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Abstract— The linear, binary, block codes with no equally 

likely probabilities for the binary symbols are analyzed. The 

encoding graph for systematic linear block codes is proposed. 

These codes are seen as sources with memory and the 

information quantities H(S,X), H(S), H(X), H(X|S), H(S|X), 

I(S,X) are derived. On the base of these quantities, the code 

performances are analyzed.   
 

Index Terms— information quantities, linear, block codes, 

sources with memory.  

I. INTRODUCTION 

Generally, for a linear, block code the encoding operation 

is performed according to relation [1–5]: 

  
1 2[ ] [ ... ][ ]kv i i i G                           (1)    

where  [v] is the code word;  

ij, 1,j k , are the information symbols; 

[G] is the generator matrix. 

The number of rows in the generator matrix is equal to the 

number of the information symbols, k, and the number of 

columns is equal to the code word length, n.  

For error correction, besides the k information symbols, m 

parity - check symbols have to be added, so that, the code 

word length is: 

n m k                                  (2) 

In this paper only linear, binary, block codes will be 

analyzed. The analysis can be also extended for a non-

binary alphabet, at the expense of computation complexity, 

the conclusions being the same. 

Since from rel. (1) 2
k
 distinct code words have to result, 

the rank of the generator matrix [G] must be equal to k. This 

means that, by elementary transformations, the generator 

matrix can be expressed in the equivalent form:  

 

1,1 1,2 1,

2,1 2,2 2,

1,1 1,2 1,

,1 ,2 ,

1 0 ... 0 0 ...

0 1 ... 0 0 ...

... ... ... ... ... ... ... ... ...[ ] [ ]

0 0 ... 1 0 ...

0 0 ... 0 1 ...

m

m

k

k k k m

k k k m

p p p

p p p

G I P

p p p

p p p

                        (3) 

where  [Ik] denotes the identity matrix of rank k; 

 , {0,1}i jp . 

If the generator matrix is as in (3), the code is systematic, 

with the information symbols placed on the first k positions 

in the code word, that is: 

1 2 1 2[ ] [ ... ... ]k mv i i i c c c                           (4) 

where cj {0,1}, 1,j m , are parity - check symbols. 

For the seek of generality we assume that the binary 

symbols are provided by the binary, memoryless source, 

characterized by the distribution 

1 20 1
: , 0 1

1

x x
X p

p p
                (5) 

The average information per information symbol is 

calculated by the entropy [6-11].  
2

2

1

2 2

( ) ( ) log ( )

(1 ) log (1 ) log ( )

j j

j

b

H X p x p x

p p p p H p

            (6) 

To simplify the writing, in the following, we will no 

longer specify the logarithm base; it being understood it is 

equal to 2.  

II. THE ENCODING GRAPH ATTACHED TO A 

LINEAR, BINARY, BLOCK CODE 

The number of levels for the graph corresponding to a 

linear, binary, block code is equal to the code word length. 

There are 2
k
 nodes placed on the last level, corresponding to 

the 2
k
 code words. 

On the first level in the graph, there are 2
1
 nodes, on the 

second one, 2
2
, and so on, on the level k, 2

k
 nodes. As on the 

last level, (n), also 2
k
 nodes exist, this means that from the 

level k, no nodes diversifies into two branches. Up to the 

level k-2, inclusive, the number of nodes can be calculated 

with relation 

  1 2 2 12 2 ... 2 2 2k k                     (7) 

The first node on the level k-1 has the index 2
k-1

-1 and the 

last node on this level, the index 2
k-1

-1+2
k-1

-1=2
k
-2. So, the 

first node on the level k has the index 2
k
-1 and the last node 

on this level, the index 2
k
-1+2

k
-1=2

k+1
-2. 

The number of levels between k and n will be, obviously, 

n-k+1. The total number of nodes in the encoding graph, 

excepting the root, is: 
1 2 12 2 ... 2 ( 1)2 2 ( 1) 2k k kn k n k    (8) 

The index of the last node in the encoding graph will be 

2 ( 2) 2k n k , while the index of the first node on the 

level n will have the index  

2 ( 2) 2 2 1 2 ( 1) 1k k kn k n k . 

The index of the last node on the level n-1 will be 

2 ( 1) 2k n k and that of the first node on the same level 

will be 2 ( 1) 2 2 1 2 ( ) 1k k kn k n k . 
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The graph corresponding to a linear, binary, block code is 

given in Fig. 1. 

 

 
Fig. 1. The encoding graph 

 

Since the code is systematic, with the information 

symbols grouped on the first k places in the code word, on 

the branches of the encoding graph up to level k, inclusive, 

all the binary distinct sequences of length k result. In the 

encoding graph the parity check symbols are placed between 

levels k and n. The parity check symbols calculated by 

means of relation (1) will be also “0” or “1”, but they will be 

provided with probability “1” from each node between 

levels k and n. This means that the parity check symbols 

carry no information.  

 So, the average information per code word will be 

determined only by the average information per each 

information symbol in the code word. If H(V) denotes the 

average information per code word, we have obviously 

( ) ( ) ( )bH V kH X kH p                      (9) 

Since the probability of a parent node is the sum of 

probabilities of its children, it results that on a certain level, 

i, 1 i k , we have  

2 1
(1 )i

ip N p                       (10) 

12 2i

ip N p                          (11) 

On the same level there are a number of 1

iC  nodes of 

probability 
1(1 )ip p , a number of 

2

iC  nodes of probability  

2 2(1 )ip p a.s.o. a number of 
1i

iC nodes, of probability  

1(1 )ip p . 

The probability attached to each branch in the graph is 

equal to the ratio between the probability of the child and 

the probability of its parent. Since between levels k and n no 

nodes splits into another two ones, a parent has only one 

child, both of the same probability, and so the branch 

probabilities between levels k and n will be equal to unity.  

On a certain level, i, 1 i k , the node probabilities will 

be equal to those of nodes on the level k.  

III. LINEAR, BINARY, BLOCK CODES SEEN AS 

SOURCES WITH MEMORY 

According to the encoding graph in Fig. 1, when a 

terminal node is reached the source will deliver another code 

word.  To emphasize this, we link the terminal nodes in the 

graph with the nodes on the first level, as shown Fig. 2. 

 

 
 

Fig. 2 The graph of the source with memory 

 

Each node Ni in the encoding graph will correspond to a 

state Si of the source with memory denoted in the following 

with (X|S), because the providing probabilities of a binary 

symbol depend on the state from which it is generated. 

The probability of a stationary state is obtained as the 

ratio between the node probability corresponding to that 

state in the encoding graph and the average length of the 

code words [12-14]. 

As all the code words have the same length, (n), the 

average code word length is also n. If p(Si) denotes the 

probabilities of the source with memory, then 

( )
( ) , 1,2,...,2 ( 2) 2ki

i

p N
p S i n k

n
          (12) 

The probabilities of branches in the graph of the source 

with memory (Fig. 2) are the same as those in the encoding 

graph (Fig. 1). This is because the probability of a branch in 

the graph of the source with memory is calculated as the 

ratio between the stationary probability of the state in which 

it reaches and that from where it starts. Denoting these states 

by Si and Sj, respectively, then 

( ) ( )

( ) ( )

i i

ij

j j

p S p N
p

p S p N
,                 (13) 

that is, the ratio between the parent and the child 

probabilities in the encoding graph. 

Let ( | )j ip x S , 1,2,..., 2 ( 2) 2ki n k , 1,2,j denotes 

the probability that the source will deliver the message js  

given the state iS . Considering the graph in Fig. 1, we can 

write  

1

2

1 ,for 1,2,...,2 2 and

2 ( 1) 1,...,2 ( 2) 2; 1;

, for 1,2,...,2 2 and

( | ) 2 ( 1) 1,...,2 ( 2) 2; 2;

1 0, for 2 1,...,2 ( 1) 2,

so that when ( | ) 1,

then ( | ) 0, and convers

k

k k

k

k k
j i

k k

i

i

p i

i n k n k j

p i

p x S i n k n k j

or i n k

p x S

p x S ely

  (14) 

We denote by ( , )j ip x S , 1,2,..., 2 ( 2) 2;ki n k  

1,2j ; the probability that the source with memory is in 

the state Si and it supplies the message xj. These 

probabilities can be calculated as 

( , ) ( ) ( | )j i i j ip x S p S p x S , 
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 1,2,..., 2 ( 2) 2; 1,2ki n k j              (15) 

Let ( | )i jp S x  denote the probability that the source is in 

the state Si, if it had supplied the message xj. These 

probabilities can be determined by means of relation 

( , )
( | )

( )

j i

i j

j

p x S
p S x

p x
                          (16) 

 

Theorem 1 

The average information per symbol in a code word can 

be obtained with 

( | ) ( )b

k
H X S H p

n
                          (17) 

Proof 
2 ( 2) 2 2

1 1

2 2 2

1 1

2 ( 2) 2 2

12 ( 1) 1

2 2 2 2 2 2

1 1 1 1

( | ) ( , ) log ( | )

( , ) log ( | )

( , ) log ( | )

log(1 ) ( , ) log ( , )

log(1 )

k

k

k

k

k k

n k

j i j i

i j

j i j i

i j

n k

j i j i

ji n k

j i j i

i j i j

H X S p x S p x S

p x S p x S

p x S p x S

p p x S p p x S

p p
2 ( 2) 2 2

12 ( 1) 1

2 ( 2) 2 2

12 ( 1) 1

( , )

log ( , ) ( ).

k

k

k

k

n k

j i

ji n k

n k

j i b

ji n k

x S

k
p p x S H p

n

 

 

 

Theorem 2 

For fixed k and n, the average redundancy per symbol in a 

code word can be obtained with 

( , ) 1 ( )b

k
I X S H p

n
                   (18) 

Proof 
2 ( 2) 2 2

1 1

2 ( 2) 2 2

1 1

( , )
( , ) ( , ) log

( ) ( )

( | )
( ) ( | ) log

( )

k

k

n k
j i

j i

i j j i

n k
j i

i j i

i j j

p x S
I X S p x S

p x p S

p x S
p S p x S

p x

  (19) 

For levels 1 i k  and i n , from the encoding graph, 

we have 

1 1( ) ( | ) 1ip x p x S p                       (20) 

2 2( ) ( | )ip x p x S p                        (21) 

For levels 1k i n , from the encoding graph, we 

have 

1 2 1( | ) 1; ( | ) 0; ( ) 1i ip x S p x S p x p ,      (22) 

1 2 2( | ) 0; ( | ) 1; ( )i ip x S p x S p x p ,         (23) 

Considering (5), (12), (20) – (23) in (19), we have 

( , ) 1 ( ).b

k
I X S H p

n
 

In stationary regime, the state distribution of the source 

with memory is 

1 2 2 ( 2) 2

1 2 2 ( 2) 2

:
( ) ( ) ( )

k

k

n k

n k

S S S
S

p S p S p S
        (24) 

The source in (24) is discrete, complete and memoryless. 

 

Theorem 3 

The average information per stationary state is calculated 

as entropy   

(2 1)
( ) log ( )

2
b

k n k
H S n H p

n
            (25) 

Proof 
2 ( 2) 2

1

1

1 0

0

1
1

1 0

1
1

1 0

( ) ( ) log ( )

1 (1 )
(1 ) log

( 1) (1 )
(1 ) log

1
(1 ) ( ) (1 ) log(1 )

(1 )

k n k

i i

i

i j ijk
i i j i

j

j i

i k ik
i i k i

k

i

jk
i i j i

j

j i

jk
i i j i

j

j i

H S p S p S

p p
C p p

n n

n k p p
C p p

n n

p j i C p p p
n

p iC p p
1

1 0

1

0

1

0 0

log (1 ) log

1
(1 ) ( ) (1 ) log(1 )

(1 ) log (1 ) log

(2 1)
( ) log

2

jk
i i j i

j

j i

k
i i k i

k

i

k k
i i k i i i k i

k k

i i

b

p C p p n

n k
p k i C p p p

n

p iC p p p C p p n

k n k
H p n

n

 

 

Theorem 4 

The entropies H(X,S) and H(S|X) are calculated by means 

of relations: 

(2 3)
( , ) log ( )

2
b

k n k
H X S n H p

n
            (26) 

and 

(2 3) 2
( | ) log ( )

2
b

k n k n
H S X n H p

n
,    (27) 

respectively. 

Proof 
2 ( 2) 2 2

1 1

2 ( 2) 2 2

1 1

2 ( 2) 2 2

1 1

2 ( 2) 2 2

1 1

( , ) ( , ) log ( , )

( , ) log ( ) ( | )

( , ) log ( )

( , ) log ( | ) ( ) ( | )

k

k

k

k

n k

j i j i

i j

n k

j i i j i

i j

n k

j i i

i j

n k

j i j i

i j

H X S p x S p x S

p x S p S p x S

p x S p S

p x S p x S H S H X S

 (28) 

Considering (17) and (25) from (28), relation (26) results. 

Analogously, we have 



2 ( 2) 2 2

1 1

2 ( 2) 2 2

1 1

2 ( 2) 2 2

1 1

2 ( 2) 2 2

1 1

( | ) ( , ) log ( | )

( , )
( , ) log

( )

( , ) log ( , )

( , ) log ( ) ( ) ( )

k

k

k

k

n k

j i i j

i j

n k
j i

j i

i j j

n k

j i j i

i j

n k

j i j

i j

H S X p x S p S x

p x S
p x S

p x

p x S p x S

p x S p x H S H X

  (29) 

Considering (6) and (25), from (29), relation (27) results. 

 

IV. CONCLUSIONS 

The main original contributions of the paper are: 

1. The analysis of binary block codes as sources with 

memory, when the symbols 1 and 0 are supplied with 

probabilities p and 1-p, respectively.  

2. In this approach the following information 

quantities have been highlighted: the average information 

per symbol H(X|S), the average redundancy per symbol 

I(X,S), the average information per stationary state H(S) and 

the entropies H(X,S) and H(S|X). 

3. Between the information quantities calculated 

above, the following relationships can be established:   

( , ) ( ) ( | ) ( ) ( | )H X S H X H S X H S H X S    (30) 

( , ) ( ) ( | ) ( ) ( | )

( ) ( ) ( , )

I X S H X H X S H S H S X

H X H S S X S
    (31) 

They can be easily verified by replacing the relations 

above. 

4. We make the following correspondences:  

 a. The set X of binary information symbols and the 

set of symbols at the input of a discrete memoryless 

channel; 

 b. The set of states of the source with memory {S} 

and the set of symbols at the output of a discrete, 

memoryless channel. 

Then: 

- The entropy of the field at the channel input is 

identical to that of the field consisting of the set of binary 

symbols, X, when information symbols are generated; 

- The entropy of the field at the channel output is 

identical to the state entropy, H(S);  

- The mutual information of the channel is identical 

to the redundancy on each symbol in a code word; 

- The equivocation of the channel is identical to the 

average information per symbol in a code word, H(X|S); 

- The prevarication of the channel is identical to the 

entropy H(S|X) of the source with memory; 

- The joint entropy of the channel is identical to the 

entropy H(S,X) of the source with memory. 

5. It is well known that the number of errors that can be 

corrected depend on the code redundancy. The larger the 

code redundancy is, the larger is the number of errors the 

code can correct. Since the code word redundancy is equal 

to nI(X,S), the maximum value of the code redundancy, for k 

and n fixed, is obtained along with the maximum value of 

redundancy per symbol in a code word. According to (18), 

the maximum value of I(X,S), for k and n fixed, is obtained 

along with maximum value of binary entropy Hb(p). It 

becomes maximum when p=1/2. This means that to obtain a 

maximum redundancy per symbol in a code word, for k and 

n fixed, the symbols “0” and “1” have to be equally likely. 

The information symbols, as well as the code words, result 

also equally likely.  

In this case (p=1/2) the average information per symbol in a 

code word becomes maximum, equal to k/n and so do the 

average information per code word, equal to k. 

6. If Hb(p) is the average information per information 

symbol, obviously, the average information per code word, 

containing k information symbols, is equal to k Hb(p). As the 

code word length is n, the average information per symbol 

in a code word is 
( )bkH p

n
, the same as the entropy in (17). 

7. The maximum possible average information per code 

word is obtained when all the n binary symbols in a code 

word would have the average information of Hb(p), when 

max[ ( )] ( )bH V nH p  

In fact, the average information of each code word is 

equal to ( ) ( )bH V kH p . Then, the redundancy per a code 

word is  

max[ ( )] ( ) ( ) ( )bH V H V n k H p . 

This means that the redundancy per symbol in a code 

word is 

( )b

n k
H p

n
, 

that is, the information quantity I(X,S) in (18). 
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