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Abstract

We finely describe the "coming down from infinity" for birth and death processes

which eventually become extinct. Our biological motivation is to study the decrease of

regulated populations which are initially large. Under general assumptions on the birth

and death rates, we describe the behavior of the hitting time of large integers. We let

two regimes appear and derive an expression of the speed of coming down from infinity.

In the case of death rates with regular variations, we also get a central limit theorem and

the asymptotic probability of extinction in small times. Finally, we apply our results to

birth and death processes in varying environment in whose the environment influences

the competition.

Key words: Birth and death processes, Coming down from infinity, Law of large numbers,
Central limit theorem, Extinction probability.
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1 Introduction

Our goal in this paper is to finely describe the "coming down from infinity" for a birth and
death process which eventually becomes extinct. Our motivations come from the study of
population dynamics with initially large populations. In particular we wish to describe the
effect of the competition in large populations and specify persistence criteria in a possibly
varying environment. For this purpose, we decompose the trajectory of the process with
respect to the hitting times of large integers and we use some asymptotic results about sums
of independent random variables and Tauberian theorems.

The population size is modeled by a birth and death process (X(t), t ≥ 0) whose birth rate
(resp. death rate) at state n ∈ N is λn (resp. µn). In the whole paper, we assume that λn are
nonnegative and µn are positive for n ≥ 1 and that µ0 = λ0 = 0. The latter implies that 0 is
an absorbing state. These processes have been extensively studied from the pioneering works
on birth and death processes [11] and on the quasi-stationary distribution [20].
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It is well known [11, 12] that ∑

i≥1

1

λiπi
= ∞ (1)

is a necessary and sufficient condition for almost sure absorption of the process at 0, where
for n ≥ 1,

πn :=
λ1 · · ·λn−1

µ1 · · ·µn
.

Under (1), we let the initial population size go to infinity and focus on the case where the
limiting process comes back to finite values in finite time. This behavior is captured by the
notion of "coming down from infinity". Characterizations of the coming down from infinity
have been given in [2, 7]. They rely on the convergence of the series

S :=

+∞∑

n=1

1

λnπn

∑

i≥n+1

πi < +∞ (2)

or on the finiteness of the first moment of time of absorption, uniformly in the initial condi-
tion. As proved in Van Doorn [20], this is also equivalent to the existence and uniqueness of
the quasi-stationary distribution at 0. In particular, the uniqueness of the quasi-stationary
distribution is deeply related to the way the process comes back into compact sets, see [15] or
[7].

In Section 2, we improve this result by an additional exponential moment condition linked to
the Lyapounov function J(n) =

∑n−1
k=1

1
λkπk

∑
i≥k+1 πi.

We go further in the description of the coming down from infinity, under a slightly more
restrictive assumption than (1) :

λn

µn
−→

n→+∞
l < 1. (3)

That allows us to rigorously define the law P∞ of the process starting from infinity by a
tightness argument. Assumption (3) is satisfied by the parameters of the classical models
motivated by ecology, including competition between individuals or Allee effect. We also need
the following technical assumption on the death rate to obtain the asymptotic behavior of the
integers hitting times :

sup
k,n≥1

µn

µn+k
< ∞. (4)

Two interesting classes of sequences fulfill condition (4): the death rates which are non-
decreasing for large enough integers and the regularly varying death rates (see Section A in
Appendix for definitions).
When conditions (3) and (4) are both satisfied, it is easy to check (see Lemma B.1 in the
Appendix) that the series S is finite if and only if

∑

i≥1

1

µi
< +∞. (5)

Under the assumptions (3), (4) and (5), we study in Section 3 the asymptotic behavior of
the decreasing sequence (Tn)n of hitting times, defined by

Tn = inf{t ≥ 0,X(t) = n}.
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Then, (1) and (2) are satisfied, X comes down from infinity a.s. at time 0. We put in light two
different regimes which depend on whether the mean time to go from n+1 to n is negligible or
not compared to the mean time to reach n. We are then able to give the asymptotic behavior
of X for small times. We show that the speed of coming down from infinity is obtained
from a deterministic decreasing function t 7→ v(t) tending to infinity at 0 and defined as the
generalized inverse of the mapping n 7→ E∞(Tn) = S − J(n − 1). More precisely, our main
result (Section 4) ensures that

lim
t→0

X(t)

v(t)
= 1,

where the convergence is either in probability or almost surely, depending on the respective
asymptotic behaviors of the birth and death rates. For that, we need to control the trajectory
of the process between two successive times Tn. We also require that the rates µn are regularly
varying to get the a.s. convergence. In addition, we derive in that case a central limit theorem
(Theorem 4.2) and the probability to be absorbed exceptionally fast (Theorem 5.1). The
proofs rely on a central limit theorem for the sum of independent random variables, some
Tauberian results and coupling arguments. Roughly speaking, we prove that

P∞(T0 ≤ t) behaves as exp
(
−t

1

1−ρ

)
,

as t tends to 0, where ρ is the index of the variations of (µn)n.
These results apply in particular to the logistic birth and death process and to the Kingman

coalescent. In both cases, we improve the known results on the coming down from infinity.
Lambert [14] characterizes the distribution of the absorption time for the logistic branching
process starting from infinity. Our work extends to very general death rates, as polynomial
increase, which are motivated by ecological data for competition of species, see e.g. Sibly and
al [17].
The proof of the speed of coming down from infinity for Kingman coalescent has already been
obtained in Aldous [1]. We complete this result by estimating the probability that the most
recent common ancestor is achieved very fast. Our proof also suggests the way this rare event
occurs by considering the associated successive coalescent times.

Section 6 is devoted to the main application of our results, which is an extinction criterion
for time inhomogeneous birth and death processes. These processes have been studied in the
framework of randomly varying environment, as described in Cogburn and Torrez [9], [18].
Our results allow to obtain extinction results in cases where the environment can be both
unfavorable during some periods and favorable during the rest of the time. We quantify the
minimal duration of the unfavorable environmental periods leading to eventual extinction.
For example, this problem is relevant in epidemiology, when the environment influences the
parameters of the infection (see Bacaer-Dads [3] and van den Broek-Heesterbeek [19]). The
proof relies on the evaluation of the probability of extinction for time homogeneous birth and
death processes starting from ∞ given above.

The paper is organized as follows. In the next section, we work under the extinction
assumption (1) and gather general characterizations of the coming down from infinity, such
as (2). Focusing on the subclass of birth and death processes satisfying (3), (4) and (5) in
Section 3, we describe the hitting time of large integers when the process starts from infinity.
Under some additional assumption, we can then derive in Section 4 the asymptotic behavior
of X(t) when t is small. Moreover, when the death rate has regular variations, we can also
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quantify the probability of extinction before a small time (Section 5) and the minimal time of
competition leading to extinction in varying environment (Section 6). Finally in Appendix,
we illustrate our results by several examples and give some useful details on regularly varying
functions.

2 Coming down from infinity

We first focus on the time spent by the process (X(t), t ≥ 0) to go from level n+1 to level n.
We introduce the notation

τn := inf{t > Tn+1;X(t) = n} − Tn+1, Gn(a) := E (exp(−aτn)) , (a > 0).

By the strong Markov property, τn has the law of Tn under Pn+1 and the random variables
(τn)n≥0 are independent.

Proposition 2.1. For each n ∈ N, we have

E(τn) = En+1(Tn) =
1

λnπn

∑

i≥n+1

πi (6)

and for every a > 0,

Gn(a) = En+1(exp(−aTn)) = 1 +
µn + a

λn
− µn

λn

1

Gn−1(a)
. (7)

Proof. The proof of the first part uses the Lyapounov function defined for all m ∈ N
∗ by

J(m) =





m−1∑

n=1

1

λnπn

∑

i≥n+1

πi if m ≥ 2,

0 if m < 2.

We denote by L the infinitesimal generator of X: for any bounded function f on N and any
n ∈ N

∗,
L(f)(n) = (f(n+ 1)− f(n))λn + (f(n− 1)− f(n))µn. (8)

One easily checks that for any m ∈ N
∗,

LJ(m) = −1.

Thus, the process

J(X(t)) −
∫ t

0
LJ(X(u))du = J(X(t)) + t

is a martingale with respect to the natural filtration of X. Therefore, we have for all k ≥ 0
and t ≥ 0,

En+1(J(X(t ∧ Tn))) + En+1(t ∧ Tn) = J(n + 1). (9)

Adding that J is bounded by S < +∞, we can use the bounded and monotone convergence
theorems to let t → ∞ in (9) and get

En+1(J(X(Tn))) + En+1(Tn) = J(n) + En+1(Tn) = J(n + 1).
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Thus En+1(Tn) = J(n+1)−J(n) which concludes the proof of the first part of the proposition.

We consider now the Laplace transform of τn and follow [2, p. 264]. By the Markov property,
we have

τn−1
(d)
= 1{Yn=−1}En + 1{Yn=1}

(
En + τn + τ ′n−1

)

where Yn, En, τ ′n−1 and τn are independent random variables, En is exponentially distributed
with parameter λn + µn and τ ′n−1 is distributed as τn−1 and P(Yn = 1) = 1 − P(Yn = −1) =
λn/(λn + µn). Hence, we get

Gn−1(a) =
λn + µn

a+ λn + µn

(
Gn(a)Gn−1(a)

λn

λn + µn
+

µn

λn + µn

)

and (7) follows.

We now give the usual definition of coming down from infinity, which means that the state
∞ is an entrance boundary for the process X [16, p. 305].

Definition 2.2. We say that the process (X(t), t ≥ 0) comes down from infinity if there exist
a positive number t and a non-negative integer m such that

lim
k→+∞

Pk(Tm < t) > 0.

We give now several necessary and sufficient conditions for (X(t), t ≥ 0) to come down from
infinity. The two first ones are directly taken from [7] . We add here an exponential moment
criterion which is useful for the forthcoming proofs. Let us also mention that it is equivalent
to the existence and uniqueness of a quasistationnary distribution (cf. Van Doorn [20]).

Proposition 2.3. Under condition (1), the following assertions are equivalent:

(i) The process (X(t), t ≥ 0) comes down from infinity.

(ii) S < +∞.

(iii) supk≥0 Ek[T0] < +∞.

(iv) For all a > 0, there exists ka ∈ N such that supk≥ka Ek (exp(aTka)) < +∞.

This result is the discrete counterpart of Lemma 7.4 in [7] for Feller diffusion processes dZt =√
γZtdBt + Zt(r − f(Zt))dt and suitable function f and r > 0. Recall that if (3) and (4) are

satisfied, Assertion (ii), and then (i), (iii), (iv), are equivalent to Condition (5), which can be
seen as the discrete counterpart of the criteria in [7, p.1953] stating that the process Z comes
down from infinity if and only if

∫∞
1

dx
xf(x) < +∞.

Proof of Proposition 2.3. Assertions (i), (ii), and (iii) are equivalent according to [7, Prop
7.10]. Let us now prove that (iv) implies that X comes down from infinity. Indeed, taking
a = 1 in (iv), we have M := supk≥k1 Ek (exp(Tk1)) < +∞. Then Markov inequality ensures
that for all k ≥ k1 and t ≥ 0, Pk(Tk1 < t) ≥ 1− exp(−t)M . Choosing t small enough ensures
that the process comes down from infinity.

5



Finally, we prove that (ii) implies (iv) by adapting the proof of [7, Prop 7.6] to the discrete
setting. We fix a > 0 and using S < +∞, there exists ka such that

∑

n≥ka−1

1

λnπn

∑

i≥n+1

πi ≤
1

a
.

We now define the Lyapounov function Ja as

Ja(m) :=





m−1∑

n=ka−1

1

λnπn

∑

i≥n+1

πi if m ≥ ka ,

0 if m < ka .

We note that Ja is non-decreasing, bounded and recalling the definition of the generator L
from (8), LJa(m) = −1 for any m ≥ ka. Then,

Mt := eatJa(X(t)) −
∫ t

0
eau (aJa(X(u)) + LJa(X(u))) du, (t ≥ 0)

is a martingale with respect to the natural filtration of X. Using the stopping time Tka and
the fact that Ja(X(u)) ≤ Ja(∞) ≤ 1/a , we have for all k ≥ ka and t ≥ 0,

Ek

(
eat∧TkaJa(X(t ∧ Tka))

)
= Ek

(∫ t∧Tka

0
eau (aJa(X(u)) + LJa(X(u))) du

)
+ Ja(k)

= Ek

(∫ t∧Tka

0
eau (aJa(X(u)) − 1) du

)
+ Ja(k)

≤ Ja(k)

since u ≤ t ∧ Tka ensures that X(u) ≥ ka and LJa(X(u)) = −1. Therefore, for any k ≥ ka,
Pk-a.s. Ja(X(t ∧ Tka)) ≥ Ja(ka) and

Ek

(
eat∧Tka

)
≤ Ja(k)

Ja(ka)
.

Then (iv) follows from the monotone convergence theorem and Assumption (ii).

Under our additional assumption (3), we can now define the process starting from infinity and
check that it indeed comes down instantaneously from infinity a.s.. We set N := N∪{∞} and
for any T > 0, we denote by D

N
([0, T ]) the Skorohod space of càdlàg functions on [0, T ] with

values in N.

Proposition 2.4. Let T > 0. Under (1) and (2) and (3), the law of X under Pk converges
weakly as k → +∞ in D

N
([0, T ]).

We denote by P∞ the law of the limit and we have

P∞ (inf{t > 0 : X(t) < +∞} = 0) = 1.

Proof. First, we show that under Assumption (3) and for any N0 ∈ N
∗ and t > 0,

sup
s∈[0,t]

EN0
(X(s)) < +∞. (10)
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Indeed, there exists N ∈ N
∗ such that for n ≥ N , λn − µn ≤ 0. Hence, for s ≤ t,

EN0
(Xs) = N0 +

∫ s

0
EN0

(
λX(u) − µX(u)

)
du

≤ N0 +

∫ s

0
EN0

(
(λX(u) − µX(u))1X(u)≤N

)
du ≤ N0 + sup

n≤N
|λn − µn|t.

To prove the convergence of the sequence of laws Pk, we use Theorem 1 in Donnelly [10],
which gives conditions under which a sequence of processes will converge (in law) to a Markov
process with an entrance boundary. In our setting, the birth and death processes under Pk

and Pk′ only differ by their initial conditions k and k′. Thus, we only need to check the
equi-boundedness condition : for any t > 0,

lim
A→+∞

lim inf
k→+∞

Pk(X(t) ≤ A) = 1. (11)

For that purpose, we combine the first part of Proposition 2.1 and (2) to get E(
∑

i≥1 τi) < ∞.
Then,

∑
i≥1 τi is a.s. finite and for any t, ε > 0, there exists N0 ≥ 1 such that

P




∞∑

i=N0

τi ≥
t

2


 ≤ ε. (12)

We fix t and ε > 0. For k ≥ N0 and A > 0,

Pk(X(t) ≥ A) ≤ Pk(TN0
≥ t/2) + Pk(X(t) ≥ A,TN0

< t/2)

≤ Pk




k∑

i=N0

τi ≥ t/2


+ sup

s∈[0,t/2]
PN0

(X(t− s) ≥ A)

≤ ε+A−1 sup
s∈[t/2,t]

EN0
(X(s)),

using (12) and the Markov inequality in the last inequality. Making A tend to infinity and
recalling (10), we get (11) and the weak convergence of Pk to P∞ . Using again (11) ensures
that for any t, ε > 0, there exists A such that P∞(X(t) > A) ≤ ε. Therefore,

P∞(inf{s ≥ 0 : X(s) < +∞} > t) ≤ P∞(X(t) > A) ≤ ε,

so that inf{t ≥ 0 : X(t) < +∞} = 0 P∞ a.s. It ends the proof.

3 Behavior of Tn under P∞

From now on, we assume that the sequences (λn)n and (µn)n satisfy the hypotheses (3), (4)
and (5). Thus, according to Propositions 2.3 and 2.4, X comes down from infinity and P∞ is
well-defined.
In this section, we study the asymptotic behavior of Tn as n → +∞ under P∞ by establishing a
law of of large numbers and a central limit theorem. Let us note that under P∞, Tn =

∑
i≥n τi,

so that (6) yields

E∞(Tn) =
∑

i≥n

1

λiπi

∑

j≥i+1

πj.
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Then S < +∞ ensures that E∞(Tn) decreases to 0 as n → +∞.

In the following theorem, we prove that Tn behaves as its mean E∞ (Tn) as n → +∞. Two
regimes appear depending on whether the ratio of mean times En+1(Tn)/E∞(Tn) vanishes or
not. In the first case, the time Tn can be seen as the contribution of independent random
variables and a law of large numbers holds. In the second case, the time Tn is essentially given
by the sums of τi for i close to n and renormalizing Tn by its mean yields a random limit.

Theorem 3.1. We assume that (3), (4) and (5) hold.

(i) If En+1(Tn)/E∞(Tn) −→
n→+∞

0, then

Tn

E∞(Tn)
−→

n→+∞
1 in P∞ − probability. (13)

Assuming further that
∑

n≥0

(En+1(Tn)/E∞(Tn))
2 < +∞, then (13) holds P∞-a.s.

(ii) If En+1(Tn)/E∞(Tn) −→
n→+∞

α with α ∈ (0, 1], then

Tn

E∞(Tn)

(d)−→
n→+∞

Z :=
∑

k≥0

α (1− α)k Zk

where (Zk)k is a sequence of i.i.d. random variables whose common Laplace transform
G(a) := E∞ (exp(−aZ0)) is the unique function [0,+∞) → [0, 1] that satisfies

∀a > 0, G(a)
[
l
(
1−G(a(1 − α))

)
+ 1 + a(1− l(1− α))

]
= 1. (14)

We refer to Appendix C for some examples and counterexamples. For instance, if λk = k,
then µk = kγ log(k)β with γ > 1 obeys to the regime (i), whereas µk = exp(βk) corresponds
to the regime (ii). We also stress that En+1(Tn)/E∞(Tn) may not converge (Example 3) and
that the a.s. convergence can fail under the assumption (i) (Example 4).
Before proving Theorem 3.1, we need a lemma dealing with the asymptotic behaviors of the
first moments of τn as n → +∞.

Lemma 3.2. Under hypotheses (3), (4) and (5), there exist positive constants C1, C2, C3

such that for n ≥ 1
i!

µi
n+1

≤ E∞
(
τ in
)
≤ Ci

µi
n+1

, i = 1, 2, 3.

Moreover, under the additional assumption l = 0, we have

E∞
(
τ in
)

∼
n→+∞

i!

µi
n+1

, i = 1, 2, 3.

Proof. By rewriting (6), we have E∞ (τn) =
∑

i≥n
1

µi+1

∏i−1
j=n

λj+1

µj+1
, with the convention

∏n−1
j=n

λj+1

µj+1
=

1. Thus, according to Lemma B.2 applied to ai = λi+1/µi+1 and bi = 1/µi+1, under (4), we
obtain the expected bounds for the first moment (i = 1). Moreover

sup
n,k≥0

E∞ (τn+k)

E∞ (τn)
< ∞ (15)
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and we can now deal with the second moment of τn. Differentiating (7) twice at a = 0, we get

E∞
(
τ2n−1

)
=

λn

µn
E(τ2n) + 2E∞ (τn−1)

2 , n ≥ 1.

Adding that
(
E∞

(
τ2n
))

n
is bounded from point (iv) of Proposition 2.3, that limn→+∞ λn/µn <

1 and that (E∞ (τn))n satisfies (15), another use of Lemma B.2 ensures the desired result for
i = 2. Similarly, the case i = 3 is obtained by differentiating (7) three times.

Proof of Theorem 3.1(i). We use the notation

mn = En+1(Tn), rn :=
En+1(Tn)

E∞(Tn)
=

mn

E∞(Tn)
.

Assumption (i) means that rn → 0. Let ε > 0. Using Bienaymé-Tchebychev inequality and
the independence of the random variables (τn)n, we have

P∞

(∣∣∣∣
Tn

E∞(Tn)
− 1

∣∣∣∣ > ε

)
≤ Var(Tn)

ε2E∞(Tn)2
=

∑
k≥nVar(τk)

ε2E∞(Tn)2
. (16)

As E∞(Tn+1)/mn = 1/rn − 1 → +∞ as n → +∞, for all A > 0, there exists an integer n0

such that, for n ≥ n0, E∞(Tn+1) ≥ Amn and

E∞(Tn)
2 =



∑

k≥n

mk




2

≥ 2
∑

k≥n

mk

∑

l>k

ml ≥ 2A
∑

k≥n

m2
k,

since
∑

l>k ml = E∞(Tk+1) ≥ Amk. Coming back to (16), for n ≥ n0, we have

P∞

(∣∣∣∣
Tn

E∞(Tn)
− 1

∣∣∣∣ > ε

)
≤ 1

2Aε2

∑

k≥n

Var(τk)

∑

k≥n

m2
k

. (17)

Moreover, according to Lemma 3.2, for n ≥ 1

Var∞ (τn) ≤
C2 − 1

µ2
n

≤ (C2 − 1)m2
n.

Hence, the r.h.s. of (17) goes to 0 as A → +∞ and the proof of the convergence in probability
is complete.

We now prove the a.s. convergence when the series
∑

n r
2
n converges. According to the law of

large numbers of Proposition 1 in [13], we just need to check that

∑

n≥0

Var(τn)

E∞(Tn)2
< +∞. (18)

From the first part of the proof, we know that Var(τn) ≤ ĈE (τn)
2 for some positive constant

Ĉ. So
∑

n≥1 r
2
n < +∞ ensures (18) and the proof is complete.
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Before proving point (ii) of Theorem 3.1, we prove the following key lemma focusing on the
asymptotic behavior of the time τn (recall that we denote its mean by mn).

Lemma 3.3. If limn→+∞ rn = α ∈ (0, 1], we have

lim
n→+∞

E∞(Tn+1)

E∞(Tn)
= lim

n→+∞
mn+1

mn
= 1− α, lim

n→+∞
µnmn−1 =

1

1− l(1− α)
. (19)

and
τn
mn

(d)−→
n→+∞

ζ

where the Laplace transform of ζ is the unique solution of (14).

Proof. We obtain the first part of (19) by noticing that E∞(Tn+1)/E∞(Tn) = 1− rn and that

mn+1

mn
=

rn+1

rn

E∞(Tn+1)

E∞(Tn)
.

Moreover, differentiating (7) at a = 0 yields

1 =
λn

µn

mn

mn−1
+

1

µnmn−1
,

which gives the second part of (19) thanks to (3).

Let us now prove the uniqueness of the function satisfying Equation (14). For any bounded
function g : [0,+∞) → [0, 1], we define the function H(g) : [0,+∞) → [0, 1] as

H(g) : a 7−→ 1

1 + l(1− g(a(1 − α)) + a(1− l(1− α))
.

Let g1 and g2 be two solutions of (14). We then have H(g1) = g1, H(g2) = g2 and

|g1(a)− g2(a)| = |H(g1)(a) −H(g2)(a)| = H(g1)(a)H(g2)(a)l |g1(a(1− α))− g2(a(1 − α))|
≤ l |g1(a(1 − α))− g2(a(1− α))|

where we have used that for any a > 0, H(g1)(a) ≤ 1. We then have ‖g1−g2‖∞ ≤ l‖g1−g2‖∞
with l < 1, which entails that g1 = g2 and yields the expected uniqueness.

We can now prove the convergence in distribution of τn as n → +∞ by a tightness criterion.
Indeed, for n ≥ 0, let Hn : [0,+∞) −→ [0, 1] be the function defined as

Hn(a) = E∞ (exp(−aτn/mn)) , a > 0.

The sequence (Hn)n is uniformly bounded since 0 ≤ Hn(a) ≤ 1 for every n ≥ 0 and every
a > 0. Moreover, for n ≥ 0, Hn is differentiable and for a > 0,

∣∣H ′
n(a)

∣∣ = E∞

(
τn
mn

exp

(
−a

τn
mn

))
≤ E∞ (τn)

mn
= 1.

Hence, the family (Hn)n is equicontinuous since all these functions are 1-Lipschitzian functions.
Then, thanks to Arzelà-Ascoli theorem, (Hn)n≥0 is relatively compact.
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We now need to check that (Hn)n has a unique limit point. Let us prove that if a subsequence
of (Hn) converges to H uniformly on any compact set of [0,+∞), then H satisfies (14) and is
then uniquely defined. For that purpose, we use (7), so for all a > 0 and n ≥ 1, we have

Gn−1

(
a

mn−1

)
=

[
1 +

a

µnmn−1
+

λn

µn

(
1−Gn

(
a

mn−1

))]−1

that is,

Hn−1(a) =

[
1 +

a

µnmn−1
+

λn

µn

(
1−Hn

(
a

mn

mn−1

))]−1

. (20)

According to Lemma 3.3, mn/mn−1 → 1 − α as n → +∞. Thus, if a subsequence (also
denoted by Hn for simplicity) converges to H uniformly, we have for every a > 0

lim
n→+∞

Hn

(
a

mn

mn−1

)
= H(a(1− α)).

Letting n → +∞ in (20), since µnmn−1 → 1/(1 − l(1 − α) and λn/µn → l, H satisfies (14)
and for every a > 0

lim
n→+∞

E∞ (exp(−aτn/mn)) = H(a).

Finally, we check that H is the Laplace transform of some random variable by proving that
H(0+) := lima→0 H(a) = 1. From (14), H(0+) is a solution of lH(0+)2−(1+ l)H(0+)+1 = 0.
If l = 0, this equation has only 1 as a solution. If l > 0, the two solutions are 1 and 1/l. But
1/l > 1 and obviously H(0+) ≤ 1, so that 1 is the only possible solution. Hence, in all cases,
H(0+) = 1 and that ends the proof.

We can now proceed with the proof of the second part of the theorem.

Proof of Theorem 3.1 (ii). Let Z =
∑

k≥0 α(1 − α)kZk be defined as in the statement of
the theorem. We use that Tn =

∑
k≥n τk where the τk’s are independent and that for all

a1, a2, . . . , an, b1, . . . bn ∈ [0, 1], a simple recursion ensures that
∣∣∣∣∣

n∏

i=1

ai −
n∏

i=1

bi

∣∣∣∣∣ ≤
n∑

i=1

|ai − bi| . (21)

Then, for every a > 0
∣∣∣∣E∞

(
exp

(
−a

Tn

E∞(Tn)

))
− E∞ (exp (−aZ))

∣∣∣∣

=

∣∣∣∣∣∣

∏

k≥n

E∞

(
exp

(
−a

τk
E∞(Tn)

))
−
∏

k≥0

E∞
(
exp

(
−aα(1− α)kZk

))
∣∣∣∣∣∣

≤
∑

k≥0

∣∣∣∣E∞

(
exp

(
−a

τk+n

E∞(Tn)

))
− E∞

(
exp

(
−aα(1 − α)kZk

))∣∣∣∣ . (22)

From Lemma 3.3, we know that in P∞-distribution, τn/mn converges to ζ. Then, thanks to
(19) and the fact that rn → α, we have for k ≥ 0

τk+n

E∞(Tn)
=

mn+k

E∞(Tn+k)

k∏

i=1

E∞[Tn+i]

E∞[Tn+i−1]
· τk+n

mn+k

(d)−→
n→+∞

α(1− α)kζ.
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The uniqueness in (14) ensures that the variables (Zk)k are distributed as ζ. Then, with the
last display, we get that all the terms of the sum in (22) vanish as n → +∞. We proceed by
bounded convergence. Using that 1− exp(−x) ≤ x for any x ≥ 0, we get for k, n ≥ 0

∣∣∣∣E∞

(
exp

(
−a

τk+n

E∞(Tn)

))
− E∞

(
exp

(
−aα(1− α)kZk

))∣∣∣∣

≤
∣∣∣∣1− E∞

(
exp

(
−a

τk+n

E∞(Tn)

))∣∣∣∣+
∣∣∣1− E∞

(
exp

(
−aα(1 − α)kZk

))∣∣∣

≤ a
mk+n

E∞(Tn)
+ aα(1 − α)kE∞(Z0). (23)

By differentiating (14) at 0, one finds E∞[Z0] = 1. Moreover,

mn+k

E∞(Tn)
=

E∞(Tn+1)

E∞(Tn)

E∞(Tn+2)

E∞(Tn+1)
· · · E∞(Tn+k)

E∞(Tn+k−1)

mn+k

E∞(Tn+k)
.

Since mk+n/E∞[Tk+n] ≤ 1 and E∞(Tn+1)/E∞(Tn) → 1 − α < 1 as n → +∞, there exist
n0 ∈ N, β < 1 and C > 0 such that mk+n/E∞(Tn) ≤ Cβk for all k ≥ 0, n ≥ n0. Thus, coming
back to (23), for n ≥ n0, we have

∣∣∣∣E∞

(
exp

(
−a

τk+n

E∞(Tn)

))
− E∞

(
exp

(
−aα(1− α)kZk

))∣∣∣∣ ≤ Cβk + aα(1 − α)k.

Since the r.h.s. in the last display is summable, the proof is complete.

We end this section by giving a central limit theorem (C.L.T.) satisfied by the sequence (Tn)n.

Theorem 3.4. We suppose that assumptions (3), (4) and (5) hold. Then, if

lim
n→+∞

Var∞ (τn)

Var∞(Tn)
= 0 (24)

and if

lim
n→+∞

Var∞ (Tn)
−3/2

∑

k≥n

E∞
(
|τk − E∞ (τk)|3

)
= 0, (25)

we have
Tn − E∞ (Tn)

Var∞(Tn)1/2
(d)−→

n→+∞
N,

where N follows a standard normal distribution.

Notice that by applying Lemma 3.2 and by using assumption (4), there is C > 0 such that
E∞(τn)
E∞(Tn)

≤ C Var∞(τn)
Var∞(Tn)

. Thus, hypothesis (24) implies that we are in the regime (i) of Theorem
3.1. We refer to the first example in Appendix.

Proof of Theorem 3.4. First, Lemma 3.2 gives that for every n ≥ 0, Var∞ (τn) ≤ C2−1
µ2
n+1

. Re-

calling Assumption (4), we get for k, n ≥ 0

Var∞ (τk+n) ≤
C2 − 1

µ2
n+k+1

≤ (C2 − 1)K2

µ2
n+1

≤ (C2 − 1)K2 Var∞ (τn)

12



where K = supk,n≥1 µn/µn+k. Thus assumption (24) entails the uniform convergence

sup
k≥0

Var∞ (τk+n)

Var∞ (Tn)
−→

n→+∞
0. (26)

Let us now prove that

Zn :=
Tn − E∞ (Tn)

Var∞ (Tn)
1/2

converges in distribution as n → +∞ toward a standard normal random variable. We follow
ideas of the proof of Theorem 27.2 in [5] where Billingsley establishes a central limit theorem
for partial sums of independent random variables thanks to Lévy theorem. Let t be a fixed
real number. We note that by (26),

∑

k≥0

log

(
1− t2

2

Var∞ (τk+n)

Var∞ (Tn)

)
∼

n→+∞
− t2

2

∑

k≥0

Var∞ (τk+n)

Var∞ (Tn)
= − t2

2
,

so we just need to prove that

Un := E∞ (exp (itZn))−
∏

k≥0

(
1− t2

2

Var∞ (τk+n)

Var∞ (Tn)

)

vanishes as n → +∞ to conclude. First, since the τn’s are independent, for all t ∈ R, n ≥ 0

|Un| =

∣∣∣∣∣∣

∏

k≥0

E∞

(
exp

(
it
τk+n − E∞ (τk+n)

Var∞ (Tn)
1/2

))
−
∏

k≥0

(
1− t2

2

Var∞ (τk+n)

Var∞ (Tn)

)∣∣∣∣∣∣
. (27)

According to (26), for n large enough and for any k, all the factors of the second product of
(27) are less than 1. Hence, thanks to (21), we have the inequality

|Un| ≤
∑

k≥0

∣∣∣∣∣E∞

(
exp

(
it
τk+n − E∞ (τk+n)

Var∞ (Tn)
1/2

))
− 1 +

t2

2

Var∞ (τk+n)

Var∞ (Tn)

∣∣∣∣∣ . (28)

According to equation (27.11) in [5, p.369], for any centered random variable ξ with a finite
second moment, we have

∣∣E (exp(itξ))− 1 + Var(ξ)t2/2
∣∣ ≤ E

(
min(|tξ|2, |tξ|3)

)
, t ≥ 0. Using

this inequality with the random variables τn+k − E∞ (τn+k), we obtain from (28) that

|Un| ≤ |t|3
∑

k≥0

E∞
(
|τk+n − E∞ (τk+n)|3

)

Var∞ (Tn)
3/2

.

and using assumption (25), Un goes to 0 as n → +∞. Is completes the proof.

4 Behavior of X(t) as t goes to 0

From the results of Section 3, we can describe the behavior of X for small times, when it
starts at +∞.
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4.1 Law of large numbers

We first prove that under P∞, X(t) behaves as v(t) as t → 0 where

v(t) := inf{n ≥ 0;E∞(Tn) ≤ t} (29)

is the generalized inverse function of n 7→ E∞(Tn) =
1

λnπn

∑
i≥n+1 πi.

The function v is a non-increasing function which tends to infinity when t tends to 0.

Two asymptotic behaviors appear, which are inherited from Theorem 3.1. First, we assume
that λn/µn → 0 as n → ∞ and that the death rate regularly varies in the neighborhood
of +∞, see Section A for details. Indeed, it ensures that the a.s. convergence of Theorem
3.1(i) holds and these assumptions are then essential to derive the behavior of X from that
(Tn : n ∈ N).

Theorem 4.1. (i) If limn→+∞ λn/µn = 0 and (µn)n regularly varies with index ρ > 1, we
have

lim
t→0

X(t)

v(t)
= 1 P∞ − a.s.

(ii) Under assumptions (3), (4) and (5) and if En+1(Tn)/E∞ (Tn) → α > 0 as n → +∞,
then

lim
t→0

X(t)

v(t)
= 1 in P∞ − probability.

We refer to Appendix for some examples. Further, we remark that if λn = 0 and µn =
n(n − 1)/2, X(t) is the number of blocks of the Kingman coalescent at time t. We recover
here from (i) the speed of coming down from infinity obtained for these processes by Aldous
in paragraph 4.2. of [1]: tX(t) −→

t→0
2 a.s..

The extension to the general case of Λ-coalescent has been solved by Berestycki, Berestycki
and Limic [4], but it is not directly included in our work for simultaneous deaths.

Proof of Theorem 4.1(i). First, we notice that the hypotheses of point (i) imply that assump-
tions (3), (4) and (5) with l = 0 are all satisfied. We now prove that

∑
n (En+1(Tn)/E∞(Tn))

2 <
+∞ to get the a.s. convergence from Theorem 3.1(i).
Since l = 0 and according to Lemma 3.2, mn ∼n→+∞ 1/µn+1, which implies that (mn)n
regularly varies at +∞ with index −ρ < −1. Then, according to Lemma A.4 in Appendix
applied to (1/µn)n, we have

En+1(Tn)

E∞(Tn)
∼

n→+∞


µn+1

∑

k≥n+1

1

µk




−1

∼
n→+∞

ρ− 1

n+ 1
,

which entails that
∑

n

(
En+1(Tn)
E∞(Tn)

)2
< +∞. So Theorem 3.1(i) yields

Tn

E∞(Tn)
−→

n→+∞
1 P∞ − a.s. (30)

The proof is now organized as follows: firstly we consider the a.s. non-increasing process Y
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defined by
Y (t) = n if t ∈ [Tn, Tn−1)

and prove that this (more regular) process comes down from infinity at speed v(t). Secondly,
we compare the process X(t) to Y (t) as t → 0 to get the result.
Thanks to Proposition A.3, v regularly varies at 0 with index 1/(1 − ρ) and v(E∞(Tn)) ∼ n
as n → +∞. Thus, from (30) and Lemma A.5 we obtain that almost surely

v(Tn) ∼
n→+∞

v(E∞(Tn)) ∼
n→+∞

n.

Adding that v is non-increasing, we get a.s. that for every ε > 0, there exists n0 ∈ N such
that for n ≥ n0

1− ε ≤ n

v(Tn)
≤ n

v(Tn−1)
≤ 1 + ε.

Let t < Tn0
so that Y (t) > n0, then if t ∈ [Tn, , Tn−1),

1− ε ≤ n

v(Tn)
≤ Y (t)

v(t)
≤ n

v(Tn−1)
≤ 1 + ε.

That ensures

lim
t→0

Y (t)

v(t)
= 1 a.s. (31)

Let us now check that X(t) ∼ Y (t) as t → 0 by proving that the heights of the excursions
of X between Tn and Tn−1 are negligible compared to n. For that purpose, we introduce the
number of birth events between the times Tn and Tn−1:

Hn := #{s ∈ [Tn, Tn−1) : X(s)−X(s−) > 0}, n ≥ 1.

For any t ∈ [Tn, Tn−1), Y (t) = n and 0 ≤ X(t)− Y (t) ≤ Hn, so

0 ≤ X(t)

v(t)
− Y (t)

v(t)
≤

HY (t)

v(t)
=

HY (t)

Y (t)

Y (t)

v(t)
. (32)

Using (31), we just need to prove that Hn/n → 0 a.s. as n → ∞ to conclude that X(t)/v(t) →
1 as t → 0.
For that purpose, we consider Ĝn(a) = E∞ (exp(−aHn)) the Laplace transform of Hn. In the
same vein as we have obtained (7), by applying the strong Markov property at the first time
when X jumps after Tn, we have the recursion formula

Ĝn(a) =
µn

λn + µn
+

λn

λn + µn
e−aĜn(a)Ĝn+1(a), a ≥ 0, n ≥ 1. (33)

Differentiating (33) twice at a = 0, the second moment of Hn satisfies the following recursion
formula

µn

λn
E∞

(
H2

n

)
= E∞

(
H2

n+1

)
+ 1 + 2 (E∞ (Hn) + E∞ (Hn+1) + E∞ (Hn)E∞ (Hn+1)) . (34)

Let us prove that the right hand side of the latter is uniformly bounded in n ≥ 0. Notice that
Hn equals the number of positive jumps between time Tn and Tn−1 of a random walk whose
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transition probabilities are given by pi,i+1 = λi/(λi+µi), pi,i−1 = µi/(λi+µi) for i ≥ 1. Since
λn/µn vanishes as n → +∞, one can choose n0 large enough so that

p := sup
n≥n0

λn/(λn + µn) < 1/2.

Moreover, for n ≥ n0, Hn is stochastically dominated by T , the hitting time of n−1 by a simple
random walk starting at n, with probability transitions (1− p, p). Thus, supn≥n0

E∞
(
H2

n

)
≤

E∞
(
T 2
)
< ∞ because p < 1/2 and the sequences (E∞ (Hn))n and (E∞

(
H2

n

)
)n are bounded.

It entails that the right hand side of (34) is bounded and there is C > 0 such that

E∞
(
H2

n

)
≤ C

λn

µn
, n ≥ 1. (35)

Finally, using that l = 0, E∞
(∑

n≥1

(
Hn
n

)2) ≤ C
∑

n≥1
1
n2

λn
µn

< ∞. In particular, Hn/n

almost surely goes to 0 as n → +∞ and we get the expected convergence.

Proof of Theorem 4.1(ii). From Theorem 3.1(ii), we know that under P∞,

Tn

E∞(Tn)

(d)−→
n→+∞

Z =
∑

k≥0

α (1− α)k Zk

with α ∈ (0, 1] and where (Zk)k is a sequence of i.i.d. random variables whose Laplace
transform satisfies (14). From this equation, one deduces E∞[Z0] = 1, which implies E∞(Z) =
1 < ∞. In particular, P∞(Z < +∞) = 1. Furthermore, using again (14),

P∞(Z = 0) ≤ P∞(Z0 = 0) = lim
a→+∞

G(a) = 0.

Hence, for any ǫ > 0, there exist 0 < A ≤ B such that P∞(Z ∈ [A,B]) ≥ 1 − ǫ/2 and for n
large enough,

P∞(A ≤ Tn/E∞(Tn) ≤ B) ≥ 1− ǫ. (36)

Moreover, according to (19), for N ≥ 0,

E∞[Tn+N ]

E∞(Tn)
−→

n→+∞
(1− α)N .

Since 0 < α ≤ 1, there exists N0 such that for all n,N ≥ N0,

E∞[Tn+N ]/E∞(Tn) ≤ min(1/(2B), A/2). (37)

By the definition (29) of the function v, we have

E∞
(
Tv(t)

)
≤ t < E∞

(
Tv(t)−1

)
.

It implies that for any t > 0 and N ≥ 1,

P∞

(
Tv(t)+N ≤ t

2

)
≥ P∞

(
Tv(t)+N ≤

E∞
(
Tv(t)

)

2

)
= P∞

(
Tv(t)+N

E∞
(
Tv(t)+N

) ≤
E∞

(
Tv(t)

)

2E∞
(
Tv(t)+N

)
)
.
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Hence, using (36) and (37), there is N ≥ 1 such that for t small enough

P∞(Tv(t)+N ≤ t/2) ≥ P∞

(
Tv(t)+N

E∞
(
Tv(t)+N

) ≤ B

)
≥ 1− ǫ.

We similarly get that for t small enough

P∞(Tv(t)−N ≥ 2t) ≥ P∞

(
Tv(t)−N

E∞
(
Tv(t)−N

) ≥ A

)
≥ 1− ǫ.

Then, we have
P∞(Tv(t)+N ≤ t/2, Tv(t)−N ≥ 2t) ≥ 1− 2ǫ.

It means that P∞(X(t) ∈ [v(t) −N, v(t) +N ]) ≥ 1− 2ǫ and ensures that X(t)/v(t) tends to
1 in probability as t → 0.

4.2 Central limit theorem

We have proved that X satisfies a strong law of large numbers when l = 0 and (µn)n regularly
varies. Under a little stronger assumption, we are now giving a central limit theorem (C.L.T.).

Theorem 4.2. If limn→+∞
λn
µn

= 0,
∑

n≥1
1
n
λn
µn

< +∞ and (µn)n regularly varies with index
ρ > 1, then

√
(2ρ− 1)v(t)

(
X(t)

v(t)
− 1

)
(d)−→
t→0

N, (38)

where N follows a standard normal distribution.

Proof. We first prove that under the assumptions of Theorem 4.2, Tn satisfies the C.L.T.
stated in Theorem 3.4. We have already shown at the beginning of the proof of Theorem
4.1(i) that assumptions (3), (4) and (5) hold if l = 0 and (µn)n regularly varies. It then
remains to check that (24) and (25) are also satisfied. From Lemma 3.2, Var∞ (τn) ∼ 1/µ2

n+1

as n → +∞, which implies that (Var∞ (τn))n regularly varies with index −2ρ. Then the fact
that Var∞ (Tn) =

∑∞
i=n+1Var∞ (τn) and Lemma A.4 ensure that Var∞ (Tn) regularly varies

with index 1− 2ρ and we get

Var∞ (Tn) ∼
1

(1− 2ρ)µ2
n+1

. (39)

Therefore we have Var∞(τn)
Var∞(Tn)

∼
n→+∞

1−2ρ
n , which entails (24). By the triangular inequality and

the binomial theorem, we have

E∞
(
|τn − E∞ (τn)|3

)
≤ E∞

(
τ3n
)
+ 3mnE∞

(
τ2n
)
+ 4m3

n.

Thanks to Lemma 3.2, all the terms of the r.h.s. are of order of magnitude 1/µ3
n+1 as n → +∞.

Thus, using again Lemma A.4 and (39), there is a positive constant C ′ such that

∑
k≥n E∞

(
|τk − E∞ (τk)|3

)

Var∞ (Tn)
3/2

≤ C ′ 2ρ− 1

(3ρ− 1)
√
n
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and vanishes as n → +∞. So (25) holds and Tn satisfies the following C.L.T.

Z̃n :=
Tn − E∞ (Tn)√

Var∞ (Tn)

(d)−→
n→+∞

N. (40)

We now prove that X satisfies the C.L.T. (38). To do so, we first establish a C.L.T. for the
process Y where we recall from the proof of Theorem 4.1(i) that Y denotes the a.s. non-
increasing process defined as Y (t) = n if t ∈ [Tn, Tn−1). This process is more tractable than
X and we will derive the C.L.T. for X from that of Y .
As Y is non-increasing, we can follow the proof of C.L.T for renewal processes (as suggested
by Aldous for Kingman’s coalescent, cf. [1]). More precisely, for any t > 0, x ∈ R, we have

P∞

(√
v(t)

(
Y (t)

v(t)
− 1

)
≥ x

)
= P∞(Y (t) ≥ sx(t)) = P∞

(
Tsx(t) ≥ t

)

where we denote sx(t) := ⌊v(t) + x
√

v(t)⌋ (⌊·⌋ is the floor function). We then have

P∞

(√
v(t)

(
Y (t)

v(t)
− 1

)
≥ x

)
= P∞


Z̃sx(t) ≥

t− E∞
(
Tsx(t)

)
√

Var∞
(
Tsx(t)

)


 .

Using (40), we just need to prove that

t− E∞
(
Tsx(t)

)
√
Var∞

(
Tsx(t)

) −→
t→0

x
√

2ρ− 1 (41)

to obtain the expected C.L.T. for Y . From the definition (29) of the function v, we have

E∞
(
Tv(t)

)
− E∞

(
Tsx(t)

)
≤ t− E∞

(
Tsx(t)

)
≤ E∞

(
Tv(t)−1

)
− E∞

(
Tsx(t)

)
. (42)

Let us first deal with the l.h.s. and write

E∞ (Tn)− E∞
(
T⌊n+x

√
n⌋
)
=

⌊n+x
√
n⌋−1∑

k=n

mk ∼
n→+∞

x
√
nmn.

Indeed,
∣∣∣∣∣∣

⌊n+x
√
n⌋−1∑

k=n

mk − (⌊n+ x
√
n⌋ − n)mn

∣∣∣∣∣∣
≤ mn

⌊n+x
√
n⌋−1∑

k=n

∣∣∣∣
mk

mn
− 1

∣∣∣∣

≤ x
√
nmn sup

u∈[0,x]

∣∣∣∣
m⌊n+u

√
n⌋

mn
− 1

∣∣∣∣ ,

and the second part of Lemma A.5 ensures that the latter supremum vanishes as n → +∞
since mn regularly varies.
Then, by successively applying Lemma A.5 with f(y) = y, g(y) = ⌊y + u

√
y⌋ and h(n) =

Var∞ (Tn), Lemma 3.2, Lemma A.4(i) and (39), we have the equivalences

E∞ (Tn)− E∞
(
T⌊n+x

√
n⌋
)

√
Var∞

(
T⌊n+x

√
n⌋
) ∼

n→+∞
x
√
nmn√

Var∞ (Tn)
∼

n→+∞
x
√

2ρ− 1.
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Following the same steps for the r.h.s of (42) ensures that (41) holds. We end the proof by

deducing (38) from the C.L.T. satisfied by Y . Indeed, since

√
v(t)

(
X(t)

v(t)
− 1

)
=
√

v(t)

(
Y (t)

v(t)
− 1

)
+

X(t)− Y (t)√
v(t)

,

it is now sufficient to show that the second term of the latter goes to 0 in probability as t → 0.
Keeping the same notation as in the proof of Theorem 4.1(i), from (32), we almost surely have

0 ≤ X(t) − Y (t)√
v(t)

≤
HY (t)√
Y (t)

√
Y (t)√
v(t)

. (43)

From (35), there is C such that

E∞


∑

n≥1

(
Hn√
n

)2

 ≤ C

∑

n≥1

1

n

λn

µn
.

Since this series converges by hypothesis, Hn/
√
n almost surely goes to 0 as n → +∞. Hence,

since we also have Y (t) ∼ v(t) as t → 0 with probability 1, the r.h.s. of (43) vanishes as t → 0,
which ends up the proof.

5 Tail distribution at 0 of the extinction time

In the following result, we focus on the probability that the extinction of the process X occurs
for small times.

Theorem 5.1. (i) If for every n ≥ 0, λn = 0 (pure death case) and if (µn) regularly varies
at +∞ with index ρ > 1, then

t 7−→ − log P∞(T0 ≤ t)

regularly varies at 0 with index 1/(1 − ρ).

(ii) If limn→+∞
λn
µn

= 0 and (µn)n regularly varies with index ρ > 1,

log (− logP∞(T0 ≤ t))

log t
−→
t→0

1

1− ρ
.

In the pure death case (i), the time of extinction is the sum of independent exponential random
variables. That allows us to get an explicit expression of its Laplace exponent and the result
comes from a Tauberian theorem (Lemma A.6). It’s a key point where we needed the regular
variation of (µn)n. To prove (ii), we first use the speed of coming down from infinity obtained
in Theorem 4.1 on time interval [0, t/2]. Then we compare the trajectory with the pure death
case via a coupling argument and conclude thanks to (i).

Proof of Theorem 5.1(i). Let φ denote the Laplace transform of T0

φ(a) := E∞ [exp(−aT0)] , a > 0.
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Let us prove that − log φ regularly varies with index 1/ρ at +∞. Lemma A.6 will thus imply
the result.

In the pure death case, the times τi are independent exponential random variables with re-
spective parameters µi+1. Then, for a > 0,

φ(a) =
∏

i≥0

E [exp(−aτi)] =
∏

i≥1

1

1 + a/µi
.

Using that log(1 + a) = a(1 + r(a)) with r satisfying lima→0 r(a) = 0, we write

− log φ(a) =
∑

i:µi≤a log a

log(1 + a/µi) + (1 +R(a))
∑

i:µi≥a log a

a/µi,

where
0 ≤ R(a) ≤ sup

y∈[0,1/ log a]
r(y) −→

a→+∞
0.

Moreover, since (µi)i regularly varies with index ρ, we know (cf. [6, Thm 1.5.3]) that the
increasing sequence (infn≥i µn)i regularly varies with index ρ. Therefore, according to Propo-
sition A.3, the application

a 7−→ ia := min{i ∈ N : inf
n≥i

µn ≥ a log a}

is regularly varying at ∞ with index 1/ρ. Then,

h1(a) :=
∑

i:µi≥a log a

a

µi
= a

∑

i≥ia

1

µi

is regularly varying at ∞ with index 1 + (1 − ρ)/ρ = ρ since
∑

i≥ia
1/µi is the composition

of the two functions a 7→ ia and n 7→ ∑
i≥n 1/µi, which both regularly vary with respective

indices 1/ρ and 1− ρ.
Furthermore, for a ≥ 1, we have

h2(a) =
∑

i≤ia

log(1 + a/µi) =
∑

i≤ia

(
log a+ log

(
1

a
+

1

µi

))
= ia log a+

∑

i≤ia

log

(
1

a
+

1

µi

)
.

The second term in the r.h.s. is less than
∑

i≥1 log (1 + 1/µi) which is finite since (µi)i regularly
varies with index ρ > 1. Hence, h2 regularly varies at +∞ as ia, that is, with index 1/ρ.
Putting all the pieces together, log φ = h1 + h2(1 +R) is a negative function which regularly
varies with index 1/ρ at +∞. Then, according to Lemma A.6, the function

t 7−→ − log P∞(T0 ≤ t)

regularly varies at 0 with index 1/(1 − ρ), which concludes the proof.
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Proof of Theorem 5.1(ii). We now suppose that l = 0 and that (µn)n regularly varies with
index ρ > 1. Let (Ei)i≥1 be a sequence of independent exponential random variables with
respective parameters λi + µi. First, to go from +∞ to 0, the process X has to reach each
integer level. That gives the upper bound

P∞(T0 ≤ t) ≤ P∞

( ∞∑

i=1

Ei ≤ t

)
, t > 0. (44)

Moreover, for n ≥ 1 and t ≥ 0, we have

Pn(T0 ≤ t) ≥ Pn(X ↓)Pn(T0 ≤ t|X ↓) =
n∏

i=1

µi

λi + µi
Pn

(
n∑

i=1

Ei ≤ t

)
,

where X ↓:= {The process X is non-increasing}. Indeed, conditionally on X ↓, (X(t) : t ≥ 0)
is a pure death process with death rates µn = λn + µn.
For η ∈ (0, 1) and t > 0, we denote nt := v(t)(1 + η). Hence, for t > 0, by applying the
Markov property, we get the lower bound

P∞(T0 ≤ t) ≥ P∞(X(t/2) ≤ nt/2)Pnt/2
(T0 ≤ t/2)

≥ P∞(X(t/2) ≤ nt/2)

nt/2∏

i=1

µi

λi + µi
P∞

(nt/2∑

i=1

Ei ≤ t/2

)
. (45)

Putting together (44) and (45), at a logarithmic scale, we obtain

− logP∞

( ∞∑

i=1

Ei ≤ t

)
≤ − log P∞(T0 ≤ t) ≤ − log P∞

(nt/2∑

i=1

Ei ≤ t/2

)
(46)

+

nt/2∑

i=1

log

(
1 +

λi

µi

)
− log P∞(Xt/2 ≤ nt/2).

We know from the pure death case that

t 7→ log P∞

(nt/2∑

i=1

Ei ≤ t/2

)
and t 7→ logP∞

( ∞∑

i=1

Ei ≤ t

)

both regularly vary at 0 with common index 1/(1−ρ). Moreover, according to Theorem 4.1(i),

log P∞(X(t/2) ≤ nt/2) = log P∞

(
X(t/2)

v(t/2)
≤ 1 + η

)
−→
t→0

0.

Let us deal with the remaining term of (46), namely
∑nt/2

i=1 log(1+λi/µi). Since l = 0, (λn/µn)n
is bounded and

∑nt/2

i=1 log(1 + λi/µi) ≤ Cnt/2 for some C > 0. Then,
∑nt/2

i=1 log(1 + λi/µi) is
upper bounded by a regularly varying function with index 1/(1−ρ) since n(t/2) = v(t/2)(1+η).

Plugging our four estimates into (46) ensures that there exist two slowly varying functions l
and l such that

t1/(1−ρ)l(t) ≤ − logP∞(T0 ≤ t) ≤ t1/(1−ρ)l(t).

So for t < 1
log l(t)

log t
≥ log(− log P∞(T0 ≤ t))

log t
− 1

1− ρ
≥ log l(t)

log t
.

Adding that the right and left hand sides tend to zero according to Lemma A.2(ii), the proof
is complete.

21



6 Application to inhomogeneous birth and death processes

Thanks to the previous results, we can estimate the probability of extinction for birth and
death processes. An estimation of the probability of extinction before a small time comes from
Theorem 5.1 and an estimation to be extincted after a large time t can be obtained from the
exponential moments obtained in Proposition 2.3 by Markov inequality.

As an application, we can now state some asymptotic results for population dynamics in vary-
ing environment. We consider a time inhomogeneous birth and death process (Zt, t ≥ 0),
associated with a varying environment. The birth and death rates at time t are respectively
λk(t) and µk(t) when the population size is equal to k. We say that an environment is favor-
able if the process persists with positive probability in this environment.
In case of random environment and under uniform assumptions on the birth and death rates,
which make that either all the environments are favorable or all the environments are non
favorable, extinction criteria are known, see e.g. Theorem 3.2 in [18] and Theorem 3.3 in [9].
Here we consider a case where favorable and non favorable environments can be mixed, succes-
sively in time. The assumption below focuses on time intervals of unfavorable environments.

Assumption A. There exists a sequence of successive and disjoint time intervals ([ai, ai +
ti), i ∈ N) such that for each t ∈ ∪i≥0 [ai, ai + ti),

λk(t) ≤ λk, µk(t) ≥ µk,

where λk/µk → 0 as k → +∞ and (µk)k regularly varies with index ρ > 1.

Assumption A means that on the successive intervals [ai, ai + ti), the environment is unfavor-
able and strongly increases the sub-criticality of the process. The intervals [ai, ai + ti) can be
seen as competition phases. We will show that under Assumption A and even if the population
is very large at time ai, the process can go down to extinction during the time [ai, ai+ti), even
for some ti tending to zero and whatever happens during the phases ]ai + ti, ai+1]. Neverthe-
less, the durations ti cannot go to zero too fast and we provide a quantitative criterion. Such
a framework is motivated from ecology by the fact that favorable environments can alternate
with unfavorable environments. It may be due to variations of the climate conditions and the
resources available, which can affect both the natality, the mortality and the competition. One
particular motivating example is a case with linear birth rates and ρ > 1 corresponding to a
polynomial competition term (ρ = 2 yields the logistic competition). See [17] for discussions
about the value of ρ.
Let us also remark that the environment may also model the effect of some predation, when
the dynamics of the predator does not depend on the number of preys (generalist predator),
see e.g. [8]. As a last motivation, we mention the use of inhomogeneous birth and death
processes in epidemiology, see for example [19, 3] in the linear case. The two forthcoming
results give the minimal duration of the competition phases which leads to a.s. extinction.

Proposition 6.1. Under Assumption A, if there exists β < ρ−1 such that, for i large enough
and some constant c > 0,

ti ≥ c/ logβ i, (47)

then for every n ∈ N, the process Z becomes extinct in finite time Pn-a.s.
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Proof. We denote by T0 the absorbing time of a process with birth rate λk and death rate
µk and P̃∞ its law issued from infinity (which is well defined since l = 0 and (µk)k regularly
varies with index ρ > 1). By the Markov property and a monotonicity argument, a simple
induction yields for every n ≥ 0, k ≥ 1,

Pn(Zak+tk > 0) = En

(
Pn (Zak+tk > 0 | (Zs, s ≤ ak) )1{Zak−1+tk−1

>0}
)
≤
∏

i≤k

P̃∞(T0 > ti),

so that

log Pn(∀t > 0 : Zt > 0) ≤
∑

i≥0

log P̃∞(T0 > ti) =
∑

i≥0

log (1− P̃∞(T0 ≤ ti)).

We know from Theorem 5.1(ii) that for every η > 0 and for t small enough,

P̃∞(T0 ≤ t) ≥ exp

(
−t

−
(

1

ρ−1
+η

))
.

Since P̃∞(T0 ≤ ti) ≥ P̃∞(T0 ≤ c/ logβ i), we get that for any η > 0 and i large enough,

P̃∞(T0 ≤ ti) ≥ exp


−

(
logβ i

c

) 1

ρ−1
+η

 .

By hypothesis, there is η small enough such that β( 1
ρ−1 + η) < 1. Therefore,

(
logβ i

c

) 1

ρ−1
+η

<

log i for i large enough and

∑

i≥0

exp


−

(
logβ i

c

) 1

ρ−1
+η

 = ∞.

Finally, Pn(∀t > 0 : Zt > 0) = 0, which ends up the proof.

The result of Proposition 6.1 is completed by the following example where (47) fails and where
the process survives with positive probability. Let us define the birth and death process Z as
follows. We assume that a0 = 0 and that λk(t) = λ > 0 for any k (for simplicity). Moreover,
for every t ∈ ∪i≥0 [ai, ai + ti), µk(t) = µk regularly varies with index ρ > 1 and for every
t ∈ ∪i≥0[ai + ti, ai+1), µk(t) = 0.
We assume that ti ≤ c/ logβ i with β > ρ−1. Let η > 0 be such that β( 1

ρ−1 −η) > 1. We now
prove that the sequence (ai)i≥1 can be chosen such that the process Z survives with positive
probability.
Let ǫi ∈ (0, 1) such that

∏
i≥0(1− ǫi) > 0. Let x0 = 1 and for each i ≥ 1, choose xi ∈ N such

that
Pxi(T0 > ti) ≥ 1− (1− ǫi)P∞(T0 > ti),

so that for i large enough, by Theorem 5.1(ii),

Pxi(T0 > ti) ≥ 1− ǫi exp

(
−t

−( 1

ρ−1
−η)

i

)
.
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Then,
∏

i≥0

Pxi(T0 > ti) ≥
∏

i≥0

(
1− (1− ǫi) exp

(
−t

−( 1

ρ−1
−η)

i

))
> 0.

Observing that the process Z is a pure birth process during the time intervals [ai + ti, ai+1),
one can choose the times ai (i ≥ 1) such that for every i ≥ 0, P1(Zai+1−ai−ti ≥ xi+1) ≥ (1−ǫi).
By Markov property for every n ≥ 1, it yields

Pn(∀t ≥ 0 : Zt > 0) ≥
∏

i≥0

Pxi(T0 > ti)P1(Zai+1−ai−ti ≥ xi+1) > 0

and ends up the proof.

A Regular varying functions

In this section, we give several results that deal with regularly varying functions. The inter-
ested reader can see [6] for more details.

Definition A.1. (i) A function g : [0,+∞) → (0,+∞) has regular variations at L ∈
{0,+∞} if there exists ρ such that for all a > 0,

lim
x→L

g(ax)

g(x)
= aρ.

(ii) A sequence of real non-zero numbers (un)n≥0 regularly varies if there exists ρ such that
for all a > 0

lim
n→+∞

u[an]

un
= aρ

where [·] is the floor function.
In both cases, the real number ρ is called the index and when ρ = 0, one says that variations

are slow.

According to [6, Thm. 1.9.5], (un)n regularly varies if and only if the function x 7→ u[cx]
regularly varies at +∞. Then, all the following results that we state for regularly varying
functions also hold for regularly varying sequences.

Regularly varying functions can be compared with power functions as it is recorded in the
following proposition.

Lemma A.2. Let g be a slowly varying function at L ∈ {0,+∞}, with index ρ.

(i) For all ε > 0, limx→L g(x)/(xρ−ε) = L and limx→L g(x)/(xρ+ε) = 1/L, where we use the
convention 1/(+∞) = 0 and 1/0 = +∞.

(ii) limx→L log g(x)/ log x = ρ.

Proof. We prove the first point when L = +∞. By the definition of a regularly varying
function, for a > 0 and x large enough, g(ax) ≥ g(x)aρ/2. Then, for ε > 0,

g(ax)

(ax)ρ−ε
≥ aε

g(x)

2xρ−ε
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and by letting a → +∞, we obtain lim infn→+∞ g(x)/(xρ−ε) = +∞.
The second point stems from the first point. Indeed, if for instance L = +∞, for all ε > 0
and t large enough, we have tρ−ε ≤ g(t) ≤ tρ+ε and at a logarithmic scale, we have the result.
The proof is the same if L = 0.

In the two following results, one sees that the class of regularly varying functions is stable by
inversion and summation.

Lemma A.3. [6, Thm 1.5.12] Let g be a regularly varying function at +∞ with index α > 0.
Then, the generalized inverse

g−1(t) := inf{s ≥ 0; g(s) ≥ t}, t ≥ 0

is well-defined, regularly varies at +∞ with index 1/α and as t → +∞,

g(g−1(t)) ∼ g−1(g(t)) ∼ t.

The same result holds if g regularly varies at 0 with a negative index and if g−1(t) = inf{s ≥
0; g(s) ≤ t}.
Lemma A.4. Let g be a function that regularly varies at +∞ with index ρ < −1. Then
R(n) =

∑
k≥n g(k) regularly varies with index ρ+ 1 and

∑

k≥n

g(k) ∼
n→+∞

− ng(n)

ρ+ 1
.

Proof. We only prove the first point since the proof of the second one uses similar arguments.
First, since ρ < −1, according to Lemma A.2,

∑
k≥0 g(k) and

∫ +∞
0 g(x)dx are both convergent.

Moreover, thanks to [6, Thm 1.5.3], any regularly varying function with a negative index is
equivalent to a non-increasing function. Then, without loss of generality, one can suppose that
g is non-increasing. If In :=

∫ +∞
n g(x)dx, since g is now non-increasing, a classical comparison

between series and integrals entails that 1 − g(n)
In

≤ Rn
In

≤ 1. Using that g regularly varies,
according to [6, Thm 1.5.11],

lim
n→+∞

ng(n)

In
= −(ρ+ 1). (48)

Hence, from the last two displays, we get In ∼ Rn as n → +∞. We also see from (48) that I
regularly varies at +∞ with index 1+ ρ. Since I and R are equivalent, R also regularly varies
with the same index.

We end this section by giving two results that involve regularly varying functions. The second
one is a Tauberian theorem, which is a key result in the proof of Theorem 5.1(i).

Lemma A.5. Let x0 ∈ [0,+∞] and let f and g be two positive functions such that

f(x) −→
x→x0

L ∈ {0,+∞}, f(x)

g(x)
−→
x→x0

1.

If h regularly varies at L, then
h(f(x))

h(g(x))
−→
x→x0

1.

Moreover, if f(x) = f(x, t) = g(x)(1 + tε(x)) with limx→x0
ε(x) = 0, the previous convergence

holds uniformly in t in any compact subset of R.
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Proof. We only prove the case L = 0. Let fix ε > 0. By definition of a regularly varying
function, there exist η, η′ > 0 such that for every a ∈ [1− η, 1 + η] and y ∈ (0, η′),

1− ε ≤ h(ay)

h(y)
≤ 1 + ε.

Furthermore, for x close enough to x0, we have g(x) ≤ η′ and (1− η) ≤ f(x)/g(x) ≤ (1 + η),
so that ∣∣∣∣∣∣

h
(
g(x) · f(x)

g(x)

)

h(g(x))
− 1

∣∣∣∣∣∣
≤ ε,

which ends up the first part of the proof. The second part follows in the same way since
1 + tε(x) goes to 1 uniformly in t in any compact set.

Lemma A.6. [6, Thm. 4.12.9] Let ν be a positive measure on (0,+∞) whose Laplace trans-
form

φ(a) :=

∫ ∞

0
e−axdν(x)

converges for all a > 0. Let ρ < 1. Then, a 7→ − log φ(a) regularly varies at +∞ with index ρ
if and only if x 7→ − log ν(0, x] regularly varies at 0 with index ρ/(ρ− 1).

B Proof of Technical results

We first prove the equivalence of (5) and S < ∞ under the assumptions (3) and (4).

Lemma B.1. The series

S =
∑

i≥1

πi +
∑

n≥1

1

λnπn

∑

i≥n+1

πi and
∑

n≥1

1

µn
(49)

have the same behavior.

Proof. First, according to (3), as n → +∞, λn/µn → l < 1 and the first term of the r.h.s. of
(49) converges. It remains to study the convergence of the series

∑
n≥1 An where for n ≥ 1,

An :=
∑

j≥1

λn+1 · · ·λn+j−1

µn+1 · · · µn+j
.

We have An ≥ 1/µn+1 since it is the first term of the sum. Moreover, according to assumption
(3), for n large enough, we have λn/µn ≤ l′ := (1 + l)/2 and

An ≤
∑

j≥1

l′j−1 1

µn+j
≤ 1

1− l′
M

µn+1

where M = sup{µn/µj+n : j, n ≥ 1} is finite thanks to assumption (4). Putting all pieces
together, for n large enough, we have

1

µn+1
≤ An ≤ 1

1− l′
M

µn+1

and the series
∑

n
1
µn

and
∑

n An have the same behaviors.
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Now we consider a bounded sequence (un)n≥1 satisfying for every n ≥ 1

un = anun+1 + bn, where an ≥ 0, lim sup
n→+∞

an < 1, bn > 0. (50)

We prove the following result used in particular in our work to control the moments of τn.

Lemma B.2. Assuming (50), then for every n ≥ 1,

un =
∑

i≥n

bi

i−1∏

j=n

aj (where by convention
n−1∏

j=n

aj = 1). (51)

Moreover, if sup{bn+k/bn : k, n ≥ 1} < ∞, there exists C > 0 such that for every n ≥ 1

bn ≤ un ≤ Cbn and thus sup
k,n≥1

un+k

un
< ∞. (52)

If in addition we assume that an −→
n→+∞

0, then un ∼
n→+∞

bn.

Proof. By the recurrence property (50), for all N ≥ n ≥ 1,

un =
N∑

i=n

bi

i−1∏

j=n

aj + uN+1

N∏

j=n

aj . (53)

Since lim sup an < 1 and (un)n is bounded, the second term of the r.h.s. of (53) vanishes as
N → +∞ and (51) is proved.
We now suppose K := sup{bn+k/bn : k, n ≥ 1} < +∞. Moreover lim supn an < 1 ensures that
there exists ε > 0 and n0 such that for n ≥ n0, an ≤ 1− ε. So writing (51) as

un = bn


1 +

∑

i≥1

bi+n

bn

i+n−1∏

j=n

aj


 , (54)

Then, for n large enough,

bn ≤ un ≤ bn


1 +K

∑

i≥1

(1− ε)i−1


 ,

which ends the proof of (52). If we also have limn→+∞ an = 0, we obtain un ∼ bn as n → +∞
from (54) thanks to the dominated convergence theorem.

C Examples

In this paragraph, we give examples that fulfill the Assumptions (3), (4) and (5). They il-
lustrate the law of large numbers and central limit theorems of this paper. Special attention
is payed to the examples motivated by population dynamics, such as Example 1. For these
motivations and convenience, we assume here that the birth rate satisfies λn ≤ C.n for some
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constant C > 0 and every n ∈ N. It captures the linear branching rate and allows for ex-
ample to take into account cooperation for small populations, as Allee effect. We are also
focusing on the case l = 0, which means that the death rate prevails for large population
owing to the competition. Let us note from Lemma 3.2 that such assumptions ensure that
E∞ (τn) ∼ 1/µn+1 as n → +∞.

Example 1. We assume that µn = nρ logγ n with either ρ > 1 or ρ = 1 and γ > 1. This death
rate regularly varies with index ρ, so that the almost sure convergence of Theorem 3.1 holds.
Thus, Tn satisfies a strong law of large numbers with speed

E∞ (Tn) ∼
n→+∞

∑

k≥n+1

1

kρ logγ k
∼

n→+∞

{
1

(ρ−1)nρ−1 logγ n
if ρ > 1

1
(γ−1) logγ−1 n

if ρ = 1
.

Moreover, since Var∞ (Tn) ∼ 1/[(2ρ−1)n2ρ−1 log2γ n] as n → +∞, according to Theorem 3.4,
Tn satisfies the C.L.T.

√
2ρ− 1

ρ− 1

√
n
{
(ρ− 1)nρ−1 logγ nTn − 1

} (d)−→
n→+∞

N (ρ > 1)

√
n log n

(γ − 1)

{
(γ − 1) logγ−1 nTn − 1

} (d)−→
n→+∞

N (ρ = 1).

Concerning the asymptotic behavior of X(t) as t → 0, when ρ > 1, v regularly varies at 0
with index 1/(1 − ρ) and is generally not explicit. However, if γ = 0, that is, if µn = nρ, we
have v(t) ∼ ((ρ− 1)t)1/(1−ρ) as t → 0.

Example 2. Let us illustrate the regimes (ii) of Theorems 3.1 and 4.1.

If µn = (n!)γ with γ > 0, E∞ (Tn) ∼ ((n+1)!)−γ . Hence, limn→+∞ E∞ (τn) /E∞ (Tn) = 1 and
Theorem 3.1(ii) yields

((n + 1)!)γTn
(d)−→

n→+∞
E

where E is exponential with parameter 1.

If µn = e−βn with β > 0, E∞ (Tn) ∼ e−β(n+1)/(1 − e−β). Thus, the conditions of Theorem
3.1(ii) hold true with α = 1− e−β and

eβ(n+1)Tn
(d)−→

n→+∞

∑

k≥0

e−βkEk

where the Ek’s are i.i.d. exponential with parameter 1. In that case, we can explicit the speed
v of Theorem 4.1 and we get X(t) ∼ −(log t)/β as t → 0, in probability.

Example 3. In Theorem 3.1, we did not consider the case where rn = E∞ (τn) /E∞ (Tn) does
not converge. Then one can (only) state analogous results along the convergent subsequences.
For instance, if µ2n = µ2n+1 = 3−2n, we have

r2n −→
n→+∞

4

9
and r2n+1 −→

n→+∞
4

5
.

Theorem 3.1(ii) still holds in that case, but for the two subsequences (T2n/E∞ (T2n))n and
(T2n+1/E∞ (T2n+1))n, which converge in distribution to different limits.
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One can also find examples where 0 = lim inf rn < lim sup rn. Then, (Tn)n has two subse-
quences satisfying the two regimes (i) and (ii) of Theorem 3.1.

Example 4. In this last example, we exhibit a sequence of death rates (µn)n such that the law
of large numbers of Theorem 3.1(i) holds in probability but not almost surely.
For that purpose, we set µn = exp(n/ log n) log n. One can check that l = 0 and

E∞ (τn) ∼ 1/µn+1, E∞ (Tn) ∼ S(n+ 1) :=
∑

k≥n+1

1/µk

as n → +∞. Moreover, as µn is non-decreasing,
∫ ∞

n

e−x/ log(x)

log x
dx ≤ S(n) ≤

∫ ∞

n

e−x/ log(x)

log x
dx+

e−n/ log(n)

log n
.

and ∫ ∞

n

e−x/ log(x)

log x
dx ∼

n→+∞

∫ ∞

n

(
1

log x
+

1

(log x)2

)
e−x/ log(x)dx = e−n/ log(n).

Combining the two last displays and recalling rn = E∞ (τn) /E∞ (Tn), we have

S(n) ∼ exp(−n/ log n), rn ∼ 1/ log n, rn → 0,
∑

n

r2n = ∞,

so that Tn/S(n+1) goes to 1 in probability but the almost sure convergence is not guaranteed.
Indeed, let us assume now that Vn := Tn/S(n + 1) does converge a.s. toward 1 and find a
contradiction. We have

Vn+1 − Vn = Vn+1

(
1− S(n+ 2)

S(n+ 1)

)
− τn

S(n+ 1)
. (55)

By hypothesis, the left hand side of the latter a.s. vanishes as n → +∞. Moreover, simple
computations leads to S(n + 1)/S(n) → 1 and the first term in the r.h.s. of the last display
a.s. goes to 0 since our assumption implies that Vn is bounded a.s. Hence, putting all pieces
together, the term τn/S(n + 1) of (55) has to go to 0 a.s.
To get a contradiction thanks to Borel-Cantelli’s Lemma, it suffices to prove that for ε small
enough, ∑

n≥0

P∞(τn/S(n + 1) > ε) = ∞,

recalling that the r.v. τn are independent. By a coupling argument, τn stochastically dominates
τ̂n the hitting time of n by a pure death process with death rates (µk)k and starting at n+1.
In other words, τn is stochastically larger than the exponential r.v. τ̂n with parameter µn+1.
Then, P∞(τn/S(n + 1) > ε) ≥ exp(−εµn+1S(n + 1)). Thanks to previous computations,
µnS(n) ∼ log n as n → +∞. Then, there is C > 0 such that

P∞(τn/S(n+ 1) > ε) ≥ e−εC logn =
1

nCε
,

which completes the proof because
∑

n≥0 P (τn+1/S(n) > ε) is infinite as soon as ε is small
enough.
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