Hassan Bazoun
email: hassan.bazoun@ims-bordeaux.fr

Gregory Zacharewicz
email: gregory.zacharewicz@ims-bordeaux.fr

Yves Ducq
email: yves.ducq@ims-bordeaux.fr

Hadrien Boye
email: hadrien.boye@hardis.fr

Transformation of Extended Actigram Star to BPMN2.0 in the frame of Model Driven Service Engineering Architecture

Keywords: Interoperability, service engineering, model transformation, Extended Actigram Star, BPMN, G-DEVS Simulation

Cooperation between different enterprises to provide product and related services has become a must in order to set up win-win alliances and benefit better from market opportunities. This evolution has encountered several problems, like interoperability when trying to exchange data between heterogeneous systems. This paper shows how a model-driven approach can be an answer to service system implementation and to interoperability problems. In particular it details the necessity to provide transformation mechanisms from conceptual description here Extended Actigram Star (EA*) models to more technical models such as BPMN 2.0 models. At the end the paper describes a last transformation to G-DEVS simulation models in order to validate, thanks to simulation, some behavioral properties of the BPMN model before going to implementation.

INTRODUCTION

Traditional manufacturing enterprise, in Europe and around the world, will progressively migrate from traditional product-centric business to product-based service-oriented virtual enterprise and ecosystems [START_REF] Thoben | Extended Products: evolving traditional product concepts[END_REF]. Therefore, these companies have to cooperate in one or several virtual enterprises, considered as service systems to support the service life cycle. In order to manage this transition from product oriented toward service oriented business, the various virtual manufacturing enterprises should be modeled, designed, implemented, tested and managed along its entire. However, to properly implement the service system, it is good to separate the user position from technical point of view, with a model driven approach. This paper presents some preliminary results of a research work performed in the frame of the FP7 MSEE (Manufacturing Service Ecosystem) Integrated Project [2]. One of the results of MSEE is the development of a Model Driven Service Engineering Architecture (MDSEA) in which transformation of models is included. Also this paper will show the work done in the domain of model transformation between two modeling languages used in the service architecture of MSEE The next part will present the principles of MDSEA, justify the chosen modeling languages at each modeling level and the need of model transformation between modeling levels and then between modeling languages. Then, a literature review on model transformation will be done. After, the mechanisms of model transformation between Extended Actigram Star and BPMN 2.0 will be presented in details. Then, a final transformation to G-DEVS simulation model is presented emphasizing the usage of simulation in model validation and service testing. Finally the perspectives of this work will be proposed at the end of the paper.

MDSEA

The objective of a model driven approach is to separate between the business and technical point of view in productservice systems. An engineering architecture specifies a framework (i.e. a conceptual structure) for engineering activities, which provides a set of guidelines for structuring the specifications organized with various abstraction levels.

The Model Driven Service Engineering Architecture (MDSEA) is inspired from MDA [START_REF] Omg | MDA Guide Version 1.0[END_REF]/MDI [START_REF] Jp | Deliverable DTG2.3 from the INTEROP project[END_REF] (Model Driven Architecture/ Model Driven Interoperability). MDA defines three modeling levels and specifies the goals that must be followed at each level but without mentioning how to model or which modeling language to be used as it is proposed in MDSEA. The MDI approach is more detailed but focuses only on IT aspects. On the other hand, MDSEA supports the need for modeling the three types of components (IT, Organization/Human and Physical Means) which form a "service system". In this sense, it is therefore considered as an adaptation of MDA/MDI approaches to the engineering context of product related services in virtual enterprise environment.

On the basis of MDA/MDI, the proposed MDSEA defines a framework for service system modeling based on three abstraction levels: BSM, TIM and TSM as well as the dedicated modelling languages at each level.

Business Service Model (BSM)

BSM specifies the models, at the global level, describing the service running inside a single enterprise or inside a set of enterprises as well as the links between these enterprises. The models at the BSM level must be independent from the future technologies that will be used for the various resources and must reflect the business perspective of the service system. In this sense, it's useful, not only to understand a problem, but also to bridge the gap between domain experts and development experts who will build the service system (adapted from Miller, et al., 2003). The BSM level allows also defining the link between the production of Products and the production of Services.

Technology Independent Model (TIM)

TIM delivers models at a second level of abstraction independent from the technology used to implement the system. TIM levels represent the same system but with more detailed specifications. It gives detailed specifications of the structure and functionality of the service system which do not include technological details. More concretely, it focuses on the operational details while hiding technology related details used for implementation. At TIM level, the detailed specification of a service system's components will be elaborated with respect to IT, Organization/Human and Physical means involved within the service production. TIM can be derived partially from BSM models.

Technology Specific Model (TSM)

TSM enhance the specifications of the TIM model with details that specify how the implementation of the system uses a particular type of technology (such as, for example IT applications, Machine technology or a specific person). At TSM level, the models must provide sufficient details to allow developing or buying suitable software applications, hardware components, recruiting human operators / managers or establishing internal training plans, buying and realizing machine devices, for supporting and delivering services in interaction with customers. For instance for IT applications, a TSM model enhance a TIM model with technological details and implementation constructs that are available in a specific implementation platform, including middleware, operating systems and programming languages (e.g. Java, C++, EJB, CORBA, XML, Web Services, etc.). Based on the technical specifications given at TSM level, the next step consists in the realization and the implementation of the designed service system in terms of IT components (Applications and Services), Physical Means (machine components or material handling) and calls to Human resources related tasks/operations.

Conclusion

The proposed MDSEA aims to provide and integrate a set of modeling languages at the different abstraction levels, to support service system design and implementation. The desired service system will be first specified and represented globally from a business user's point of view at the lower level of the global modeling. Then detailed modeling and specifications will allow determining the three types of components (IT, Organization/Human, Physical means) that are necessary to realize the service system. Finally, related descriptions and specifications will be delivered with sufficient details to build the design service system.

So, based on these modeling levels, it is proposed to associate relevant modeling languages at each level. At the business level, the modeling languages must be very simple, powerful and understandable by business oriented users. Moreover, these languages must cover the process modeling and decision modeling in a coherent way.

As for process modeling, a lot of languages exist and Extended Actigrams Star (EA*), derived from IDEF0 was chosen to model processes at BSM level due to its generic modeling of resources: machine, human and IT. The hierarchical approach of EA* was also a reason of this choice.

At the TIM level, OMG BPMN 2.0 (Business Process Modeling Notations) [START_REF] Omg | Business Process Model and Notation (BPMN) version 2.0[END_REF] was chosen in particular because this language offers a large set of detailed modeling constructs, including IT aspects and benefits from the interoperability of many BPM IT platforms allowing the deployment and automatic execution of BPMN processes. However, because the languages are not the same, it is necessary to transform EA* models into BPMN 2.0 models in order to obtain business process models at TIM level based on those previously modeled at BSM level. As a consequence, the next part will present a state of the art in model transformation and then the transformation mechanisms and rules between EA* and BPMN 2.0 will be presented.

STATE OF THE ART

Business process is a collection of related, structured activities or tasks that produce a specific service or product for a particular customer(s). It is "the structure by which an organization does what is necessary, to produce values for its customers" [START_REF] Davenport | Process Innovation: Reengineering work through information technology[END_REF].

The standards of process modeling are gaining more and more importance, which gave rise to several process modeling languages and tools to enhance the representation of enterprise processes. One of these languages is the GRAI Extended Actigram [7] which intends to capture business process models at a high semantic level, independently from any technological or detailed specifications. It is an extension of IDEF0 [8] Actigram language. Several attempts tried to bridge the gap between GRAI Extended Actigram and other process modeling languages, such as BPMN.

ASICOM [START_REF]Etat des lieux critique sur MDI[END_REF] was a French funded project, whose goal was to build a platform that enables interoperability among industrial partners. Model transformation was a key solution to interoperability issues. In the frame of this project, transformations from GRAI Extended Actigram models to UML activity diagrams and BPMN models [START_REF]Design and Development for Transformation from GRAI to BPMN module and Semantic Annotations for BPMN module[END_REF] were tested and evaluated.

The ASICOM team has encountered several problems during his research, based on the current GRAI Extended Actigram language version which was not designed within a MDA approach and thus imposes limits on the transformation of models generated by this language. It doesn't have an official MOF metamodel, but several metamodels developed in the frame of academic researches and projects. In addition, the specification of Grai Extended Actigram is not sufficiently formal to allow the transformation into other formalisms.

This paper presents an improved version of the Grai Extended Actigram language called Extended Actigram Star (EA*), developed as an answer to previous issues encountered with GRAI extended actigram language regarding its interoperability. In addition, the paper highlights the transformation from the developed Extended Actigram Star models to BPMN2.0 models.

TRANSFORMATION'S PRINCIPLES

Model transformation provides means to produce target models from different source models [11]. For this purpose, it permits the definition of how source model elements must be matched in order to initialize target model elements.

This section introduces the main principles of transforming an Extended Actigram Star Model into a BPMN model, including the proposition of the Extended Actigram Star language, the transformation architecture specific to our domain of study, the mapping of Extended Actigram star concepts to BPMN2.0 concepts, and the transformation language used to implement this mapping.

Extended Actigram Star

Extended Actigram Star (EA*) relies on previous work developed in the frame of the GRAI Methodology [START_REF] Doumeingts | Enterprise Modelling techniques to improve efficiency of enterprises[END_REF], which defines "GRAI Extended Actigram" as a process modeling language, among other graphical formalism, for enterprise modeling and "decision centric" analysis. The goal of Extended Actigram Star is to:  Provide a common modeling notation comprehensible by business users for business process description.  Reduce the gap between the ideation and the design of business process (by its simple and accessible syntax).  Facilitates the transformation of business process models toward other structured modeling languages offering more detailed constructs (e.g. BPMN2.0).

Conceptual Model

The conceptual model is formed of several regrouping levels to generalize concepts and to factor out details.

Extended Actigram Star elements are divided into three sub packages: Root package containing the root element of the Extended Actigram star Language (Model), General Elements package that reduce and factor out details, and Core Elements package that contains every concrete element that has a corresponding graphical representation defined by this language.

Transfo

The obje Star (EA*) m the most used Approach" [3 "Metamodel"

Figure 3 Trans

The first target metam metamodel an used for the [START_REF] Mcneill | How to extend the Eclipse Ecore metamodel[END_REF] is used structures of metamodels. defined in ec (XMI) [START_REF] Omg | XML Metadata Interchange (XMI)[END_REF] is defining the languages, a mapping can b matching. Lat will be imple (ATL) [START_REF]ATL/User Guide -The ATL Language[END_REF] Both EA* a core. In additi s used to save metamodels mapping betw be characteriz ter, the mapp emented using plugin "BPM validate BPM format [START_REF] Omg | Business Process Model and Notation (BPMN) version 2.0[END_REF] InternalConnector. This case is a "1 to n" relation, in which the "OutputInput"Flow is mapped to a combination of MessageFlow, MessageEvent, and a SequenceFlow. Condition5: Source is an atomic ExtendedActivity and target is an ExternalConnector or InternalConnector. In this case it is mapped to a MessageFlow.

"Support flow"

The mapping of "Support" Flow depends on the source. Condition1: Source is a Material resource. In this case it is mapped to an Association. Condition2: Source is not a Material resource. In this case it is not mapped. (See mapping of resources in Table 1).

Model Transformation Language

This section shortly presents the model transformation language used based on ATL [START_REF]ATL/User Guide -The ATL Language[END_REF] to implement the mapping of concepts (Table 1).

ATL is a model transformation language specified as both a metamodel and a textual concrete syntax. In the field of Model-Driven Engineering (MDE), ATL provides developers with a mean to specify the way to produce a number of target models from a set of source models. The ATL language is a hybrid of declarative and imperative programming. The preferred style of transformation writing is the declarative one: it enables to simply express mappings between the source and target model elements. However, ATL also provides imperative constructs in order to ease the specification of mappings that can hardly be expressed declaratively.

An ATL transformation program is composed of rules that define how source model elements are matched and navigated to create and initialize the target models elements. The Process2Process rule will transform a specific EA* process element into a BPMN process element.

EA

Called rules

Called rules explicitly generate target model elements from imperative code. Except for entrypoint called rule that must be explicitly called from an ATL imperative block. The CreateCollaboration rule is implicitly invoked at the beginning of the transformation execution. It creates a Collaboration element with the name "collaboration".

Example

Figure 7 is an example of a transformation from EA* diagram to BPMN diagram. The EA* diagram (upper diagram) is modeled using an EA* graphical editor. The diagram is a representation of an order process within an enterprise, in which a check on availability and credits is performed before fulfilling the order or rejecting it.

The second diagram is a BPMN2.0 diagram viewed using the BPMN modeler. Both diagrams were created using the SLMToolBox which is a modeling tool developed in the frame of the MSEE project.

FROM BPMN TO SIMULATION MODELS

The final step is leaded by the fact that BPMN is not ready for execution it misses the temporal dimension. Several works were proposed in literature to transform BPMN models to simulation models. For instance in [START_REF] Bocciarelli | A model-driven method for building distributed simulation systems from business process models[END_REF] and [START_REF] Bocciarelli | Automated performance analysis of business processes[END_REF] the authors proposed a new model driven solution to generate simulation models dedicated to distributed environment context. Moreover, in [START_REF] Zacharewicz | G-DEVS/HLA Environment for Distributed Simulations of Workflows[END_REF], the authors have proposed a method to transform the (semi-formal) Workflow graphical models into (formal) G-DEVS (Generalized-DEVS) coupled models by connecting G-DEVS atomic models representing the Workflow basic components. Nevertheless the Workflow components were not mature and not formally described leading to many interpretations in the source model. Also in [START_REF] Çetinkaya | Model Transformation from BPMN to DEVS in the MDD4MS Framework[END_REF] a first step to transform BPMN to DEVS has been proposed, the authors have proposed matching for major BPMN components to DEVS models. Nevertheless not all components of BPMN 2.0 were detailed and matched into DEVS models. These works have been extended for transforming BPMN 2.0 to G-DEVS. The idea is to push further the interoperability of the G-DEVS BPMN Environment to be distributed. A key to these requirements is to use the High Level Architecture (HLA) standard as a common way to share synchronized data between them. Authors presented in [START_REF] Bocciarelli | A model-driven method for building distributed simulation systems from business process models[END_REF] that models can be run from several distributed components and places. Thanks to the capability of G-DEVS models to be integrated as create HLA federates introduced in [START_REF] Zacharewicz | G-DEVS/HLA Environment for Distributed Simulations of Workflows[END_REF], the interoperability will be facilitated. This desired capability matches with the distribution requirements of actual industrial service processes. Indeed, actual real industrial processes required the use of human decision and multiple tools that interact with the process at the different steps of the service definition and generation. The different software tools are heterogeneous and need to cooperate. Thus, the authors will propose to use SLMToolBox as the editor/simulator engine of a distributed BPMN Workflow environment and to generalize the HLA compliance to the whole BPMN modeling environment by adding other federates to the federation in order to define a Distributed Workflow Reference Model.

CONCLUSION

This paper expressed the problem of interoperability for collaborative enterprises that tend to exchange services. It introduced the model driven service engineering architecture (MDSEA) as an extension of the MDA/MDI approaches that can support solving this interoperability problem. The use of model based approach was exposed. The first modeling language introduced is GRAI Extended Actigram to model at conceptual level and then BPMN language has been recalled for tackling model technical details. Apart from syntactical transformation, that can be almost fully automatized, the need of a well-defined model transformation in the frame of MDSEA avoiding semantic loss has been identified.

Then, transformation architecture was proposed; it governs the transformation attempt which is based on the "metamodel approach" transformation architecture. The mapping of concepts has been detailed using a table representing the links and relations created between concepts of both conceptual models. And after, ATL rules were introduced in order to implement the maooing table followed by a concrete example of the transformation from Extended Actigram Star to BPMN.

At the end a final transformation to G-DEVS models is introduced. The idea was to reuse and complete already proposed transformations to permit an almost entirely linked transformation from top level to simulation in order to validate behavioral properties the models. The last outstanding and remaining issue at the end is based on the lack of data for time consideration on the service building and delivery.

Figure 1

 1 Figure 1 EA* conceptual model All Extended Actigram Star elements inherit from the BaseElement class three common attributes: id, name, and code.

Figure 2

 2 Figure 2 BaseElement Extended Actigram Star diagram is a representation of a business process (the subject to be modeled). A Process is composed of FlowElement(s), which is an abstract representation of all elements constituting the diagram. A FlowElement can be either a Flow, used to link FlowNodes, or a FlowNode that is an abstract representation of the diagram's elements that are connected together by means of flows. A FlowNode is a supper class of four other classes:  ExtendedActivity: this represents the functional unit of a process. An Extended activity can be broken down into several activities. In such case, it is called a 'Structured Activity'. An activity that has not been broken down will be called an "Atomic Activity'.  Resource: an abstract concept representing resources used by a process to support one or several activities. It can be of three types: human, material, and IT.

 entrypoint rule CreateCollaboration() { to t: BPMN!Collaboration (name  'collaboration') do{ thisModule.collaborations  t ; }} Figure 6 Called rule

Figure 7

 7 Figure 7 EA* m

Acknowledgement

This work has been partially supported by the FP7 Project ID 284860 MSEE project.

InternalConnector

Participant(