considering as (the complexification of)
V` (resp. V´) the direct sum of Vp,q for even (resp. odd) p. The harmonic metric,
then, is induced by the period mapping.

Lemma 1.10. Let pV, σ, Sq be a polarized local system and denote by g0 the Lie

algebra of G0. Consider the flat vector bundle W0 “ M̃ˆΓg0. Then, the restrictions
to W0 of the two polarized local systems induced on M̃ ˆΓ glnpRq by EndpVq and
by f˚pVadq coincide.

Proof. Since f and f0 induce the same metric on W0, we can work with the latter.
Write g0 “

À

gi‘a0, with gi simple Lie algebras and a0 abelian. A straightforward
check proves that the two metrics, one obtained by tensoring f with its dual metric
and the other one by composing f with the adjoint action, coincide. Working with
the metric f0, we can exploit the usual uniqueness argument for the Killing form
to deduce that the flat symmetric forms, which we temporarily denote by SEnd and
SAd, coincide, up to some constant multiple, on each gi. This implies equality on
each gi since both involutions have as `1-eigenspace a compact Lie algebra, but
not as ´1-eigenspace. �
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To prove points (1) and (2) of proposition 1.6, we introduce the connectionDpb “
D ´ f˚βN , which by equivariance of f and of βN descends to a connection on the
bundle V ÑM . We want to prove that Dcan “ Dpb. Define α “ ds ¨ s´1 P A1

M pgq
(the pull-back through s of the right Maurer-Cartan form θr on G) and introduce
another auxiliary connection Dα by Dαv “ Dv ´ α ¨ v.

Notation 1.11. Let φ P A
p

M̃
pgq be any g-valued p-form. We define φrps as the

composition of φ with the projection to the subbundle f˚rps of M̃ ˆ g. When

necessary, we will write explicitly φ
rps
x̃ to denote that both φ and rps are to be

considered at x̃ (i.e. the projection is to rpsx̃ “ Adfpx̃qp). The form φrks is defined
analogously.

Lemma 1.12. We have f˚βN “ αrps. Furthermore, Dαv “ s ¨ pDps´1vqq, and Dα

is a metric connection which commutes with σ.

Proof. The first assertion is a consequence of the identity θ
rps
r “ p˚βN , where

p : G Ñ G{K “ N and θ
rps
r is the projection of θr onto p˚rps, as in Notation

1.11. This identity comes from ϑTN pθrpXqq “ p˚X for all X P TgG, which by
equivariance can be proved only at g “ e, where it is obvious. The expression for
Dα is a straightforward computation:

s ¨Dps´1 ¨ vq “ Dv ´ s ¨ s´1 ¨ dpsq ¨ s´1 ¨ v “ Dv ´ α ¨ v.

By virtue of this formula, to prove that Dα respects σ is equivalent to prove that
σf “ s´1 ˝ σ ˝ s is flat, i.e. Dσf “ 0. To that aim, first reduce without loss of
generality to s “ s0. Then, by G0-invariance of S,

S
`

v, σf pwq
˘

“ S
`

sv, σpswq
˘

“ hpsv, swq “
@

v, w
D

std
.

Since both S and the standard scalar product are flat, σf must be, too. Finally, the
fact that Dα is metric is immediate computing dhpv, wq “ dxs´1v, s´1wystd. �

Lemma 1.13. Let V underlie a polarized harmonic local system pV, σ, Sq. Then
the induced decomposition EndpVq “ EndpVq` ‘ EndpVq´ coincides with the de-
composition in anti-selfadjoint and selfadjoint endomorphisms, respectively.

Proof. On the subbundle W0 this follows from Lemma 1.10 and (4), since W`0 “
f˚
0 rglnpRq

`s, and glnpRq
` ‘ glnpRq

´ is the decomposition of anti-symmetric and
symmetric matrices. Now if for example A P EndpVq`, then as in Notation 1.7,
h´1Ah P EndpVq`0 , and one reduces to the previous case. �

Thanks to Lemma 1.13, an endomorphism commutes with σ if and only if it is
anti-selfadjoint; since by Lemma 1.12 we have Dpb “ Dα ` αrks, then, Dpb both
commutes with σ and is metric. Furthermore, since f˚βN takes values in f˚rps,
that is, the selfadjoint part, the decompositions D “ Dcan ` β “ Dpb ` f˚βN
must coincide. This gives point (1) of Proposition 1.6. To prove point (2), since β
anti-commutes with σ, we only need to prove that Dcan “ Dpb commutes with σ.
But again, Dpb “ Dα ` αrks, and both commute with σ.

Remark also that the Maurer-Cartan equation (5) (which is proved for example
in [BR90], Chapter 1), follows easily form the usual Maurer-Cartan equation for
Lie groups, which in our notations implies dα “ 1

2 rα, αs:

dcanα “ dα´ rαrps, αs “
1

2
rα, αs ´ rαrps, αs “

1

2
rαrks, αrkss ´

1

2
rαrps, αrpss.
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This implies that dβ ´ rβ, βs “ dcanβ “ dcanpαrpsq “ 0, since all terms on the right
hand side take values in rks.

The formula for the codifferential (point (3) of Proposition 1.6) follows easily
from the formula for the codifferential of a metric connection (see [EL83], (1.20))
and selfadjointness of β: Locally around a point, let tEju be an orthonormal frame.
Then:

ż

M

xd˚α, vydVol “

ż

M

xα, dcanv ` β ¨ vydVol

“

ż

M

ÿ

j

´

@

´
can

∇ Ej
αpEjq, v

D

`
@

βpEjq ¨ αpEjq, v
D

¯

dVol

(here we have abused notation since Ej is only locally defined; it is to be meant
that one integrates the function that is given locally around every point in such a
way). The formula for d˚ follows.

To obtain the formula for the Laplacian (point (4) of Proposition 1.6), a straight-
forward computation using (6) and the functoriality of Dcan with respect to tensor
products and duals gives:

∆v “ ∆canv `
ÿ

j

βpEjq ¨
`

βpEjq ¨ v
˘

´
ÿ

j

can

∇ Ej

`

βpEjq
˘

¨ v.

We claim that the vanishing of the last term is equivalent to f being harmonic:
Indeed, recall that a map f : M̃ Ñ N is harmonic if and only if its tension field

τpfq “
ř

j

N

∇Ej
dfpEjq vanishes, where

N

∇ is the pull-back of the Levi-Civita con-

nection on N and Ej is an orthonormal frame of M̃ . Now Example 1.8 implies that

βN ˝
N

∇ “
can

∇ ˝ βN , so that, since βN is injective and βN ˝ df is the pull-back of β

to M̃ , f is harmonic if and only if
ř

j

can

∇ Ej
βpEjq “ 0.

Finally, point (5) of Proposition 1.6 is an integration by parts: Taking a v P V ,
and denoting by v` its projection on V`, it suffices to prove that Dpv`q “ 0. By
(7), since Dv “ 0, we have:

0 “

ż

M

@

Jv, v
D

dVol “

ż

M

›

›Dcanv
›

›

2
dVol`

ż

M

›

›β ¨ v
›

›

2
dVol

Now both terms are non-negative, hence they must vanish. But since Dcanpv`q “
Dcanpvq` and β ¨ pv`q “ pβ ¨vq´, these quantities must vanish, as well, and so must
their sum Dpv`q. This concludes the proof of Proposition 1.6.

Let us now introduce the main object to which our techniques will be applied in
the next sections. Recall that if Γ is a finitely generated group and G a algebraic
group, one has the representation space

RpΓ, Gq “ HompΓ, Gq.

This is actually an algebraic variety (a subvariety of Gr, where r is the car-
dinality of a set of generators of Γ); the group G acts on it by conjugation,
and one can construct the moduli space of representations as the GIT quotient
MpΓ, Gq “ RpΓ, Gq{{G. When Γ “ π1pM,x0q this goes under the name of the
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“Betti” moduli space (cfr. [Sim94] §6), MBpM,Gq. Then, we can define the “en-
ergy functional” E : RpΓ, Gq Ñ R by:
(8)

Epρq “ inf

"

Epfq “
1

2

ż

M

›

›df
›

›

2
dVol

ˇ

ˇ

ˇ

ˇ

f : M̃ Ñ N is smooth and ρ-equivariant

*

.

This is actually invariant under the conjugation action, so it descends to a functional
on MBpM,Gq. We conclude the section by analyzing two special cases for M .

Example 1.14. If M “ S1, then harmonic mappings from M̃ are geodesics. Let-
ting g “ ρp1q, the existence of g-equivariant geodesics (i.e. elements realizing the
minimum in (8)) is then equivalent to g being semisimple. One can see easily that
in this case the energy is simply the square of the “translation length” (see [BH99]):

(9) Epgq “ Lpgq2 “ inf
yPN

dist
`

y, g ¨ y
˘2

(the ě inequality is given by Cauchy-Schwarz, the other one is an approximation
argument starting by considering the unique geodesic arc connecting y and g ¨ y).
The proof of this fact also implies that the infimum in (9) exists if, and only if, g
is semisimple (this fact is true in a much more general setting, see e.g. [Par11]).

Example 1.15. Suppose thatM “ X is a Kähler manifold. Then, there is a corre-
spondence between harmonic bundles and some polystable Higgs bundles ([Sim92],
Theorem 1), which in our notations is as follows: The Higgs bundle pV , θq is such
that β “ θ ` θ˚ is the decomposition into p1, 0q and p0, 1q parts, and the holomor-
phic structure pV , B̄q is given by dcan “ B ` B̄. Furthermore, for harmonic bundles
(hence, for phls), we have the generalized Kähler identities (see [Sim92]). Two main
consequences we will be interested in are that a form is harmonic if and only if it is
∆1 “ D1D1˚`D1˚D1-closed, and that the pull-back of a harmonic V-valued 1-form is
again harmonic. If we suppose further that X be a smooth projective variety, then
this correspondence gives a homeomorphism of moduli spaces between MBpX,Gq
and MDolpX,Gq, which is the moduli space of appropriate Higgs bundles; on the
latter, the energy functional is the L2-norm of θ, hence it is continuous. In Section
2 we will prove E to be continuous on the whole of RBpM,Gq for every Riemannian
manifold M .

2. The universal twisted harmonic map

Definition 2.1. Fix a base point x0 of M , and let x̃0 P M̃ be a preimage. Let
Γ “ π1pM,x0q and denote by Y the subset of N ˆ RpΓ, Gq given by the points
pn, ρq such that there exists a ρ-equivariant harmonic map f satisfying fpx̃0q “ n.

Define H : Y ˆ M̃ Ñ N the universal map obtained by gluing the (unique) maps
above, so that H pn, ρ, ¨q is ρ-equivariant, harmonic and H pn, ρ, x̃0q “ n.

By Corlette’s theorem [Cor88], the projection of Y on the second coordinate
is RpΓ, Gqss, the set of reductive (also called semisimple) representations. Since
harmonic maps all have the same energy and are minimizers (of the expression in
(8) defining E), for ρ in RpΓ, Gqss we have Epρq “ EpH pn, ρ, ¨qq, for any pn, ρq P Y .

Lemma 2.2. Let ρt : Γ Ñ G be a smooth family of representations, for t in some
smooth parameter space T Q 0, and f : M̃ Ñ N a ρ0-equivariant map. Then we
can always find a smooth family ft : M̃ Ñ N of ρt-equivariant maps such that
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f0 “ f . In particular, the energy functional is upper semi-continuous on the whole
of RpΓ, Gq.

Proof. Maps ft correspond to metrics on the family of bundles Vt “ M̃ ˆρt
Rn.

These bundles are trivialized over common open subsets tUu, chosen independently
of t; fix a family of local trivializations ϕU

t , smooth in t. The metric f0 induces
metrics on Rn on any local chart through ϕU

0 , with a compatibility relation between
charts. Composing them with ϕU

t gives the desired family of metrics on Vt. The

semi-continuity follows easily: If fn : M̃ Ñ N is a minimizing sequence for Epρ0q,

we deform each fn to fn
t as above. Then fn

t converges to fn in W
1,2
loc as t Ñ 0,

thus Epfn
t q converges to Epf

nq. Hence

Epρ0q “ lim
n
Epfnq ě lim

n
Epfn

t q ´ εptq ě Epρtq ´ εptq, εptq
tÑ0
ÝÝÝÑ 0.

�

Proposition 2.3. The subset Y Ď N ˆRpΓ, Gq is closed. The universal harmonic

mapping H : Y ˆ M̃ Ñ N is continuous.

Proof. Start from a converging sequence Y Q pnt, ρtq Ñ pn8, ρ8q, and fix ft : M̃ Ñ
N , which are ρt-equivariant and such that ftpx̃0q “ nt. By Lemma 2.2, the energy
of tftu is bounded. We can apply [Lin99], Theorem A and Section 5, to deduce

that on any compact subset K Ď M̃ the restrictions ft|K are Lipschitz maps,
with a uniform Lipschitz constant L. Together with the convergence of ftpx̃0q,
we obtain a uniform bound for ft on K. We can then apply the W 2,p-estimates
(cfr. [GT77], Theorem 9.11) to the semi-linear second order elliptic equation of the
harmonic maps (cfr. [ES64], (5)), to get a uniform bound on the W 2,p-norm of ft.
A “bootstrap” argument then gives uniform bounds in every W k,p-norm. Then,
Sobolev embedding and Arzelà-Ascoli theorem give a subsequence converging in C2

to some limit smooth map f8. This is automatically ρ8-invariant, and satisfies
f8px̃0q “ n8; furthermore, it must satisfy the harmonic map equation, hence
it is harmonic, and pn8, ρ8q P Y . Indeed, by uniqueness of such an harmonic
map, the whole sequence ft converges to f8; this allows us to conclude that H is
continuous. �

Recall that, given any representation ρ : Γ Ñ G, there is a “semisimplification”
ρss : Γ Ñ G defined as the graded associated to any composition series. Slightly
abusing terms, we will call semisimplification of ρ any point in the unique closed
orbit inside the closure of the orbit G ¨ ρ for the action of G on RpΓ, Gq by conju-
gation.

Lemma 2.4. Let ρ : ΓÑ G be any representation. Then Epρq “ Epρssq.

Proof. First remark that, thanks to the proof of Corlette’s theorem [Cor88], we can
construct a family fn of ρ-equivariant maps such that Epfnq converges to Epρq and
also the Lp-norms of the first two derivatives of fn are bounded. Indeed, start by

any minimizing sequence f̂n, and define f̂n
t the metric constructed via the heat flow

starting from f̂n. In Corlette’s notations, if we call Φn
t the moment map associated

to f̂n
t (i.e. its tension field), we have }Φn

t }L8

tÑ8
ÝÝÝÑ 0; thanks to the estimates in

Corlette’s paper, theW 1,p norm of βn
t “ pdf̂

n
t ¨pf̂

n
t q

´1qrps (in his notations: θnt ) are,

for t “ tpnq big enough, bounded by a constant depending only on Epf̂n
t q, hence
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by a constant, since both f̂n and the heat flow are energy-decreasing. Defining

fn “ f̂n
tpnq gives the desired sequence.

Secondly, let gn be such that fnpx̃0q “ gnK, and define ρ̃n “ g´1
n ρgn. We want

to prove that ρ̃n subconverges to some ρ̃8. By properness of GÑ G{K, it suffices
to prove that ρ̃npγqK remains at bounded distance from eK for all γ P Γ. This

follows from the Lipschitz estimates on f̃n (coming from those on fn), since:

dist
`

eK, ρ̃npγqK
˘

“ dist
`

f̃npx̃0q, f̃npγx̃0q
˘

ď Lpγq ¨ distpx̃0, γx̃0q “ Cpγq.

Lastly, we want to prove that ρ̃8 “ ρss and that Epρq “ Epρ̃8q. It is clear that
ρ̃8 is in the closure of the orbit of ρ. Furthermore, arguing as in Proposition 2.3,
f̃n converges in W 1,p to some f̃8, which is at least C1. In fact, it is harmonic, since

it minimizes the energy: This follows from Epfnq “ Epf̃nq
nÑ8
ÝÝÝÑ Epf̃8q, together

with the following chain of inequalities (here we use also Lemma 2.2 for the second
inequality):

Epf̃8q ě Epρ̃8q ě lim supEpρ̃nq “ Epρq “ limEpfnq “ Epf̃8q.

Remark that this also shows that Epρq “ Epρ̃8q, which concludes the proof. �

Proposition 2.5. The energy functional is continuous on the whole of RpΓ, Gq.

Proof. Let ρt Ñ ρ8 be a converging sequence. Firstly, if we assume that ρt and
ρ8 are semisimple and that there exist a converging family nt Ñ n8 such that
pnt, ρtq P Y we can conclude at once by the proof of Proposition 2.3, since W 1,2-
convergence implies convergence of the energies.

Secondly, suppose only that ρt and ρ8 are semisimple, and let n8 be such that
pn8, ρ8q P Y . Then there are gt P G such that ρ̃t “ gtρtg

´1
t verify pn8, ρ̃8q P Y .

Proceeding as in Lemma 2.4, a subsequence of this converges to some ρ̃8, which
is semisimple. Thus ρ̃8 is conjugated to ρ8, since the quotient of semisimple
representations by conjugation is a Hausdorff space. Then Epρtq Ñ Epρ8q follows
from the first point.

Now proceed to the general case. Without loss of generality, we may suppose
G “ GLpn,Cq. Denote by ρsst and ρss8 the corresponding semisimplifications, and
by tρsst u and tρ

ss
8u the closed points of MBpM,Gq they represent. Since the func-

tions on MBpM,Gq are generated by the traces, and tracepρtq “ tracepρsst q con-
verges to tracepρ8q “ tracepρss8q, we have convergence of the closed points in
MBpM,Gq. By the Kempf–Ness theorem [KN79], MBpM,Gq – µ´1p0q{K, with
µ´1p0q Ď RpΓ, Gqss. Lifting the closed points to some ρ̃sst , which must then be
conjugated to ρsst , by properness of µ´1p0q Ñ µ´1p0q{K, there is a subsequence
converging to some ρ̃ss8 , which must be conjugated to ρss8 , as well. Then we conclude
thanks to the second part and Lemma 2.4. �

Remark that, on the locus of the Zariski dense representations, these results are
trivially implied by the following:

Proposition 2.6 ([Cor91], Proposition 2.3). Let R be an irreducible component
of RpΓ, Gq, and give its smooth part Rsm the C8 structure induced by the reduced
structure on R. Denote by U the (possibly empty) open subset of Rsm such that
Imagepρq Ă G is Zariski dense. Then, the restriction of H to Y X pN ˆ Uq is
smooth, hence the same is true for the energy functional on U .



DEFORMATIONS OF TWISTED HARMONIC MAPS 13

3. First order deformations

Definition 3.1. A first order deformation v of a map f : M̃ Ñ N is a smooth
section of the bundle f˚TN .

We will often denote v by Bft
Bt

ˇ

ˇ

t“0
. Clearly, when ft is defined and smooth for

a real parameter t, this gives a class of examples of first order deformations v;
but interpreting t as a formal parameter (seeing N as the set of real points of an
algebraic variety, and TN as the set of Rrts{pt2q-points of the same variety) we can
work in greater generality (e.g. allowing obstructions).

Definition 3.2. A first order deformation ρ
p1q
t of ρ0 : Γ Ñ G is a representation

ρ
p1q
t : ΓÑ TG projecting to ρ0 via TGÑ G.

Here, TG is given the group structure induced by GpRrts{pt2qq, where G “ GpRq.
Explicitly (see [BS72]), we can write elements of TG as pairs pg, ξq with g P G and
ξ P g, with the product structure pg, ξq ¨ ph, ηq “ pgh, ξ ` Adgηq. Then we have

ρ
p1q
t “ pρ0, cq with c a 1-cocycle of the adjoint representation, i.e. c : ΓÑ g satisfies

cpγηq “ cpγq `Adρ0pγqcpηq.

Again, starting from a family ρt of representations, we obtain its first order defor-

mation by defining cpγq “ Bρtpγq
Bt

ˇ

ˇ

t“0
ρ0pγq

´1.
We are interested in the following problem: Given a harmonic, ρ0-equivariant

map f : M̃ Ñ N and a first order deformation ρ
p1q
t of ρ0, can we describe first

order deformations which remain “harmonic” and “ρ
p1q
t -equivariant” to the first

order? We first have to define such terms, introducing in passing auxiliary functions
F : M̃ Ñ g.

Definition 3.3. A first order deformation v of f is ρ
p1q
t -equivariant if, and only if,

it is for the action of TG on TN as in [BS72]. Explicitly, this writes

vpγx̃q “ ρpγq˚vpx̃q ` ϑTN

`

fpγx̃q, cpγq
˘

.

Definition 3.4. A function F : M̃ Ñ g is ρ
p1q
t -equivariant if pf, F q is, under the

left action TG – Gˆ g ýGˆ g{K – N ˆ g. Explicitly, this means

F pγx̃q “ Adρ0pγqF px̃q ` cpγq.

Lemma 3.5. If ft : M̃ Ñ N is a family of ρt-equivariant maps, then Bft
Bt

ˇ

ˇ

t“0
is

ρ
p1q
t -equivariant. If F is a ρ

p1q
t -equivariant function, defining v “ ϑTN pf, F q gives

a ρ
p1q
t -equivariant first order deformation of f .

The proof of both statements is immediate.

Definition 3.6 (See [Maz73],[EL83]). The Jacobi operator J : C8pf˚TNq Ñ C8pf˚TNq
is defined in terms of a orthonormal local frame tEju as

J pvq
loc
“ ´

ÿ

j

´N

∇Ej

N

∇Ej
v `RN

`

dpfqpEjq, v
˘

dpfqpEjq
¯

,

where RN is the curvature of the Levi-Civita connection on N . A first order
deformation v is said to be harmonic if J pvq “ 0.
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Notation 3.7. Given a representation ρ0 : Γ Ñ G and a harmonic ρ0-equivariant
map f : M̃ Ñ N , we will denote by V the vector bundle underlying the phls induced
on M as in Example 1.8. The corresponding local system will be denoted by
V “ Adpρ0q. Recall that in this case V “ M̃ ˆΓ g, and, slightly abusing notations,

we will write β P A1
M pgq for the 1-form induced by β̃ “ f˚βN (so that what we

called β in Section 1 would be, in present notations, adpβq). For the sake of brevity,

we will write xξ, ηy for the metric hpξ, ηq. Recall that βN ˝
N

∇ “
can

∇ ˝ βN , where
N

∇

is the pull-back connection of the Levi-Civita connection on f˚TN . It follows that
βN ˝ J “ J ˝ βN , where J is defined as in (7). Coherently with Notation 1.11, we

may speak of projections ξ
rps
x̃ , etc.

Lemma 3.8. Let ft : M̃ Ñ N be a family of harmonic maps, varying smoothly in
t. Then v “ Bft

Bt

ˇ

ˇ

t“0
is a harmonic first order deformation.

Proof. We simply differentiate the identities τpftq “ 0 covariantly along t. Write

for short D
Bt for

N

∇ B

Bt
; then, with respect to a fixed local orthonormal frame tEsu,

using the “symmetry relations” (cfr. [dC92], Chap. 3, Lemma 3.4 and Chap. 4,
Lemma 4.1), we have:

D

Bt

ÿ

s

p
N

∇Es
dftpEsqq

ˇ

ˇ

t“0
“

ÿ

s

D

Bt

N

∇Es
dftpEsq

ˇ

ˇ

t“0

“
ÿ

s

N

∇Es

D

Bt
dftpEsq

ˇ

ˇ

t“0
`RN pdfpEsq, vqdfpEsq

“
ÿ

s

N

∇Es

N

∇Es
v `RN pdfpEsq, vqdfpEsq “ ´J pvq.

�

Remark that we can extend the definition of J in (7) to general function ξ simply

by defining ∆canξ “ ´
ř

j

can

∇ Ej

can

∇ Ej
ξ.

Definition 3.9. A function F : M̃ Ñ g is called “of harmonic type” if JpF q “ 0.

Then, defining v “ ϑTN pf, F q sends functions of harmonic type to harmonic first
order deformations: If JpF q “ 0,

βN
`

J pvq
˘

“ J
`

βN pvq
˘

“ J
`

F rps
˘

“ JpF qrps “ 0,

since J respects the decomposition M̃ ˆ g “ rks ‘ rps “ V` ‘ V´.

Notation 3.10. Let f be a ρ0-equivariant harmonic map, ρ
p1q
t a first order defor-

mation of ρ0. We denote by ω P H1pM,Adpρ0qq the harmonic 1-form represent-
ing the 1-cohomology class given by tcu P H1pΓ, gq – H1pM,Adpρ0qq. Keeping
the same notation as in 1.7, denote by h the Lie algebra of H , and remark that
h “ H0pM,Adpρ0qq is the space of global sections of Adpρ0q; hence by point (5)
of Proposition 1.6, it splits in a direct sum which we denote h “ hk ‘ hp, since
h` “ hk “ hX k and h´ “ hp “ hX p.

The main result on first order deformations is then the following:
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Theorem 3.11. Let M be a compact Riemannian manifold, G an algebraic reduc-

tive group, G “ GpRq the Lie group of its real points, ρ
p1q
t “ pρ0, cq : π1pMq Ñ G a

first-order deformation of ρ0 and f : M̃ Ñ N a harmonic and ρ0-equivariant map.

Then the set of ρ
p1q
t -equivariant F such that dF “ ω is non-empty; in fact, it is an

affine space over h, and every harmonic first order deformation v is constructed as
ϑTN pf, F q. More precisely, the map:

"

F : M̃ Ñ g : dF “ ω is harmonic
and F pγx̃q “ Adρ0pγqF px̃q ` cpγq

*

ϑTNÝÝÝÑ

"

v P C8pf˚TNq harmonic

and ρ
p1q
t -equivariant.

*

is affine and surjective, and corresponds to the linear projection on the associated
vector spaces:

h “ H0pM,Adpρ0qq ÝÑ H0pM,Adpρ0qq X p “ hp.

Remark that, since the isomorphism H1pM,Adpρ0qq – H1pΓ, gq is induced by

integration, if F is of harmonic type and ρ
p1q
t -equivariant then

şγx̃0

x̃0

dF “ cpγq `

δpF px̃0qqpγq, where δ denotes the group codifferential, hence necessarily dF “ ω.

The fact that ρ
p1q
t -equivariant primitives F of ω exist, and that they form an affine

space over h is a consequence of the following lemma:

Lemma 3.12. Let V be a fixed vector space of finite dimension, and τ : ΓÑ GLpV q
a representation. Denote by V the associated local system and let φ P Z1pM,Vq be

a closed 1-form (which we interpret as a τ-equivariant closed 1-form on M̃); let
z P Z1pΓ, V q be a 1-cocycle such that the cohomology classes of φ and z correspond
through the isomorphism H1pM,Vq – H1pΓ, V q. Then the set

(10)
!

F : M̃ Ñ V : dF “ φ and F pγx̃q “ τpγq ¨ F px̃q ` zpγq
)

is an affine space over V Γ “ H0pM,Vq.

Proof. Taking any F such that φ “ dF , by equivariance the 1-cocycle zF defined
by zF pγq “ F pγx̃q ´ τpγq ¨ F px̃q is independent of x̃. By hypothesis, the cocycle

γ ÞÑ
şγx̃0

x̃0

φ “ F pγx̃0q ´ F px̃0q is cohomologous to z; but it is also cohomologous to
zF , since:

F pγx̃0q ´ F px̃0q “ zF pγq ` τpγq ¨ F px̃0q ´ F px̃0q “ zF pγq ` δ
`

F px̃0q
˘

pγq.

Now if dF “ dF̃ “ φ, the difference between F and F̃ is a fixed element v P V , and
the difference between zF and zF̃ is the coboundary δpvq. Hence we can find one F

such that zF “ z (that is, which is ρ
p1q
t -equivariant) and the difference of any two

such choices must be Γ-invariant, as claimed. �

Proof of theorem 3.11. The lemma gives the first part, hence the existence of at

least one harmonic ρ
p1q
t -equivariant first order deformation v. To conclude the

proof, we only need to show that the difference of any two such deformations v, v1

is in hp. Equivariance implies that ξ “ βN pv´v
1q is Adpρ0q-equivariant; harmonicity

implies Jpξq “ 0. Since J “ d˚d, an integration by parts give dpξq “ 0. Hence
ξ P h. On the other hand, both βN pvq and βN pv

1q are sections of rps, hence ξ P hp,
as claimed. Conversely, adding an element of hp to βN pvq gives another harmonic

ρ
p1q
t -equivariant first-order deformation, hence the space of such deformations is

affine over hp (and non-empty by the existence of F above), as claimed. �
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Remark 3.13. One can easily prove that if X , X 1 are Kähler manifolds and ϕ : X 1 Ñ
X is holomorphic, then the construction of theorem 3.11 is functorial under pull-
back by ϕ (i.e. the surjective arrow fits in a square diagram with ϕ˚ as vertical
arrows). The only non-trivial part are harmonicity of f ˝ ϕ, which is classic (see
[ABC`96], chapter VI and [Lou99]) and of ϕ˚ω (cfr. Example 1.15).

Example 3.14. We see readily that when G “ C˚ is abelian one finds usual
abelian cohomology and harmonic functions. In this case D “ Dcan is metric,
and a representation ρ0 : Γ Ñ C˚ decomposes into a real and a unitary factor.
The logarithm of the former gives a 1-cohomology class on M , whose harmonic
representative may be integrated to give a harmonic map f : M̃ Ñ N – R. Then
J “ ∆ is the usual Laplace-Beltrami operator (up to a sign), hence functions F of
harmonic type are just harmonic complex functions; the projection ϑTN of theorem
3.11 simply consists in taking the real part.

4. C-VHS as critical points of the energy

Let f and ρ
p1q
t be as above, and v a ρ

p1q
t -equivariant deformation of f . Remark

that the function defined on M̃ by x
N

∇v, dfy is Γ-invariant: Applying βN everywhere,
at a point γx̃ it equals

(11)
A

Dcan
´

Adρ0pγqβN pvq ` cpγq
rps
γx̃

¯

,Adρ0pγqβ̃
E

γx̃
.

Now the metric is Γ-equivariant, hence the first summand reduces to xDcanβN pvq, β̃yx̃,

which is exactly the value of x
N

∇v, dfy at x̃. The second summand vanishes, because

Dcancpγqrps “ ´rβ̃, cpγqrkss, whose scalar product with β̃ equals the scalar product

of cpγqrks with tracerβ̃, β̃s “ 0. Hence we can define:

Definition 4.1. Let v be a ρ
p1q
t -equivariant first order deformation of f . We define

the energy of pf, vq as

Epf, vq “ Epfq ` t

ż

M

@
N

∇v, df
D

dVol P Rrts{pt2q.

It is easy to see that when ft is ρt-equivariant, the two definitions for BEpftq
Bt

ˇ

ˇ

t“0
coincide.

Proposition 4.2. Let v be a harmonic and ρ
p1q
t -equivariant deformation of f .

Then, keeping the notations in 3.10, we have

BEpf, vq

Bt

ˇ

ˇ

ˇ

t“0
“

ż

M

@

ω, β
D

dVol.

Proof. By Theorem 3.11, we have F rps “ βN pvq, for some ρ
p1q
t -equivariant F : M̃ Ñ

g such that dF “ ω. By definition, then,
ż

M

xω, βydVol “

ż

M̃{Γ

´

@

DcanF, β̃
D

`
@

rβ̃, F s, β̃
D

¯

dVol.

Now the second summand vanishes since tracerβ̃, β̃s “ 0, as above. By orthogonality
of rps and rks, then, the first one equals xDcanF rps, βy, which is what we wanted. �
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Example 4.3. When M “ X is a Kähler manifold, the expression is independent
of the chosen metric in its Kähler class. Denoting by Ω the Kähler form in the
notations of Example 1.15, we can write the first variation of the energy as:

BEt

Bt

ˇ

ˇ

ˇ

t“0
“

ż

X

@

ω ^ ˚β
D

“ ´
1

n!

ż

X

trace
`

ω ^ pθ˚ ´ θq
˘

^ Ωn´1

(since ˚β “ pθ˚ ´ θq ^ Ωn´1 takes values in the anti-selfadjoint part of gb C). To
prove the closeness of tracepω ^ pθ˚ ´ θqq, one simply observes that dω “ 0 and
dθ “ dpθ˚q “ rθ, θ˚s.

From now on, let M “ X be a Kähler manifold and G “ KC a complex group.
We want to analyze the critical points of the energy functional on the representation
space RpΓ, Gq. We start by two easy examples:

Example 4.4. When G “ C˚, the formula of Proposition 4.2 is essentially trivial,
at least for smooth families of harmonic functions ft, since then ω “ Bβt

Bt

ˇ

ˇ

t“0
(in

this case, βt “ d logpftq). Furthermore, when M “ X is smooth projective, the
Dolbeault moduli space splits as MDolpX,C

˚q “ Pic0pXq ‘ H0pX,Ω1
Xq, so that

the C˚-action (see [Sim92], §4) defined by t ¨ pV , θq “ pV , tθq has as only fixed
points those with θ “ 0. These points are also the global minima of the energy
EpV , θq “ }θ}2, which are actually the only critical points. So, in this case, critical
points, global minima and C-VHS are synonymous.

Example 4.5. When X “ Σ is a Riemann surface of genus g ě 2, the energy
functional has be intensively studied starting with [Hit87]. In that case, it is a
moment map for the circle action, hence the (smooth) critical points are exactly
those induced by a C-VHS. Remark that this implies the same for general smooth
projective X (with very ample metric): The energy can be expressed as EpV , θq “
ş

X
tracepθ^θ˚q^Ωn´1, and the cohomology class determined by Ωn´1 can be taken

as that of a smooth curve which is the complete intersection of n ´ 1 hyperplane
sections. Then Simpson ([Sim92], §1) proves the functoriality with respect to pull-
backs of the Higgs bundle associated to a representation and (loc. cit., §4) of the
fixed points of the C˚-action with respect to restrictions to a complete intersection,
thus we can reduce to the case of curves.

Recall that when ρ0 is induced by a C-VHS, there is a harmonic map f0 : X̃ Ñ
G0{K0 induced by the period mapping Φ0 : X̃ Ñ G0{V0. Suppose that f : X̃ Ñ
G{K is induced by this map (after some totally geodesic embedding G0{K0 Ď

G{K). Then, the vector bundle X̃ ˆ g on which the pull-back of the adjoint phls

lives has a Hodge decomposition of weight 0, X̃ ˆ g “
À

prg
´p,ps. Denote by γ

the infinitesimal generator of the circle action, that is a section of the subbundle
rv0s Ď X̃ ˆ g (here v0 Ď k0 is the Lie algebra of V0). It is determined by:

(12) rγ, ξs “
ÿ

p

ipξ´p,p, where ξ “
ÿ

p

ξ´p,p, ξ´p,p P rg´p,ps.

Theorem 4.6. A smooth point of the moduli space MBpX,Gq is a critical point of
the energy functional if, and only if, it is induced by a complex variation of Hodge
structure.

Proof. For the “if” part, let ρ0 be induced by a C-VHS, and give Adpρ0q the metric
induced by the period mapping. Any tangent direction to tρ0u can be lifted to a
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ρ
p1q
t , hence giving rise to a harmonic 1-form ω. Remark that since θ P A1,0prg´1,1sq

and θ˚ P A0,1prg1,´1sq, (12) implies

(13) β “ θ ` θ˚ “ iD2γ ´ iD1γ “ Dcγ.

Thanks to Proposition 4.2, we can then compute the variation of the energy along
that direction:

BE

Bt

ˇ

ˇ

ˇ

t“0
“

ż

X

@

ω,Dcγ
D

dVol “

ż

X

@

Dc,˚ω, γ
D

dVol “ 0.

For the “only if” part, consider the variation of the energy with respect to the
C˚-action. Actually, we will work with the action of Rą0 only, since the energy
is invariant under the circle action; so take the family of Higgs bundles pV , tθq for
t P p1´ε, 1`εq. The first order of this family corresponds to an element of the first
cohomology group of the complex pA‚pVq, D2q; clearly, this element is represented
by θ itself. Hence, the harmonic 1-form to which it corresponds (cfr. [Sim92],
Lemma 2.2) is ω “ θ `D2η, for some η P C8pVq. We obtain:

BEpV , tθq

Bt

ˇ

ˇ

ˇ

t“0
“

ż

X

@

ω, θ ` θ˚
D

dVol “

ż

X

´

@

ω, θ
D

`
@

B̄η, θ˚
D

¯

dVol.

Now the first summand equals the L2-norm of ω, since the harmonicity of ω implies
ş

xω,D2ηydVol “ 0; the second one vanishes, through an integration by parts, Stokes
theorem and the identity Bθ˚ “ 0. Now by hypothesis the first variation of the
energy vanishes, hence ω “ 0. This implies θ “ ´D2η “ ´rθ, ηs. Consider the
1-parameter group of automorphisms of V defined by gt “ expptηq; then Adgtpηq “
e´tθ. Thus, gt : pV , θq – pV , e

tθq, hence ρ0 is induced by a C-VHS. �

Remark 4.7. At singular points, we can define a critical point of the energy as a
representation such that

ş

xω, βydVol “ 0 for all ω P H1pX,Adpρ0qq. In that case,
the theorem holds without any smoothness hypothesis.

5. Second order deformations

5.1. Equivariant and harmonic deformations.

Definition 5.1. A second order deformation of a map f : M̃ Ñ N is a pair of
tangent fields along f which we denote by

(14)
´

v
not
“
Bft
Bt

ˇ

ˇ

ˇ

t“0
, w

not
“

D

Bt

Bft
Bt

ˇ

ˇ

ˇ

t“0

¯

P f˚
`

TN ˆN TN
˘

.

Through the canonical connection, this description is equivalent to taking a
section of the second jet bundle J2N , which is a homogeneous space acted upon by
the group J2G “ GpRrts{pt3qq, that is in bijection with Gˆ gˆ g and whose group
structure is, under this “right trivialization r”, (cfr. [Ber08], §23):

(15) pg, ξ, µq ¨ ph, η, νq “
´

gh, ξ `Adgpηq, µ `Adgpνq ` rξ,Adgpηqs
¯

.

Definition 5.2. A second order deformation ρ
p2q
t of ρ0 (resp. of ρ

p1q
t ) is a repre-

sentation ρ
p2q
t : ΓÑ J2G projecting to ρ0 (resp. to ρ

p1q
t ).

Through the above trivialization, we can write ρ
p2q
t “ pρ0, c, kq. Then one ob-

serves that ρ
p2q
t is a deformation of ρ

p1q
t “ pρ0, cq if and only if k : Γ Ñ g makes
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the pair pc, kq a 1-cocycle for the adjoint action of Γ on g b Rrts{pt2q, that is,
pc` tkqpγηq “ cpγq ` tkpγq ` γ ¨ pcpηq ` tkpηqq, where

(16) γ ¨ pξ ` tµq “ Adρ0pγqpξq ` t
´

Adρ0pγqpµq `
“

cpγq,Adρ0pγqpξq
‰

¯

.

Lemma 5.3. Keeping the same notations as in 1.11, define a map ϑJ2N : N ˆ gˆ
gÑ TN ˆN TN by

ϑJ2N pn, ξ, µq “
´

v “ ϑTN pn, ξq, w “ ϑTN

`

n, µ` rξrks, ξrpss
˘

¯

Then the following diagram commutes:

J2G
r

//

J2πN

��

Gˆ gˆ g

{K

��

N ˆ gˆ g

ϑ
J2N

��

J2N
„

// TN ˆN TN

Proof. Starting from a nptq “ J2πN ˝ r
´1pg, ξ, µq, and recalling that the canonical

connection is given by Dcan “ D ´ rβ, ¨s, its image in TN ˆN TN is pv, wq where
by definition βN pvq “ ξrps and βN pwq is the projection to rps of µ ´ rβp B

Bt q, ξs “

µ´ rβN pvq, ξs. In turn, this equals µ´ rξrps, ξrkss, which is the same as above. �

To define equivariant deformations (which are maps form M̃ to TN ˆN TN),
either one follows the diagram of Lemma 5.3 to identify actions, or one works out
the formulas on the right hand side of the diagram only by considering a smooth
family ft : M̃ Ñ N of ρt-equivariant maps and then checks that they match trough
ϑJ2N ; either way involves some computations. We limit ourselves to giving the
resulting formulas; the details can be found in [Spi13], §5.8.

Definition 5.4. A second order deformation pv, wq P C8pf˚pTNˆN TNqq is called
equivariant if v is, as a first order deformation, and w satisfies:

wpγx̃q “ ρ0pγq˚wpx̃q

` ϑTN

´

fpγx̃q, kpγq ` 2
“

cpγq
rks
γx̃,Adρ0pγqβN pvpx̃qq

‰

`
“

cpγq
rks
γx̃, cpγq

rps
γx̃

‰

¯

.

A function pF, F2q : M̃ Ñ gˆg is called ρ
p2q
t -equivariant if F is ρ

p1q
t -equivariant and

F2pγx̃q “ Adρ0pγqF2px̃q `
“

cpγq,Adρ0pγqF px̃q
‰

` kpγq.

Definition 5.5. A second order deformation pv, wq of f is harmonic if J pvq “ 0
and, in terms of a local orthonormal frame tEju,

J pwq “ 4
ÿ

j

RN
`

dfpEjq, v
˘
N

∇Ej
v.

Fix ω as in Notation 3.10; then we define two operatorsD2 : A
p

M̃
pgˆgq Ñ A

p`1

M̃
pgˆ

gq and D2,˚ : A
1
M̃
pgˆ gq Ñ A0

M̃
pgˆ gq and functions of harmonic type pF, F2q by:

D2 “

ˆ

d
adpωq d

˙

, D2,˚ “

ˆ

d˚

ω˚ d˚

˙

, D2,˚D2

ˆ

F

F2

˙

“ 0,
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where ω˚ denotes contraction by the adjoint ω˚ “ ωrps ´ ωrks of ω: In terms of a
local orthonormal frame tEju and for α̃ P A1

M̃
pgq,

ω˚  α̃ “
ÿ

j

“

ω̃pEjq
rps ´ ω̃pEjq

rks, α̃pEjq
‰

.

Remark 5.6. The operator D2 actually defines a flat connection on M̃ ˆ gˆ g. The
contraction ω˚ is defined so that for every V-valued 1-form α and every section ξ
of V , we have xrω, ξs, αy “ xξ, ω˚  αy.

The proof that if ft is a family of harmonic maps then defining pv, wq as in (14)
gives a harmonic second order deformation follows along the same lines as Lemma
3.5, covariantly differentiating the expression found for D

Btτpftq and using the local

symmetry condition
N

∇pRN q “ 0 whenever needed.

Lemma 5.7. Let pF, F2q : M̃ Ñ g ˆ g be ρ
p2q
t -equivariant and of harmonic type.

Then defining pv, wq “ ϑJ2N pF, F2q gives a ρ
p2q
t -equivariant and harmonic second

order deformation of f .

Proof. The proof that equivariance conditions match is tedious but straightforward

(it is more agile to prove that βN pwq has the same kind of equivariance as F
rps
2 `

rF rks, F rpss; for details, we refer to [Spi13], §5.2). To prove that pv, wq is harmonic,
first observe that our hypotheses force dF “ ω. Then, harmonic type condition
gives the following expression for JpF2q:

(17) JpF2q “
ÿ

j

“

ωpEjq, ∇̃Ej
F

‰

´ ω˚  ω

(recall that D̃ “ Dcan ´ adpβq). Writing ω “ DcanF ` rβ, F s, and substituting
everywhere in (17), one gets

JpF
rps
2 q “ JpF2q

rps “
ÿ

j

4
“

rβpEjq, F
rpss,

can

∇ Ej
F rps

‰

` 2
“
can

∇ Ej
F rks,

can

∇ Ej
F rps

‰

´ 2
”

“

βpEjq, F
rks

‰

,
“

βpEjq, F
rps

‰

ı

.

Recalling that Jpξq “ ´tracepD̃dξq and that JpF q “ 0, we obtain:

J
`

rF rks, F rpss
˘

“
ÿ

j

2
”

“

βpEjq, F
rks

‰

,
“

βpEjq, F
rps

‰

ı

´ 2
“
can

∇ Ej
F rks,

can

∇ Ej
F rps

‰

.

Adding the two expressions together one obtains exactly

JpβN pwqq “ 4
ÿ

j

“

rβpEjq, F
rpss,

can

∇ Ej
F rps

‰

.

�

5.2. Construction of F2. From now on, we are given a second order deformation

ρ
p2q
t of ρ0 and a harmonic and ρ0-equivariant f : M̃ Ñ N , and we try to construct

a second order deformation of f . By lemma 5.7, it is enough to construct a pF, F2q

both ρ
p2q
t -equivariant and of harmonic type. Remark that the centralizer H (cfr.

Notation 1.7) acts on H1pM,Adpρ0qq by conjugation. This action preserves the
subspace of harmonic 1-forms: Indeed, if ω is harmonic and h P H XK it is easy
to see that Adhpωq is still harmonic (after reducing from f to f0, h P K becomes
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unitary). To conclude, as H “ H˝ ¨ pHXKq, we need only to prove that the adjoint
action of h preserves harmonic forms, i.e. that for every ξ P h the 1-form rω, ξs is
still harmonic. This follows as in the proof of point (5) of Proposition 1.6, since ξ
is both Dcan-closed and satisfies rβ, ξs “ 0.

Denote by Adpρ
p1q
t q the local system given by the adjoint action of Γ on g b

Rrts{pt2q, as in (16). Then we have an exact sequence of sheaves:

(18) 0Ñ Adpρ0q
ˆt
ÝÝÝÑ Adpρ

p1q
t q

mod t
ÝÝÝÑ Adpρ0q Ñ 0.

Lemma 5.8. In the long exact sequence associated to (18), the image of the map

H0pM,Adpρ
p1q
t qq Ñ H0pM,Adpρ0qq “ h is the subspace h1 Ď h made of those ξ P h

such that rω, ξs “ 0.

Proof. The condition for ξ ` tµ to be a global section of Adpρ
p1q
t q is that ξ P h and

Adρ0pγqµ “ µ´rcpγq, ξs. This last condition can be rewritten as rc, ξs “ δpµq, where
δ denotes the coboundary in group cohomology. This means exactly ξ P h1. �

Suppose we already have pF, F2q that is both ρ
p2q
t -equivariant and of harmonic

type. Then we can define a 1-form ψ “ ψpF, F2q P A
1
M pVq as

ˆ

ω

ψ

˙

“ D2

ˆ

F

F2

˙

“

ˆ

dF
dF2 ` rω, F s

˙

.

By flatness of D2 and harmonic type condition we obtain equations for ψ:

dψ “ ´rω, ωs;

d˚ψ “ ´ω˚  ω “ 2 ¨
ÿ

j

“

ωpEjq
rks, ωpEjq

rps
‰

P C8pM, rpsq.(19)

Thus the existence of a solution to (19) is a necessary condition for the existence
of pF, F2q. We shall prove that it is also necessary (cfr. Proposition 5.10). First of
all, we investigate on uniqueness:

Lemma 5.9. Let pF, F2q be ρ
p2q
t -equivariant and of harmonic type. Then every

other pF 1, F 1
2q both ρ

p2q
t -equivariant and of harmonic type write as:

(20) pF 1, F 1
2q “

`

F ` ξ, F2 ` rF, ξs ` η
˘

,

where ξ, η are in h. Conversely, every such expression gives a ρ
p2q
t -equivariant

function of harmonic type. In particular, the 1-form ψ “ ψpF, F2q is unique if and
only if h “ h1.

Proof. One checks readily that pF 1, F 1
2q defined as in (20) is both equivariant and

of harmonic type (for the latter, one finds that ψpF 1, F 1
2q “ ψpF, F2q ` 2rω, ξs and

uses that rω, ξs is harmonic). Theorem 3.11 states that necessarily F 1 “ F ` ξ for

some ξ P h. One then reduces to F “ F 1, in which case F2´F
1
2 : M̃ Ñ g becomes a

pρ0, kq-equivariant map of harmonic type, and one applies again the same theorem.
The condition for uniqueness of ψ is that for every ξ P h, rω, ξs “ 0, i.e., h “ h1. �

Now we investigate the existence of a solution to (19). It is well known (cfr.
[GM88], §4.4) that the condition for rω, ωs to be null in cohomology is implied by

the representation ρ
p1q
t extending to the second order to some ρ

p2q
t . Thus, under our

hypotheses, we can always find at least a solution to the first equation of (19). Also
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remark that by Hodge theorem on Riemannian manifolds the self-adjoint operator
J determines an orthogonal splitting

C8pVq “ h‘ ImagepJq,

since h “ kerpdq “ kerpd˚dq. Furthermore, this splitting is compatible with projec-
tions to rps and rks, by point (5) of Proposition 1.6. We can now prove the main
result about the existence of pF, F2q:

Proposition 5.10. The following are equivalent:

(1) The system of equations (19) admits a solution;
(2) The section ω˚  ω P C8pVq is orthogonal to h;
(3) The harmonic 1-form ω is a critical point for the L2-norm in its H-orbit;

(4) There is a pair pF, F2q which is both ρ
p2q
t -equivariant and of harmonic type;

(5) Every F : M̃ Ñ g both ρ
p1q
t -equivariant and of harmonic type extends to a

pF, F2q as in point (4).

Proof. Let ξ be in h. Then, if ψ is a solution to (19), xω˚  ω, ξy “ ´xψ, dξy “ 0,
hence (1) ùñ (2). Furthermore, since xω˚  ω, ξy “ ´ 1

2
B
Bt}Adexpptξqpωq}

ˇ

ˇ

t“0
, we

have (2) ðñ (3). The implication (4) ùñ (1) is the definition, and (4)ðñ (5) is

Lemma 5.9. We are left with proving that (2) implies (4). Start from an F 0 : M̃ Ñ g

that is both ρ
p1q
t -equivariant and of harmonic type, so that dF 0 “ ω. There exists

a g-valued 1-form ω0
2 such that ω` tω0

2 is closed, Adpρ
p1q
t q-valued and it represents

c`tk (i.e. the classes represented inH1pM,Adpρ
p1q
t qq by ω`tω0

2 and c`tk coincide).
Define two V-valued 1-forms ψ0, ψ by:

ψ0 “ ω0
2 ´ rF

0, ωs, ψ “ ψ0 ` dη where Jpηq “ ´ω˚  ω ´ d˚ψ0

(such an η exists because ´ω˚  ω P hK “ ImagepJq by hypothesis). Then ψ

satisfies (19), and letting ω2 “ ω0
2 ` dη, again ω ` tω2 is an Adpρ

p1q
t q-equivariant,

closed 1-form that represents c ` tk. We apply lemma 3.12 with this 1-form as φ

and τ “ ρ
p1q
t , to construct a F ` tF2 : M̃ Ñ gbRrts{pt2q. This pair pF, F2q is then

ρ
p2q
t -equivariant and of harmonic type. �

Remark that by the usual theory of moment maps (cfr. [Kir84], Part 1), when
G is a complex group, defining the moment map µpωqpξq “ ´ i

2

ş

M
xrξ, ωs, ωydVol

for ξ P hk, we find that point (3) can be strengthened to “ω is a minimum of the
L2-norm”. Such a minimum exists if and only if ω is a polystable point of the
action.

5.3. Existence of w. We have discussed the existence of an equivariant pair pF, F2q
of harmonic type, since its existence would imply the existence of a harmonic and
equivariant second order deformation w. Now we investigate the existence of w
directly. For the sake of brevity, we introduce the following terminology (the reason
of which will become clear in Proposition 5.12).

Definition 5.11. A map f : M̃ Ñ N is deformable along ρ
p1q
t “ pρ0, cq if there

exists second order deformations ρ
p2q
t of ρ

p1q
t and pv, wq of f , the latter being ρ

p2q
t -

equivariant and harmonic. It is called C-deformable if there exists a ρ
p2q
t as above

and a ρ
p2q
t -equivariant pF, F2q of harmonic type.
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We claim that the existence of these objects only depends on f and ρ
p1q
t only (i.e.

not on the chosen ρ
p2q
t nor on the first order deformation of f). That the existence

of F2 is independent on the F chosen, is lemma 5.9. The fact that the existence of

w depends on ρ
p1q
t only has a similar proof: If ρ

p2q
t and ρ̃

p2q
t are two second order

deformations of ρ
p1q
t , then the equations for the correspondingw and w̃ are such that

w´ w̃ is a pρ0, k̃ ´ kq-equivariant first order deformation, hence we apply theorem

3.11. Now fix ρ
p2q
t , and suppose that there exists a second order deformation pv, wq

of f . Let v1 be any other ρ
p1q
t -equivariant harmonic first order deformation of f .

Then there exists a ξ P h such that v “ ϑTN pf, F q and v
1 “ ϑTN pf, F ` ξq. One

checks easily that

w1 “ w ` 2rF rks, ξps ` rξk, ξps

makes pv1, w1q into a ρ
p2q
t -equivariant harmonic second order deformation. This

concludes the proof that Definition 5.11 is well posed.
In the following, suppose that G is a complex algebraic group. Recall that in

this case multiplication by i anticommutes with adjunction, since irks “ rps. Then
we have:

Proposition 5.12. Consider the two first order deformations of ρ0 given by ρ
p1q
t “

pρ0, cq and ρ̃
p1q
t “ pρ0, icq. Then f is C-deformable along ρ

p1q
t if and only if it is

along ρ̃
p1q
t . Furthermore, this is equivalent to f being deformable both along ρ

p1q
t

and ρ̃
p1q
t .

Proof. Since piωq˚ “ ´iω˚, we have piωq˚ piωq “ ω˚ ω. Thus the condition (2)

of Proposition 5.10 is invariant under passing from ρ
p1q
t to ρ̃

p1q
t . In alternative, one

can explicitly compute that if ρ
p2q
t “ pρ0, c, kq is a second order deformation of ρ

p1q
t ,

then ρ̃
p2q
t “ pρ0, ic,´kq is one of ρ̃

p1q
t , and if pF, F2q are what we seek the former,

then pF̃ , F̃2q “ piF,´F2´ ηq are for the latter, for any η such that Jpηq “ 2ω˚ ω.
To prove that if f is deformable along both directions then it is C-deformable,

suppose that pv, wq are defined along ρ
p2q
t and pṽ, w̃q along ρ̃

p2q
t (defined as above).

A long but straightforward computation, then, proves that defining

´η “ βN pwq ` 2i
“

βN pṽq, βN pvq
‰

` βNpw̃q

then Jpηq “ 2ω˚  ω, as claimed. �

So far, we do not know of any example of a deformable f which is not C-
deformable. There are, however, plenty of obstructed (i.e. not deformable) first
order deformations:

Example 5.13. Consider the trivial representation ρ0 : Γ Ñ SLpn,Rq and a sec-

ond order deformation ρ
p2q
t such that c and k are strictly upper triangular. The

metrics f : M̃ Ñ N “ SLpn,Rq{Opnq are constant maps, hence β “ 0 and the
canonical connection is just flat differentiation. A short computation proves that
d˚ is independent of the chosen metric and ∆ “ d˚d is (up to sign) the usual
Laplace-Beltrami operator on M . Thus harmonic first and second order defor-
mations βN pvq, βN pwq are just matrices with harmonic functions as entries. If
f , f 1 “ g ¨ f are two metrics, with g P G, ones sees easily that multiplying by g
sends pρ0, c, kq-equivariant and harmonic deformations of f to pρ0,Adgpcq,Adgpkqq-
equivariant and harmonic deformations of f 1, so we can suppose f “ eK; in this
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way, βN pvq and βN pwq are symmetric matrices. Writing down explicitly the equiv-
ariance conditions, we obtain, for example for the first component w11 of w:

w11pγx̃q “ w11px̃q `
n

ÿ

j“2

λ1,jpγqF1jpx̃q `
1

2

n
ÿ

j“2

λ1,jpγq
2; ∆pw11q “ 0,

where λijpγq are the components of cpγq and Fij is the pi, jq-th component of
the upper triangular matrix F with dF “ ω (whose symmetrization is βN pvq).
However, one sees readily that this is the same kind of equivariance as that of
1
2

řn
i“1 Fip¨q

2, which is subharmonic. Thus the difference 1
2

řn
i“1 Fip¨q

2 ´ w11 is a
subharmonic function defined on M , which is compact, hence constant. It follows
that 1

2

řn
i“1 Fip¨q

2 is harmonic, as well, which forces it to be constant and all of the
λ1,j ’s to vanish. Proceeding inductively on the other diagonal members wjj , one

eventually finds out that, unless c “ 0, no ρ
p2q
t -equivariant harmonic second order

deformation can exist.

Clearly, the same proof works with SLpn,Cq in place of SLpn,Rq, but in any of
these examples if f is not deformable along pρ0, cq then it is not along pρ0, icq as
well. Some other example has to be investigated in order to find a deformable non
C-deformable f .

5.4. Conclusions. To conclude, we collect the main results in the following theo-

rem, and then we investigate the conditions on ρ
p1q
t for which every ρ0-equivariant

metric every is deformable to the second order.

Theorem 5.14. Let ρ
p2q
t “ pρ0, c, kq be a second order deformation of ρ0, and f

a harmonic metric. If one of the equivalent conditions in proposition 5.10 holds,
then the map

ϑJ2N :

" ˆ

F

F2

˙

ρ
p2q
t -equivariant

of harmonic type

*

ÝÑ

" ˆ

v

w

˙

ρ
p2q
t -equivariant

and harmonic

*

ˆ

F

F2

˙

ÞÝÑ
´

ϑTN pf, F q, ϑTN

`

f, F2 ` rF
rks, F rpss

˘

¯

is surjective, and in fact every ρ
p1q
t -equivariant and harmonic first order deforma-

tion pf, vq extends to a second order ρ
p2q
t -equivariant and harmonic pf, v, wq. When

G is a complex algebraic group, the condition above is equivalent to the existence of
two harmonic and equivariant second order deformations, one along pρ0, cq and the
other along pρ0, icq. In this case, up to changing f to h´1f , for some h P H, the
condition can be satisfied if and only if the orbit H ¨ ω is closed in H1pM,Adpρ0qq.

Proposition 5.15. Let G be a complex algebraic group and ρ
p1q
t a first order defor-

mation of ρ0. Then the following conditions are equivalent to every ρ0-equivariant

f : M̃ Ñ N being C-deformable along ρ
p1q
t :

(1) The Rrts{pt2q-module H0
`

M,Adpρ
p1q
t q

˘

is flat;
(2) There is an exact sequence in cohomology:

0Ñ H0pM,Adpρ0qq
ˆt
ÝÝÝÑ H0pM,Adpρ

p1q
t qq

mod t
ÝÝÝÑ H0pM,Adpρ0qq Ñ 0,

i.e. h “ h1 (otherwise said, the orbit H ¨ ω Ď H1pM,Adpρ0qq is discrete).
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Proof. We start by proving that (1) ðñ (2). The only non trivial ideal of A “

Rrts{pt2q is ptq, so writing M “ H0pM,Adpρ
p1q
t qq, flatness is equivalent to the

injectivity of ptq bA MÑM, that is, to the preposition:

@tη PM, tb tη “ 0 P ptq bA M.

Now t b tη “ 0 in ptq bA M if and only if η P M, while tη P M is equivalent to
η P h. Thus flatness is equivalent to h ĎM, as wanted. Then, if we assume point
(2), that is, h “ h1, we have rω, ξs “ 0 for all ξ P h, hence xω, rω, ξsy “ 0. Thus
ω˚  ω K h, and Proposition 5.10 implies C-deformability.

To prove the converse (namely that flatness is also necessary for the C-deformability
of every metric), we make use of the theory of moment maps. By hypothesis, ω
must be a critical point for every metric; since the metrics are of the form h ¨f0, for
a fixed f0 and h P H , this is tantamount to saying that Adhpωq must be critical in
the norm induced by f0 for every h, that is, that the orbit has constant L2-norm.
But the minimal locus is also a pH X Kq-orbit, hence we get H “ pH X Kq ¨ H 1,
where H 1 is the subgroup of H fixing ω (its Lie algebra is thus h1); at the level of
Lie algebras, h “ hk ` h1. Furthermore, we know that h1 “ ph1 X hkq ‘ ph1 X hpq
is a reductive and complex Lie algebra. By elementary linear algebra, these facts
together imply that h “ h1. �

6. The second variation of the energy functional

Let ρ
p2q
t be a second order variation of ρ0, and suppose that pv, wq is a ρ

p2q
t -

equivariant second order deformation of f . Remark that, given a local orthonormal
frame tEju, the expression

@
N

∇w, df
D

`
ÿ

j

A

RN
´

dfpEjq, v
¯

v, dfpEjq
E

`
›

›

N

∇v
›

›

2

is Γ-invariant. The proof follows the same lines as for (11) (for details, see [Spi13],
Lemma 6.1.2).

Definition 6.1. The energy of a ρ
p2q
t -equivariant second order deformation pf, v, wq

is defined as:

Epf, v, wq “ Epfq ` t

ż

x∇v, dfy`

t2

2

ż

x
N

∇w, dfy `
ÿ

j

A

RN
´

dfpEjq, v
¯

v, dfpEjq
E

`
›

›

N

∇v
›

›

2
.(21)

Again, one sees directly that when pv, wq are induced by a smooth family ft, this
coincides up to the second order with Epftq. Applying βN to every term in (21),
we find the alternative expression for the second order:

B2Epf, v, wq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

@
can

∇ βN pwq, β̃
D

`
›

›rβ̃, βNpvqs
›

›

2
`

›

›

can

∇F rps
›

›

2
(22)

Proposition 6.2. Let ρ
p2q
t be a second order deformation of ρ0, and suppose that

pv, wq is a second order deformation of f induced by a ρ
p2q
t -equivariant pF, F2q of

harmonic type as in Theorem 5.14. Set ψ “ ψpF, F2q; then, the second order of the
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energy Epf, v, wq may be written as:

(23)
B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

M

@

ψ, β
D

` }ωrps}2.

Proof. Recall that, using Notation 1.11, the relation between pv, wq and pF, F2q is:

βN pvq “ F rps; βN pwq “ F
rps
2 `

“

F rks, F rps
‰

.(24)

Since ωrps “ DcanF rps ` rβ̃, F rkss, we have

›

›ωrps
›

›

2
“

›

›

can

∇F rps
›

›

2
`

›

›rβ̃, F rkss
›

›

2
` 2

@
can

∇F rps, rβ̃, F rkss
D

.

Thus, comparing (22) to (23), we are reduced to proving that

(25) x
can

∇ βN pwq, β̃y ` }rβ̃, βN pvqs}
2 “ xψ, β̃y ` }rβ̃, F rkss}2 ` 2x

can

∇F rps, rβ̃, F rkssy.

Using DcanF2 ` rβ̃, F2s “ DF2 “ ψ ` rF, ωs and (24):

can

∇ βN pwq “
´

ψ ` rF, ωs ´ rβ̃, F2s
¯rps

` r
can

∇F rks, F rpss ` rF rks,
can

∇F rpss.

Substituting this expression into (25), and writing ω “ DcanF ` rβ̃, F s in terms of

F rks and F rps gives the result (remark also that xrβ̃, F2s, β̃y “ 0 as in the proof of
Proposition 4.2). �

The fact that when M “ pX,Ωq is a Kähler manifold the expression in (23) is
independent of the metric chosen in its Kähler class follows from the next lemma
(which implies the analogous statement for the first order, too).

Lemma 6.3. Let α1, α2 be two g-valued 1-forms on a compact Kähler manifold
pX,Ωq, and suppose that at least one of them takes values in the subbundle rps.
Then their L2 product

(26)

ż

X

@

α1, α2

D

Ωn “

ż

X

@

α1 ^ ˚α2

D

is independent of the metric chosen in the Kähler class Ω.

Proof. Without loss of generality, both α1 and α2 take values in rps. Hence α2 “
ϕ ` ϕ˚, where ϕ is the p1, 0q-part of α2. We get ˚α2 “ pϕ

˚ ´ ϕq ^ Ωn´1. Thus,
up to some constant, (26) is

ş

X
tracepα1 ^ pϕ ´ ϕ˚qq ^ Ωn´1. We are only left to

prove that tracepα1 ^ pϕ ´ ϕ˚qq is a closed 2-form. Now ϕ ´ ϕ˚ takes values in
rkCs “ rk‘ ips, the anti-selfadjoint part of gb C. Then, by orthogonality:

trace
´

d
`

α1 ^ pϕ´ϕ
˚q

˘

¯

“ trace
´

“

β, α1s ^ pϕ´ϕ
˚q

¯

´ trace
´

α1^
“

β, pϕ´ϕ˚q
‰

¯

.

Combining the cyclic symmetry of the trace with the basic symmetry for every two
1-forms rα1, α2s “ rα2, α1s, this expression vanishes. �

Example 6.4. Continuing the case G “ C˚ from Example 4.4, one sees that in

that case ψp is simply B2β̃t

Bt2

ˇ

ˇ

t“0
, thus equation (23) becomes the following trivial

expression:

B2Eptq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

X

B

Bt

ABβ̃

Bt
, β̃t

E
ˇ

ˇ

ˇ

t“0
dVol “

ż

X

ˆ

AB2β̃t
Bt2

ˇ

ˇ

ˇ

t“0
, β̃

E

`

›

›

›

›

Bβ̃t
Bt

ˇ

ˇ

ˇ

t“0

›

›

›

›

2˙

dVol.
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6.1. Plurisubharmonicity of the energy.

Definition 6.5. The Betti complex structure on the tangent space Z1pΓ, gq to the
representation space RpΓ, Gq at ρ0 is defined, for every 1-cocycle c, by JBpcq “ ic.
The metric on the same tangent space is given by the L2 scalar product of the
corresponding harmonic representatives in H1pM,Adpρ0qq.

Theorem 6.6. The energy functional is a Kähler potential for the Kähler structure
on the moduli space MBpM,Gq. In particular, the energy functional is plurisubhar-
monic on the smooth points of MBpM,Gq, and thus defines a plurisubharmonic
function on the normalization of the moduli space.

Proof. For the consequence on the normalization, see the argument in [FN80], sec-
tion 3. Let B

Bx P Tρ0
HompΓ, Gq be a tangent direction to the representation space,

and define as usual B
By “ JB

B
Bx . Then we need to prove that

ddcE
´ B

Bx
,
B

By

¯

“
´ B2

Bx2
,
B2

By2

¯

E “
›

›

›

B

Bx

›

›

›

2

.

In the same notation we have used so far, this reduces our proof to showing that,
for every harmonic map f deformable both along B

Bt and along JB
B
Bt , we have

ˆ

B2

Bt2
`

´

JB
B

Bt

¯2
˙

E “

ż

M

}ω}2dVolg ě 0.

By Theorem 5.14, f is C-deformable, hence pv, wq “ ϑJ2N pF, F2q for some
pF, F2q. As in the proof of Proposition 5.12, if η is such that Jpηq “ 2ω˚  ω,
then the pair pF 1, F 1

2q “ piF,´F2 ´ ηq induces the deformation along pρ0, icq. The
corresponding 1-form is ψpF 1, F 1

2q “ ´ψ ´ dη. Thus we compute:
ˆ

B2

Bt2
`

´

JB
B

Bt

¯2
˙

Epftq “

ż

xψ, βy `
›

›ωrps
›

›

2
` x´ψ ´ dη, βy `

›

›piωqrps
›

›

2

“

ż

›

›ωrps
›

›

2
´ xdη, βy `

›

›iωrks
›

›

2
“

ż

}ω}2,

since d˚β “ 0 is one way to express the harmonicity of f . �

Remark 6.7. It is a well-known consequence of Uhlenbeck’s compactness theorem
that the energy functional is proper on MBpM,Gq; this fact, combined with Theo-
rem 6.6, gives another proof that MBpM,Gq is Stein.

6.2. Positivity of the Hessian of the energy. Recall that Hitchin [Hit87] con-
structed the moduli space of solutions to the self-duality equations on a Rie-
mann surface Σ as the quotient of the infinite dimensional affine space A ˆ Ω0,1,
where A is the space of flat connections on a principal bundle P (modeled on
A1,0pΣ, adpP qbCq) and Ω0,1 “ A0,1pΣ, adpP qbCq. Tangent vectors to the moduli

space lift to pairs p 9A, 9Φq belonging to the associated vector space. One can see
easily that in our notations a direction determined by ω corresponds to

(27) 9A “
`

ωrks
˘2
; 9Φ “

`

ωrps
˘1
,

where α “ α1`α2 stands for the p1, 0q and p0, 1q parts of a 1-form α and αrks is such

that αrkspχq “ αpχqrks for real tangent fields χ P ΞpΣq (for the case of G “ C
˚, cfr.

[GX08] §4.2 for this passage “from harmonic coordinates to Higgs coordinates”).

For general Kähler manifolds X , we will take (27) as a definition of 9A, 9Φ and we
aim to generalize the result in [Hit92], §9. What we prove is the following:
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Theorem 6.8. Let G be a complex algebraic group, and suppose that ρ0 : Γ Ñ G

is representation which is induced by a C-VHS (i.e. a critical point of the energy).

Denote by f0 : M̃ Ñ G0{K0 Ă G{K the map induced by the period mapping, as in

Notation 1.7. Then, denoting by p 9A, 9Φq a tangent direction to the moduli space and

by g “
À

rg´p,ps the Hodge structure on M̃ ˆ g, along C-deformable directions we
have

(28)
B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“ 2

ż

X

ÿ

p

´

´ p
›

› 9A´p,p
›

›

2
` p1 ´ pq

›

› 9Φ´p,p
›

›

2
¯

dVol.

Corollary 6.9. If we suppose further that the deformation takes place in G0 only,
that is, that ω P A1pg0q, then the following more convenient expressions are avail-
able (the last two are in terms of the weight 1 Hodge-Deligne pP,Qq-decomposition
of H1pM,Adpρ0qq, cfr. [Zuc79]):

B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“ 2

ż

X

ÿ

p

cp
›

›pω1q´p,p
›

›

2
, cp “

#

p, if p is even,

1´ p, if p is odd.

“

ż

X

ÿ

P`Q“1

cP }ω
pP,Qq}2 “

ż

X

ÿ

P even

2P }ωpP,Qq}2.

Proof. Equalities between all the stated expressions follow from the hypothesis of
ω being real (i.e. in g0) by making use of

}ω´p,p}2 “
›

›pω1q´p,p
›

›

2
`

›

›pω2q´p,p
›

›

2
“

›

›pω1q´p,p
›

›

2
`

›

›pω1qp,´p
›

›

2

and }pω2qp,´p}2 “ }pω1q´p,p}2. �

Corollary 6.10. In the moduli space MBpX,PSLp2,Rqq, at every critical point the
Hessian of the energy is semipositive definite.

Proof. At every such point, either the energy is zero or we have γ P rg0,0s and
θ P A1,0prg´1,1sq, and since g has complex dimension 3, there can be nothing in
rg´p,ps for |p| ě 2. Thus any expression in Corollary 6.9 proves the claim. �

Definition 6.11. Suppose f to be induced by a C-VHS as above, and let v be a

ρ
p1q
t -equivariant and harmonic first order deformation of f . We say that v is C-VHS

to the first order if Bβpvq P A1,0prg´1,1sq, since BβN pvq “
D
Btθt

ˇ

ˇ

t“0
.

One can see easily that this is the first order condition for βt “ pdft ¨ f
´1
t qrps to

remain in A1,0prg´1,1sq ‘A0,1prg1,´1sq.

Corollary 6.12. Let ρ0 be induced by a C-VHS, and denote by G0 its real Zariski
closure. If ρ0 is of Hermitian type, then the Hessian is semipositive definite along
MBpX,G0q. The directions along which it vanishes are exactly those which are
C-VHS to the first order.

Proof. By Corollary 6.9, since the Hodge structure on g has only weights ˘1 and
0, the second variation is 4

ş

X
}pω1q1,´1}2dVol. Now ωpBjq “ BjF ` rθpBjq, F s, the

second summand of which must take values in rg´1,1s ‘ rg0,0s, hence it plays no
role in }pω1q1,´1}2. Thus

ωpBjq
1,´1 “ BF 1,´1 “ 0 ðñ

D

Bt
θt

ˇ

ˇ

ˇ

t“0
“ BF rps P A1,0

`

rg´1,1s
˘

.

�
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Lemma 6.13. Let ρ
p2q
t be a second order deformation of ρ0 a representation, sup-

posed to be induced by a C-VHS. Let f be induced by the period mapping, as above,

and suppose that it is C-deformable along ρ
p1q
t . Then, the second variation of the

energy reads

(29)
B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

X

´

@

Λrω, ωs, γ
D

` }ωrps}2
¯

dVol.

Proof. Thanks to the Kähler identities (cfr. [Zuc79] or [Sim92]), equation (13) and
the identity dψ “ ´rω, ωs in (19), we have

ż

xψ, βy
(13)
“

ż

xψ,Dcγy “

ż

xDc˚ψ, γy
KI
“

ż

x´rΛ, dsψ, γy
(19)
“

ż

xΛrω, ωs, γy.

�

Proof of Theorem 6.8. Denote as usual by G0 the monodromy group, and denote by

GC
0 its complex Zariski closure. By hypothesis, ρ0 being induced by a C-VHS means

that there is a faithful linear representation GC
0 ãÑ GLpr,Cq such that the resulting

vector bundle V “ pX̃ˆC
rq{Γ supports a C-VHS; we give EndpVq “ pX̃ˆglnpCqq{Γ

the induced C-VHS structure of weight 0. Then we know that G0 is the intersection

of GC
0 with the subgroup Upp, qq of GLpr,Cq respecting the polarization, and that

if we set ku “ u X
À

p”0 g
´p,p and pu “ u X

À

p”0 g
´p,p we obtain a Cartan

decomposition for u. We define k “ ku‘ ipu and p “ pu‘ iku for the induced Cartan
decomposition on g. Then since f takes values in G0{K0, every two terms of the
decomposition g “ ku ‘ pu‘ iku ‘ ipu are orthogonal with respect to the metric on
X̃ ˆ g, which is twice the real part of the Hermitian extension x¨, ¨yC of the metric
x¨, ¨y induced on u by f . Taking an adequate faithful representation, then, we can
suppose without loss of generality that g “ glrpCq.

Fix a local orthonormal frame on X of the form t B
Bxj

, B
Byj

“ i B
Bxj
u, and write for

brevity (dropping the j in the notation):

ω
´ B

Bxj

¯

“ ξ1 ` iξ2; ω
´ B

Byj

¯

“ η1 ` iη2, ξ1, ξ2, η1, η2 P u

Write ξk “
ř

p ξ
p
k for the projection ξ

p
k P rg

´p,ps (which is no more in u), and

similarly for the η’s. We aim to prove that both (28) and (29) reduce to:

ż

X

ÿ

p

ˆ

p´1qp4pIm
´

@

ξ
p
2 , η

p
2

D

C
´

@

ξ
p
1 , η

p
1

D

C

¯

`
ÿ

p”1

2}ξp1}
2
C ` 2}ηp1}

2
C

`
ÿ

p”0

2}ξp2}
2
C ` 2}ηp2}

2
C

˙

dVol.

(30)

Indeed, the first term of (29) equals the term in (30) involving the imaginary part,
and the second one the part involving the squares. The latter claim is proved

explicitly by computing }ωrps}2 “
ř

}ξ
rp0s
1 }2` }piξ2q

rik0s}2 ` }η
rp0s
1 }2 ` }piη2q

rik0s}2,
and using that rpu ‘ ipus “

À

p”1rg
´p,ps to get the result. The former is a bit
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longer; first of all,
ş

xΛrω, ωs, γy equals:
ż

X

Re
´

´ 2i
A

ξ1 ` η2 ` i
`

ξ2 ´ η1
˘

,
“

γ,
`

ξ1 ´ η2 ` i
`

ξ2 ` η1
˘˘˚‰D

C

¯

“ 2

ż

X

@

ξ1 ` η2,
“

γ, ξ˚
2 ` η

˚
1

‰D

C
`

@

ξ2 ´ η1,
“

γ, ξ˚
1 ´ η

˚
2

‰D

C
(31)

(here we have disregarded the purely imaginary terms and the last expression is,
in fact, real). Remark that, ξ1 being real (that is, in u), ξ˚

1 “
ř

pp´1q
p`1ξ

p
1 , and

similarly for ξ˚
2 , η

˚
1 and η˚

2 ; thus:

(31) “ 2

ż

X

ÿ

p

p´1qpip

ˆ

@

ξ
p
1 , ξ

p
2

D

C
`

@

η
p
2 , ξ

p
2

D

C
`

@

ξ
p
1 , η

p
1

D

C
`

@

η
p
2 , η

p
1

D

C

˙

`
ÿ

p

p´1qpip

ˆ

@

ξ
p
2 , ξ

p
1

D

C
´

@

ξ
p
2 , η

p
2

D

C
´

@

η
p
1 , ξ

p
1

D

C
`

@

η
p
1 , η

p
2

D

C

˙

.

Since the result must be real, the terms
@

ξ
p
1 , ξ

p
2

D

C
`

@

ξ
p
2 , ξ

p
1

D

C
(and the respective

ones for the η’s) cancel out. This finishes the first half of the proof.
To prove that (28) equals (30), the usual relations between Cartan and Hodge

decompositions give
›

› 9A´p,p
›

›

2
“

›

›ωrksp2B̄jq
´p,p

›

›

2

C
“

ÿ

p”0

›

›ξ
p
1 ` iη

p
1

›

›

2

C
`

ÿ

p”1

›

›iξ
p
2 ´ η

p
2

›

›

2

C
;

›

› 9Φ´p,p
›

›

2
“

›

›ωrpsp2Bjq
´p,p

›

›

2

C
“

ÿ

p”0

›

›iξ
p
2 ` η

p
2

›

›

2

C
`

ÿ

p”1

›

›ξ
p
1 ´ iη

p
1

›

›

2

C
.

Substituting into (28) and using the identity }a` ib}2
C
“ }a}2

C
` }b}2

C
` 2Imxa, byC,

we get:

2
ÿ

p”0

´p
´

›

›ξ
p
1

›

›

2

C
`

›

›η
p
1

›

›

2

C
` 2Im

@

ξ
p
1 , η

p
1

D

C

¯

` p1´ pq
´

›

›ξ
p
2

›

›

2

C
`

›

›η
p
2

›

›

2

C
` 2Im

@

η
p
2 , ξ

p
2

D

C

¯

` 2
ÿ

p”1

´p
´

›

›ξ
p
2

›

›

2

C
`

›

›η
p
2

›

›

2

C
` 2Im

@

ξ
p
2 , η

p
2

D

C

¯

` p1 ´ pq
´

›

›ξ
p
1

›

›

2

C
`

›

›η
p
1

›

›

2

C
` 2Im

@

η
p
1 , ξ

p
1

D

C

¯

.

Finally, as ξ1 is real, }ξp1}
2
C
“ }ξ´p

1 }2
C
, so that summing over positive and negative

p’s cancel out (and similarly for the other norms). For the same reason, the terms
of the form Imxξp2 , η

p
2yC cancel out unless they are multiplied by p. Removing the

vanishing terms gives (30). �

Remark 6.14. Avoiding technical complications, the same ideas in this proof can
be used directly to prove Corollary 6.9 for variations inside g0 only; the resulting
computations simplify significantly (cfr. [Spi13], Proposition 6.3.4).
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