Optimal Asymmetric Binary Quantization for Estimation Under Symmetrically Distributed Noise - Archive ouverte HAL
Article Dans Une Revue IEEE Signal Processing Letters Année : 2014

Optimal Asymmetric Binary Quantization for Estimation Under Symmetrically Distributed Noise

Résumé

Estimation of a location parameter based on noisy and binary quantized measurements is considered in this letter. We study the behavior of the Cramer-Rao bound as a function of the quantizer threshold for different symmetric unimodal noise distributions. We show that, in some cases, the intuitive choice of threshold position given by the symmetry of the problem, placing the threshold on the true parameter value, can lead to locally worst estimation performance.

Dates et versions

hal-00877213 , version 1 (28-10-2013)

Identifiants

Citer

Rodrigo Cabral Farias, Eric Moisan, Jean-Marc Brossier. Optimal Asymmetric Binary Quantization for Estimation Under Symmetrically Distributed Noise. IEEE Signal Processing Letters, 2014, 21 (5), pp.523-526. ⟨10.1109/LSP.2014.2308419⟩. ⟨hal-00877213⟩
261 Consultations
0 Téléchargements

Altmetric

Partager

More