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Abstract – Though criticized by many, Handel’s quantum model for 1/f noise remains the 

only model giving a quantitative estimation of the level of intrinsic 1/f noise in quartz crystal 

resonators, compatible with the best experimental results. In this paper, we reconsider the 

volume dependence in this model. We first argue that an acoustic volume, representing the 

volume in which the vibration energy is trapped, should be used instead of the geometrical 

volume between the electrodes. Then, we show that since there is an implicit dependence of 

the quality factor of the resonator with its thickness, the net effect of Handel’s formula is not 

an increase of noise proportionally to the thickness of the resonator, as could be naively 

expected, but a net decrease when thickness increases. Finally, we show that a plot of Q4Sy 

versus the acoustic volume, instead of the usual Sy plot, could be useful to compare the quality 

of acoustic resonators having very different resonance frequencies. 

  



I. INTRODUCTION 

So far, ultra-stable oscillators (USO) using quartz crystal resonators remain the best 

solution to have the highest short-term stability in volumes of a few cm3 which is very 

important for local time references in space applications (for example) since size and weight 

are important parameters. With low noise electronics at the state of the art, the fundamental 

limitation for this short-term stability is flicker frequency noise in the resonator (hereafter 

simply called 1/f noise). Until recently, the best short-term stability for a quartz crystal 

resonator was measured in 1994 by J. Norton, for a 5 MHz, SC cut, resonator, mounted in an 

electrode-less structure (BVA) [1]. The corresponding result in terms of Allan standard 

deviation was 3.7410-14 @  = 10 s. 

Furthermore, two 10 MHz BVA, SC-cut quartz crystal oscillators were measured in 1999, by 

R. J. Besson, to have a 510-14 @   10 s Allan standard deviation [2]. This seemed to be the 

ultimate limit that one could obtain for a quartz based oscillator in the short-term stability 

domain since, no more tangible solution had been found to improve the phase noise of the 

resonator itself. Recently, better experimental results [3-5] have reintroduced hopes that 

quartz crystal oscillators may still have a progression margin in the short-term stability 

domain and refueled the discussion about what is the main factor limiting the stability 

between the phase flicker noise in the electronics and the intrinsic noise of the quartz crystal. 

One problem is that, even after more than thirty years of research, the detailed 

physical origin of this intrinsic resonator 1/f noise is still misunderstood. Hence, no entirely 

satisfactory quantitative predictive model can be given in order to optimize the industrial 

processes or simply understand the spread of characteristics in a single fabrication batch. Two 

models have indeed attempted to give quantitative predictions of the level of 1/f noise in 

quartz resonators, the 1/f quantum noise theory of P. Handel [6] and the degenerated thermal 

boson theory of M. Planat [7], but the prediction of M. Planat was orders of magnitude above 



the best measurements, maybe because of the use of the traditional phononic density of states 

despite the fact that all the harmonics of the fundamental modes had already been taken into 

account in the calculation of the partition function per mode [8]. 

In 1975, Peter Handel proposed a model to explain the 1/f part of the frequency noise 

in some electronic systems, using the discrete, random and instantaneous character of soft 

photon emission by a positively or negatively accelerated charge (bremsstrahlung) [9-12]. In 

that model, the 1/f noise would be due to the quantum beat in the interferences between the 

elastic and inelastic scattered waves which emerge when a beam of particles scatters under the 

influence of a localized perturbation. This perturbation would cause losses of energy quanta 

of the incident beam, one at a time, each loss being independent from the others. This 

mechanism has been named “quantum 1/f noise”. Actually, it predicts 1/f noise in any system 

whenever the interaction rate of the system corresponding to the signal, with its environment, 

exhibits an infrared divergence due to the generation of low-frequency excitations in 

quantities increasing when f decreases. It has been applied to several physically different 

systems by P. Handel (see e.g. [6], [13-19]), among which quartz crystal resonators. In the 

case of Bulk Acoustic Wave (BAW) quartz resonators at their turn-over temperature 

(~350 K), the fluctuations are mostly caused by the three-phonons process corresponding to 

the interaction of a phonon from the main resonator mode with a thermal phonon. The result 

is another thermal phonon with a slightly different frequency and the loss of a phonon in the 

main resonator mode. Connecting this discrete variation of the number of phonons in some 

average thermal mode to a discrete variation of the quartz polarization, P. Handel obtained the 

following formula for the power spectral density of relative frequency fluctuations [14]: 

 ܵ௬ሺ݂ሻ ൌ
ఉ∙

ொర
 

with Q the intrinsic quality factor of the resonator, V (in cm3) the volume of the resonant part 

inside the resonator, and  a proportionality factor dependent on the physical parameters of 



the material, numerically estimated to be of the order of 1 cm3 in quartz resonators. We note 

first that this is supposed to represent the fundamental lower limit of noise spectral density at 

low frequencies, in the resonator, therefore in the oscillator. Second, we recall that A. van der 

Ziel was able to recover the same formula [20], except for the detailed expression of , using 

semiclassical arguments. However, we should also note that a careful analysis of this detailed 

analytical expression of  and the way it is demonstrated by Handel calls for more precise 

definitions of some of the quantities occurring in this expression, so as to have an explicit way 

to numerically evaluate them more precisely [8].

In formula (1), the volume V has been traditionally approximated by the volume 

between the electrodes [14], but then, the latest experimental results [5] seem to be below the 

prediction (considering  = 1 cm-3). In this paper, we show that a better estimation of the 

theoretical limit may be extracted from Handel's model, using the acoustic volume of the 

resonator, defined by the trapping of energy, instead of the volume between the electrodes. 

Additionally, the presence of the volume V in the numerator of (1), instead of in the 

denominator as naively expected from experimental facts, will be discussed. 

 

 

   



II. ACOUSTIC VOLUME ESTIMATION 

The acoustic volume estimation is carried out using Tiersten’s model as e. g. in [21]. 

 

Figure 1.  Geomeric definition of a plano-convex resonator 

Due to the plano-convex shape of a resonator (Fig. 1), the thickness 2h of the resonator at some 

off-axis point with coordinates ሺݔଵ, ,ଶݔ  :ଷሻ, is given by the following expressionݔ

 2݄ ൎ 2݄ ቂ1 െ
൫௫భ

మା௫య
మ൯

ସோబ
ቃ (2) 

where ݄ is the maximum height of the resonator (on the ݔଶ axis) and R the curvature radius of 

the convex face. Furthermore, for stationary shear waves propagating in the ݔଶ direction, the 

amplitude of the mechanical displacement modes in the resonator can be approximated 

by [21]: 

ݑ ൎ ܣ sin ቀగ௫మ
ଶ

ቁܪ൫ඥߙݔଵ൯ܪ൫ඥߚݔଷ൯expሺെߙ ଵݔ
ଶ 2⁄ െ ߚ ଷݔ

ଶ 2⁄ ሻexp൫݆߱ݐ൯  

with: 

 ଶߙ ൌ
మగమ̂

଼ோబ
యெᇲ


 and ߚଶ ൌ

మగమ̂

଼ோబ
యᇲ

 

where n = 1, 3, 5, … is the overtone (OT) number, m, p = 0, 2, 4, …, label the different mode 

shapes in the plane of the resonator, ܪ and ܪ are Hermite polynomials, ܯ′ and ܲ′ are the 

dispersion constants and ܿ̂ is the effective elastic constant associated to the propagation of this 

kind of mode. 



For the 3rd overtone (OT 3), we consequently have: 

 ଷݑ ൎ ܣ sin ቀଷగ௫మ
ଶ

ቁ expሺെߙଷ ଵݔ
ଶ 2⁄ െ ଷߚ ଷݔ

ଶ 2⁄ ሻexpሺ݆߱ଷݐሻ 

with ଷߙ
ଶ ൌ ଽగమ̂

଼ோబ
యெయ

ᇲ and ߚଷ
ଶ ൌ ଽగమ̂

଼ோబ
యయ

ᇲ 

The eigenfrequency ߱ଷ
	  is obtained from: 

 ߱ଷ
ଶ ൌ ଽగమ̂

ସబ
మఘ
ቈ1 

ଵ

ଷగ
ටଶబ

ோ
ቆට

ெయ
,

̂
 ට

య
,

̂
ቇ (7) 

The elastic energy in the resonator is approximately given by: 

 ଵܹ ൎ
మ

ଶ
ܿ̂ ቀ ଷగ

ଶబ
ቁ
ଶ
∭ cosଶ ቀଷగ௫మ

ଶబ
ቁ expሺെߙଷݔଵ

ଶ െ ଷݔଷߚ
ଶሻ

 ܸ݀ 

We then define the acoustic volume as the volume that would contain the same elastic energy, 

for a hypothetical wave that would have constant amplitude in the ሺݔଵ, ଷሻݔ  plane, for a 

resonator with two plane electrodes (1/R = 0) of equivalent surface ܵ separated by a distance 

2݄. For this hypothetical resonator, the trapped elastic energy would be: 

 ଶܹ ൎ
మ

ଶ
ܿ̂ ቀ ଷగ

ଶబ
ቁ
ଶ
 cosଶ ቀଷగ௫మ

ଶబ
ቁ ଶݔ݀

బ
ିబ

ൈ ܵ 

Thus: 

 ଵܹ ൌ ଶܹ		 ܸ ൌ 2݄ܵ ൌ 2݄∬expሺെߙଷݔଵ
ଶ െ ଷݔଷߚ

ଶሻ݀ݔଵ݀ݔଷ 

However, thanks to the Gaussian functions, as long as the electrodes diameter	

ܦ	  4 Min൫ඥߙଷ,ඥߚଷ൯⁄ , their real outer shape is not important and the diameter can even be 

taken to be infinite. Using the fact that  expሺെݔߙଶሻ݀ݔ
ஶ
ିஶ ൌ ඥߨ ⁄ߙ , we then find that:  

 	 ܸ ൌ 2݄ܵ ൎ 2݄ߨ ඥߙଷߚଷ⁄ ൌ ට32ܴ݄
ହඥܯଷ

ᇱ
ଷܲ
ᇱ 9ܿ̂⁄  



III. APPLICATION OF THE MODELS TO EXPERIMENTAL MEASUREMENTS 

As seen in [5], the best measured resonators are the 5 MHz BVA SC-cut, 3rd OT C-

mode, manufactured by the Oscilloquartz S.A. Company (Swatch Group), based in Neuchatel, 

Switzerland. Since for SC-cut quartz resonators, the cut is defined by a double rotation 

( = 22°45’,  = 34°), the relevant effective parameters are ܿ̂ ൎ 34.6 GPa, ܯଷ
ᇱ ൎ 57 GPa and 

ଷܲ
ᇱ ൎ 67 GPa [22]. In [23], a succinct geometrical description of the resonator is given which 

allows us to estimate the diameter of the resonant part of the resonator (around 20 mm) and the 

electrodes diameter D (about 11 mm). Using (7) and the motional capacitance of the prototype 

resonator measured in [3], we can estimate the thickness 2݄ ൎ 1.097 mm and the radius of 

curvature of the electrodes ܴ ൎ 146 mm (cf. appendix). This leads to 1 ඥߙଷ⁄ ൎ 1.38 mm and 

1 ඥߚଷ⁄ ൎ 1.43 mm. Using (11), we can now compute 	 ܸ ൌ 6.8110 m3, whereas a direct 

numerical integration of (10) in polar coordinates, gives 	 ܸ ൌ 6.8010 m3.

One can then verify that the applicability condition ܦ  4 Min൫ඥߙଷ,ඥߚଷ൯⁄  stated in 

the previous paragraph is indeed numerically verified in this case. As argued in the previous 

paragraph, in contoured resonators, the energy trapping is quasi-independent of the electrodes 

dimension, provided they are big enough, though they influence the motional elements and the 

static capacitor of the Butterworth - van Dyke equivalent circuit. Indeed, for such a radius of 

curvature the energy density at the edge of the volume between the electrodes is at least 2106 

smaller than the energy density at the same height on the axis. 

In order to use Handel’s formula (1), we still need to compute the quality factor Q of 

this kind of resonator, which can be obtained using the following equation: 

 ܳ ൌ ̂

ଶగෝ
 



In our case, ෝ ൎ 3.95 ∙ 10ିସ  Ns/m2 [24], which turns into an estimation of the maximum 

quality factor of about 2.79106. This value corresponds well with the one given in [3] 

(2.7106). 

We now turn to the experimental quantities that we could compare to Handel’s 1/f 

noise threshold. The short-term stability is usually given in the time domain by the Allan 

variance [25], which is the variance of the difference of the average fractional frequencies 

measured for two consecutive samples of time length . It can be computed in the frequency 

domain by using the power spectral density of frequency fluctuations [26]: 
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In the case of flicker frequency noise (which is the limiting resonator noise at low 

frequencies), the Allan standard deviation corresponding to the power spectral density (PSD) 

of relative frequency fluctuations ܵ௬ሺ݂ሻ ൌ ܵ௬ሺ1	Hzሻ ݂⁄  turns out to be independent of  and 

constitutes the floor of the noise at low frequencies. It is the given by the expression [26]: 

  _ ker 2 ln(2) 1y flic yS Hz   

Table 1 presents the comparison between measurements and the results of Handel's model, 

considering both definitions of volume in (1) (and  = 1 cm3). One can see that the limit set by 

Handel's model with  = 1 cm3, is indeed below the experimental results if one uses the 

acoustic volume defined in this paper, whereas it is not if one uses the geometrical volume 

between electrodes.  

 



TABLE I.  COMPARISON OF THE SHORT-TERM STABILITY IN TERMS OF ALLAN STANDARD 

DEVIATION Y_FLOOR OF A SC-CUT, 5 MHZ AND 3RD
 OT RESONATOR 

Frequency (MHz)   5 

Quality factor Q (106)   2.79 

Volume under electrodes Vel (cm
3) 1.04310‐1

Acoustic volume Vac (cm
3)  0.68110‐2

Volume ratio  15 

y_floor_Handel 
(vol. under electrodes) 

4.8910‐14 

y_floor_Handel 

(Acoustic vol.) 

1.2510‐14 

y_floor_exp [1] 

(oscillator measurement) 

3.7510‐14 

y_floor_exp [4] 

(oscillator measurement)  

2.510‐14  

 

IV. SIZE DEPENDENCE 

A point that can be a priori surprising with Handel’s formula is the proportionality of 

ܵ௬ሺ1	Hzሻ  with the volume. On Fig. 2, we plotted experimental values for ܵ௬ሺ1	Hzሻ  as a 

function of the volume ܸ between the electrodes, using results from various publications [1-

2], [27-28], including those used by Handel to justify his model and recent results obtained for 

5 MHz oscillators specially designed by FEMTO-ST for industrials partners. One can easily 

see that a linear increase of 	ܵ௬ሺ1	Hzሻ with ܸ is NOT supported by the experimental results. 

This seems at first sight to be a very serious problem for Handel’s theory, but if we look 

closer at (1), we see that there are other factors in this equation that may also depend on the 

geometrical dimensions of the resonator. 



 

Figure 2.  Sy(1 Hz) as a function of the volume between the electrodes of the resonator for 

experimental points from various authors. 

 

Indeed, a plot of the ܳସܵ௬ሺ1	Hzሻ product for the same experiments, as a function of 

ܸ  (Fig. 3), gives a very different trend: the volume dependence is now similar to that 

predicted by Handel in his model! This is due to the fact that Q4 also depends on the 

dimensions of the resonator (particularly its thickness 2݄ ). This introduces a hidden 

dependence with the size of the resonator that we will study in more details below. However, 

several points seem to have a lower noise than the intrinsic limit supposedly set by Handel’s 

model if one uses  = 1 cm3 as proposed in Handel’s papers. At this point, one could either 

question this  = 1 cm3 value, as we did in another paper [8], or use the above-defined 

acoustic volume, describing the volume in which elastic energy is confined, instead of the 

geometric volume between the electrodes. 



 

Figure 3.  Q4Sy as a function of the volume between the electrodes of the resonator, 

experimental points from various authors + straight line for Handel’s prediction with 

 = 1 cm3. 

 

Figure 4.  Q4Sy as a function of the acoustic volume of the resonator (given by (11) for 

plano-convex resonators and (17) for plano-plano resonators), experimental points from 

various authors + straight line for Handel’s prediction with  = 1 cm3. 



For plano-convex resonators, formula (10) was used instead of the volume between 

electrodes to draw Fig. 4. However, higher frequency resonators have a plano-plano shape 

and we had to use another formula for the acoustic volume. According to [21] section III, the 

trapped energy mode shape can then be approximated by products of simple trigonometric 

functions in such resonators, the trapped energy W1 is computed from the following equation: 

 ଵܹ ൎ
మ

ଶ
ܿ̂ ቀ గ

ଶబ
ቁ
ଶ
∭ ቂcos ቀగ௫మ

ଶబ
ቁ cos ቀగ௫భ

ଶ
ቁ cos ቀగ௫య

ଶ
ቁቃ
ଶ

 ܸ݀ 

with l the half width of a square electrode. At this point, following Stevens and Tiersten, we 

consider that circular electrodes can be approximated by square electrodes with a width equal 

to the radius of the real electrodes. Thus using (9), we find: 

 ଵܹ ൌ ଶܹ		 ܸ ൌ 2݄ܵ ൌ 2݄   ቂcos ቀగ௫భ
ଶ
ቁ cos ቀగ௫య

ଶ
ቁቃ
ଶ
ଷݔଵ݀ݔ݀


ି


ି  

 	 ܸ ൌ 2݄ܵ ൎ 2݄݈ଶ ൎ ܸ 4⁄  

In the plano-plano case, the acoustic volume Vac is simply proportional to the thickness of the 

resonator and to the area of the electrodes and equals a fourth of the volume between the 

electrodes. Data from [27-28], necessary to compute Vac for these high frequency plano-plano 

resonators, are recalled in table 2. We note that we only kept the best measurements from 

[27], in order to draw Fig. 4. 

TABLE II.  RESONATOR PARAMETERS FROM [27-28] USED TO DRAW FIG. 4. Q FACTOR OF 

RESONATORS FROM [27] HAVE BEEN FOUND MORE PRECISELY IN [29]. 

Reference [27] [27] [27] [28] [28] [28] 
frequency (MHz) 100 100 100 80 100 160 
Overtone  5 5 5 3 3 5 
Crystal-Cut SC SC SC SC SC SC 
Unloaded quality factor 1.3105 1.3105 1.3105 1.25105 1.19105 1.25105 
Electrode diameter (mm) 2.16 3.05 4.32 1.63 1.40 2.54 
Resonator Thickness (µm) 90 90 90 67.8 54.4 56.7 

 



Looking at Fig. 4, one can see that the line corresponding to Handel’s model is now lower 

than all the experimental points. Furthermore, the proportionality of Q4Sy with Vac for the best 

resonators now seems reasonable. Finally this kind of Q4Sy plot seems to be useful to compare 

the performance of resonators with various resonant frequencies. 

Since the comparison of the previous graphs clearly shows that one should not forget 

that the quality factor depends on the physical dimensions of the resonator, we study in more 

details the thickness dependence of ܸ ܳସ⁄ . For that purpose, we recall that, in the expression 

(12) of the intrinsic quality factor of an acoustic resonator, ݂~1 ݄⁄ , hence ܳ~݄. Given the 

݄ dependence of Q and V, we then get for constant area electrodes, an inverse proportionality 

of Sy with ݄
ଷ if V is the volume between the electrodes, or ܵ௬~1 ݄

ଷ ଶ⁄⁄ , if V is the acoustic 

volume. In both cases, noise reduction should be enhanced by an increase of thickness. In 

high purity crystals, this trend seems to be confirmed by the fact that 5 MHz resonators (2h ~ 

1 mm) have so far shown short-term stabilities below that of 10 MHz resonators (2h ~ 0,5 

mm). 

V. CONCLUSION 

From the previous considerations, we showed how the intrinsic lower limit for 1/f 

noise limiting short term stability, set by Handel's model can be reconciled with the best latest 

experimental results, provided one uses the acoustic volume computed from Tiersten's model, 

instead of the volume between the electrodes. We also showed how Handel’s model can be 

qualitatively very useful in order to compare the quality of oscillators of various resonant 

frequencies, thanks to the Q4Sy plot. Furthermore, we showed how Handel’s model is not in 

contradiction with the fact that usually thicker resonators exhibit less noise, despite an 

apparent proportionality of the noise with the volume of the resonator in this model.  
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APPENDIX : ESTIMATION OF THE THICKNESS AND CURVATURE RADIUS 

Using Stevens and Tiersten’s results [21], we can relate the motional capacitance 

 :௧ of the resonator, for the 3rd OT, to the thickness and curvature radius of the resonatorܥ

 ௧ܥ ൌ
ସ̂మల

మ

ଽగయబ̂
ඥߙଷߚଷ ቂ expሺെߙଷ ଵݔ

ଶ 2⁄ ሻ݀ݔଵ
 ଶ⁄
  expሺെߚଷ ଷݔ

ଶ 2⁄ ሻ݀ݔଷ
 ଶ⁄
 ቃ

ଶ
 

with D the electrodes diameter and ݁̂ଶ ൌ 0.0576 C/m2 the effective piezoelectric constant. 

Since, for the same specific kind of resonator that was used for the record measurement [5], 

the motional capacitance was measured to be 0.195 fF in [3], we have together with (7) of the 

main text, a set of two nonlinear equations in ݄ and R. In order to solve them numerically, 

we compute initial estimates of ݄ and R using first the fact that the thickness at the center of 

the resonator 2݄  is approximately given by 2݄ ൎ  3/2. In the present case, since the 

acoustic velocity for the 5 MHz thickness shear C-mode in a SC-cut quartz crystal is 

ඥܿ̂ ⁄ߩ ൎ 3613 m/s ( = 2650 kg/m3), we find that 2݄ ൎ 1.084 mm Then, we use the fact that 

the electrodes diameter is always chosen big enough so that the two Gaussian integrals in 

(A.1) can be approximated by ඥߨ ⁄ଷߙ2  and ඥߨ ⁄ଷߚ2  respectively. Thus, 

  ௧ܥ ൎ
ଵ̂మల

మ

ଽగబ̂ඥఈయഁయ
ൌ ଷଶ̂మల

మ

గమሺଽ̂ሻయ మ⁄
ට2݄ܴඥܯଷ

ᇱ
ଷܲ
ᇱ	 

Accordingly, the initial value for R, can be estimated by: 

 ܴ ൌ ଵ

ଶబටெయ
ᇲయ

ᇲ
ቀగ

మሺଽ̂ሻయ మ⁄ 

ଷଶ̂మల
మ ቁ

ଶ

 



With ܥ௧ ൎ 0.195 fF, we find ܴ ൎ 148 mm. Then, by solving together (7) and (A.1) (with 

D = 11 mm, cf. main text), we refine our estimation to 2݄ ൎ  1.097 mm and 

ܴ ൎ  146,6  0,2 mm (depending whether the integrations are performed for a square in 

Cartesian coordinates or for a disk in polar coordinates). 

Finally, we note, that if we would know the static capacitance ܥ of the same resonator, we 

could estimate D by adding the following formula [21]: 

  

to the set of nonlinear equations to solve. Conversely, using ߝଶଶ = 39.781012 F/m the 

permittivity constant corresponding to the ݔଶ  direction in the SC-cut and D = 11 mm, we 

estimate ܥ ൎ 3.6 pF. 
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