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When is it no longer possible to estimate a compound

Poisson process?

Céline Duval
∗

Abstract

We consider centered compound Poisson processes with finite variance, discretely
observed over [0, T ] and let the sampling rate ∆ = ∆T → ∞ as T → ∞. From the
central limit theorem, the law of each increment converges to a Gaussian variable.
Then, it should not be possible to estimate more than one parameter at the limit.
First, from the study of a parametric example we identify two regimes for ∆T and we
observe how the Fisher information degenerates. Then, we generalize these results
to the class of compound Poisson processes. We establish a lower bound showing
that consistent estimation is impossible when ∆T grows faster than

√
T . We also

prove an asymptotic equivalence result, from which we identify, for instance, regimes
where the increments cannot be distinguished from Gaussian variables.

AMS 2000 subject classifications: 60K05, 62B99, 62M99.
Keywords: Discretely observed random process, Compound Poisson process, Informa-
tion loss.

1 Introduction

1.1 Motivation and statistical setting

Continuous diffusive models are often used for phenomena observed at large sampling
rate, even though they present discontinuities or jumps at lower frequencies. For example
in finance, asset prices or volumes change at discrete random times (see for instance
Gerber and Shiu [6], Russell and Engle [16] or Guilbaud and Pham [7]), however it is
common to use continuous diffusive processes to model them when the sampling rate
is large (see e.g. Masoliver et al. [12], Önalan [15] or Hong and Satchell [8]). This
opposition in the observations’ behavior between small frequencies and large sampling
rate is evoked in Cont and de Larrard [3]: “over time scales much larger than the interval
between individual order book events, prices are observed to have diffusive dynamics
and modeled as such.” In physics the opposition between large scale diffusive behavior
and point process at small scale is also popular (see e.g. Metzler and Klafter [13] or
Uchaikin and Zolotarev [19]). The usual justification for using diffusive approximations
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is as follows. Suppose we have discrete observations of a centered pure jump process X
observed at a sampling rate ∆ > 0, e.g. a centered compound Poisson process with finite
variance, namely we observe

(
X∆, . . . , X⌊T∆−1⌋∆

)
(1)

If ∆ is large, between two observations of X many jumps occurred, the central limit
theorem gives for every increments the approximation

Xi∆ −X(i−1)∆ ≈ σ
(
Wi∆ −W(i−1)∆

)

where W is a standard Wiener process and σ is positive. Hence, only the variance
parameter σ2 should be identifiable from (1). If X depends on more parameters their
identifiability should be lost. Yet the use of diffusive approximations conceals the jump’s
dynamic observed at lower frequencies. The following questions naturally come across.

i) Is it possible to estimate the parameters characterizing X from (1)?

ii) Is the experiment generated by (1) asymptotically equivalent to a Gaussian exper-
iment when ∆ = ∆T → ∞ as T → ∞?

The asymptotic equivalence of a Poisson experiment with variable intensity has been
studied in Brown et al. [2]. Shevtsova [17] looks at the accuracy of Gaussian approxima-
tions for Poisson random sums.

Definition 1. Observations (1) are said to be on a macroscopic regime if ∆ = ∆T → ∞
and T/∆T → ∞ as T → ∞.

The condition T/∆T → ∞ ensures there are asymptotically infinitely many observa-
tions. A typical example of macroscopic regime is a sampling rate ∆T of the order of Tα

as T → ∞ for α in (0, 1) as T → ∞. In this paper we restrain our study to homogeneous
compound Poisson processes. A compound Poisson process X is defined as

Xt =

Rr∑

i=1

ξi, t ≥ 0

where R is a Poisson process of intensity λ and
(
ξi
)
are independent and identically

distributed random variables independent of R. The process X is characterized by the
the pair r = (λ, f), where f is the distribution of ξ1. We denote by P the class of
compound Poisson processes.

1.2 Main results

Investigating questions i) and ii) directly is difficult. Hence in Section 2 we first build
and study a toy model: a compound Poisson process plus a drift that depends on a
2-dimensional parameter. This process does not belong to P. From this toy model, we
identify two distinct macroscopic regimes,
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• A regime where ∆ goes to infinity faster than
√
T , where the parameters cannot

be consistently estimated from (1), providing a negative answer to i) (see Theorem
1 hereafter).

• A regime where ∆ goes to infinity slower than
√
T , where the parameters can be

estimated answering positively to i). However, optimal rates are much slower than
usual parametric ones (see Proposition 1 hereafter).

From the study of the toy model, we derive a lower bound in Theorem 2. It identifies
regimes in which consistent estimation of the law generating a process in P is impossible,
leading to a negative answer to i). Theorem 3 gives an asymptotic equivalence result;
according to the behavior of ∆T with regard to T , the following occurs.

• The experiment generated by the observation of a process in P is asymptotically
equivalent to a Gaussian experiment, giving a positive answer to i).

• Compound Poisson processes depending on a large number of parameter are not
identifiable, providing a negative answer to ii). The limit number of parameters
beyond which consistent estimation is not possible is made explicit.

This paper is organized as follows, in Section 2 we construct and study our toy model.
In Section 3 we establish the main Theorems 2 and 3. A discussion is proposed in Section
4. Finally, Section 5 is devoted to the proofs.

2 Information loss: a parametric example

2.1 Building up a parametric model

Consider the Lévy process Y defined by

Yt = Xt −
λt

β
=

Rt∑

i=1

ξi −
λt

β
, t ≥ 0, (2)

where R is Poisson process of intensity λ ∈ (0,∞) independent of (ξi)i≥0 which are
independent and exponentially distributed random variables with parameter β ∈ (0,∞).
Due to the drift part, Y does not belong to P contrary to X. This model, known as
the Cramér-Lundberg model, is used by insurance companies to model big claims of
subscribers (see e.g. Embrechts et al. [5] or Miksoch [14]). Without the drift part, it is
also used in Alexandersson [1] to model rainfall.

Suppose we observe ⌊T∆−1⌋ increments of Y , conditional on the event {Ri∆ −
R(i−1)∆ 6= 0}. Namely we observe Y over [0, S(T )] at a sampling rate ∆ > 0, where
S(T ) is random and defined by

S(T )∑

i=1

1{Ri∆−R(i−1)∆ 6=0} = ⌊T∆−1⌋.

3



Define J =
{
i ∈ {1, . . . , S(T )}, Ri∆ − R(i−1)∆ 6= 0

}
, by construction

∣∣J
∣∣ = ⌊T∆−1⌋ and

consider the observations

Ỹ =
(
Ỹi,∆ = Yi∆ − Y(i−1)∆|Ri∆ −R(i−1)∆ 6= 0, i ∈ J

)
. (3)

We introduce the family of experiments indexed by ∆ generated by the conditional
observations (3)

Ỹ∆ :=
(
R⌊T∆−1⌋,P(R⌊T∆−1⌋), {P̃T,∆

θ , θ ∈ Θ}
)
,

where θ denotes the unknown parameter θ = (λ, β) ∈ Θ = (0,∞)× (0,∞) and P̃T,∆
θ the

law of Ỹ .

Remark 1. We work on the conditional experiment Ỹ∆, which selects increments where
at least one jump of X occurred, instead of an experiment Y∆ generated by the observa-
tions of ⌊T∆−1⌋ increments of Y

Y =
(
Yi∆ − Y(i−1)∆, i = 1, . . . , ⌊T∆−1⌋

)
.

But the law of Y is not dominated and the Fisher information in Y∆ does not exist.
Indeed the distribution of Y∆ can be decomposed in

P(R∆ 6= 0)δ
{−λ∆

β }
(.) + P(R∆ > 0)p̃∆,θ(.),

where p̃∆,θ is dominated by the Lebesgue measure but δ{−λ∆
β }, the mass concentrated at

−λ∆
β , cannot be dominated over Θ. Removing increments where the Poisson part is null

gives a model dominated by the Lebesgue measure, we can define a Fisher information.
However, the probability of a null increments of X is e−λ∆, it is negligible as ∆ → ∞.
We show that the results established for Ỹ hold if we observe Y instead; the experiments
Ỹ∆ and Y∆ are asymptotically equivalent (see Section 2.4).

The intuition of the problem is the following, as ξ1 has finite variance, the central
limit theorem applies for each increments and gives for i in J

Ỹi∆T
− Ỹ(i−1)∆T√
∆T

d−→ N
(
0,

2λ

β2

)
, as T → ∞.

Thus each observation converges in law to a Gaussian random variable depending on one
parameter: the parameter θ should no longer be identifiable when ∆ gets large, only the
ratio λ/β2 should be.

2.2 Study of the Fisher information

The increments of Y are independent and identically distributed, it follows that the
Fisher information of Ỹ∆ satisfies

I⌊T∆−1⌋,∆(θ) = ⌊T∆−1⌋I1,∆(θ)
where I1,∆(θ) is the Fisher information corresponding to one increment. It has no closed
form expression but the following Proposition gives its asymptotic behavior.
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Proposition 1. Let ∆ = ∆T such that ∆T → ∞ and T/∆T → ∞ as T → ∞. Then

lim
T→∞

I1,∆T
(θ) = I(θ) :=

(
1

2λ2 − 1
λβ

− 1
λβ

2
β2

)

and the eigenvalues of I⌊T∆−1
T ⌋,∆T

(θ), denoted e1,∆T
(θ) and e2,∆T

(θ), satisfy

e1,∆T
(θ) =

(
2
β2 + 1

2λ2

)
⌊T∆−1

T ⌋+ 3(7β4+40β2λ2+56λ4)
8β2λ3(β2+4λ2)

⌊T∆−1
T ⌋

∆
+O

( ⌊T∆−1
T ⌋

∆
3/2
T

)

e2,∆T
(θ) = 3

4β2λ+16λ3

⌊T∆−1
T ⌋

∆
+O

( ⌊T∆−1
T ⌋

∆
3/2
T

)
.

Remark 2. The matrix I(θ) is the Fisher information of an experiment consisting in
one variable of distribution N (0, 2λ/β2).

From Proposition 1, whenever ∆T goes to infinity faster than
√
T the Fisher informa-

tion I⌊T∆−1
T ⌋,∆T

(θ) degenerates to a rank 1 matrix: the second eigenvalue e2,∆T
goes to 0.

Theorem 1 hereafter shows that it is indeed not possible to build a consistent estimator
of θ in those scales. Conversely, when ∆T is slower than

√
T , both eigenvalues of the

Fisher information go to infinity. Since the experiment Ỹ∆ is regular we deduce that the
parameter θ remains identifiable and that consistent estimators of θ do exist. This is
surprising, even if each observation is close to a Gaussian variable depending on one pa-
rameter, the whole sample still permits to estimate consistently all unknown parameters.
However the optimal rate of convergence, determined by the slowest eigenvalue e2,∆T

(θ),

is in ⌊T∆−2
T ⌋−1/2

. It is much slower than usual parametric rates in ⌊T∆−1
T ⌋−1/2

, the
square root of the sample size.

2.3 A lower bound

In what follows ‖.‖ denotes a norm on R2. Define the diameter of a set A as

diam(A) = sup
a1,a2∈A×A

‖a2 − a1‖.

Theorem 1. Let ∆T be such that ∆T → ∞ and T∆−2
T → l ∈ [0,∞) as T → ∞.

Then, for all θ0 ∈ Θ and δ > 0 there exists Vδ(θ0) ⊂ Θ a neighborhood of θ0 such that
diam

(
Vδ(θ0)

)
≤ δ and

lim
T→∞

inf
θ̂

sup
θ∈Vδ(θ0)

E
⌊T∆−1

T
⌋

Pθ

[
‖θ̂ − θ‖

]
> 0

where the infimum is taken over all estimators.

From Theorem 1, there is no consistent estimator of θ when ∆T grows rapidly to
infinity, faster than

√
T . This was expected as the Fisher information degenerates to a

rank 1 matrix in those regimes (see Proposition 1).
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2.4 Generalization to the unconditional experiment

The asymptotic equivalence of Ỹ∆ and Y∆ (defined in Remark 1) is an immediate con-
sequence of the following Lemma.

Lemma 1. Define the probability measures,

pn(θ, x) = fn(θ, x)dx

qn(θ, x) = an(θ)wn,θ(dx) + (1− an(θ))fn(θ, x)dx,

where θ ∈ Σ is a compact subset of Rd, d ≥ 1, an(θ) ∈ (0, 1), fn(θ, .) is a density abso-
lutely continuous with respect to the Lebesgue measure and wnθ is a probability measure.
Consider the two statistical experiments En and Gn generated by the independent and
identically distributed observation of n random variables of density pn(θ, .) and qn(θ, .)
respectively. If supθ∈Σ an(θ) = o

(
1
n

)
, then En and Gn are asymptotically equivalent.

Proof of Lemma 1 is given in Section 5. Since Y is a Lévy process, observations Y ,
and Ỹ , are independent and identically distributed. The distribution of Y∆ is

p∆,θ(x) = e−λ∆δ{
−λ∆

β

}(dx) + (1− e−λ∆)p̃∆,θ(x)dx, x ∈ R (4)

where δ{−λ∆/β} is the measure concentrated at −λ∆
β and p̃∆,θ is the density of Ỹ∆ abso-

lutely continuous with respect to the Lebesgue. We consider macroscopic regimes such
that ∆ = 0(Tα) for some α ∈ (0, 1), thus e−λ∆T = o(⌊T∆−1

T ⌋−1) and Lemma 1 applies

with a⌊T∆−1
T ⌋(θ) = e−λ∆T and wn,θ(dx) = δ{−λ∆/β}(dx). The experiments Y∆ and Ỹ∆

are asymptotically equivalent and the results established for Ỹ∆ hold for Y∆.

3 Identifiability loss for compound Poisson processes

3.1 A lower bound

In Section 2 we exhibit on a parametric example a regime where estimation is impossible.
We generalize here Theorem 1 to the class of compound Poisson processes P whose norm

‖r‖2,P = ‖(λ, f)‖2,P := ‖λf‖2,

is finite, ‖.‖2 stands for the usual L2 norm.

Theorem 2. Let ∆T → ∞ be such that T/∆T → ∞ and T/∆2
T = o((log(T/∆T ))

−1/4)
as T → ∞. Then, for all r0 ∈ P, ‖r0‖2,P , and δ > 0, there exists Vδ(r0), a neighborhood
of r0 such that diam(Vδ(r0)) ≤ δ and

lim
T→∞

inf
r̂

sup
r∈Vδ(r0)

E
⌊T∆−1

T
⌋

Pr

[
‖r̂ − r‖2,P

]
> 0

where the infimum is taken over all estimators.
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It follows that if ∆T is of the order of Tα for α ∈ (1/2, 1) it is not possible to build a
consistent estimator of (λ, f) from (1) when f is unknown.

Remark 3. A compound Poisson process is a renewal reward process and a Lévy pro-
cess. Thus, we immediately derive from Theorem 2 that if ∆T is such that T/∆2

T =
o((log(T/∆T ))

−1/4) as T → ∞, it is not possible to build consistent estimators of the law
generating a renewal reward process or a Lévy process with jumps from (1).

Remark 4. The rate restriction T/∆2
T = o((log(T/∆T ))

−1/4) is technical and might
be weakened in T/∆2

T = O(1). To establish Theorem 2 we show that, the experiment
Y∆T introduced in Section 2 is asymptotically equivalent to an experiment generated by
increments of a compound Poisson process. It permits to derive Theorem 2 from Theorem
1 which hold under the restriction T/∆2

T = O(1).

3.2 An asymptotic equivalence result

Building up asymptotically equivalent experiments. For K ∈ N, define the pa-
rameter θ = (λ,m2, . . . ,mK) ∈ ΣK , where ΣK is a compact subset of

(0,∞)× (0,∞)× R× (0,∞)× . . .× (0,∞) if K is even

(0,∞)× (0,∞)× R× (0,∞)× . . .× R if K is odd,

and consider some density fθ with respect to the Lebesgue measure, centered with finite
K first moments

∫
xfθ(x)dx = 0 and

∫
xkfθ(x)dx = mk, k = 2, . . . ,K.

Define the parameter transformation function

hγ : θ ∈ ΣK → hγ(θ) =
(
γλ, m2

γ , . . . , mK
γ

)
,

where γ > 0 such that hγ(θ) ∈ ΣK . LetX and Z be two compound Poisson processes such
that X has intensity λ and compound density fθ and Z has intensity γλ and compound
density fhγ(θ).

Remark 5. Suppose (m1,m2, . . . ,mK) are the K first moments of a density, K ≥ 1.
The Hamburger moment problem ensures that there exists another density with respect
to the Lebesgue measure whose first moments are

(
m1
γ , m2

γ , . . . , mK
γ

)
, for any γ > 0.

Consider also a Gaussian process W with quadratic variation λm2. We associate the
parameter φ = (λ,m2) in Σ2. Suppose X, Z and W are discretely observed at a sampling
rate ∆ > 0 over [0, T ], namely

(
Xi∆ −X(i−1)∆, i = 1, . . . , ⌊T∆−1⌋

)
, (5)

(
Zi∆ − Z(i−1)∆, i = 1, . . . , ⌊T∆−1⌋

)
, (6)

(
Wi∆ −W(i−1)∆, i = 1, . . . , ⌊T∆−1⌋

)
. (7)
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We define the families of statistical experiments indexed by ∆

X∆ := {PT,∆
θ , θ ∈ ΣK} Z∆ := {QT,∆

θ , θ ∈ ΣK} and W∆ := {DT,∆
φ , φ ∈ Σ2},

where PT,∆
θ denotes the law of (5), QT,∆

θ the law of (6) and DT,∆
φ the law of (7). Finally,

define for positive constants C, ρ, A and a the subclass of densities

F(C, ρ,A, a) =
{
f ∈ F(R), ∀|ξ| > A, |f̂(ξ)| ≤ C

|ξ| , ∀|ξ| > ρ, |f̂(ξ)| ≤ a < 1
}
,

where F(R) is the class of densities and f̂ denotes the Fourier transform of f . The class
F(C, ρ,A, a) contains a large range of distributions, such as Gaussian and exponential
distributions. Any density sufficiently regular is in F(C, ρ,A, a).

Theorem 3. Let fθ and fhγ(θ) be in F(C, ρ,A, a), with A > 2C and ρ > 0 satisfying for
a constant C

λ
(
m2 −

⌊K/2⌋∑

k=2

(−1)km2kρ
2k−2

2(2k)!

)
> CρK−1. (8)

Suppose sup
θ∈ΣK

∫
x3fθ(x)dx < ∞ and let ∆T → ∞ be such that T/∆T → ∞ as T → ∞.

1. Let K ≥ 2, if T∆
−(K+1)/2
T = o((log(T/∆T ))

−1/4), the experiments X∆T and Z∆T

are asymptotically equivalent.

2. Moreover, if either one of the following holds

i. T∆
−3/2
T = o((log(T/∆T ))

−1/4)

ii. T∆−2
T = o((log(T/∆T ))

−1/4) and m3 = 0

the experiment X∆T is asymptotically equivalent to the Gaussian experiment W∆T .

Remark 6. Even if it means taking ρ small, condition (8) can always be satisfied.

Interpretation. From part 1 of Theorem 3, if ∆T is of the order of Tα as T → ∞,
α ∈ (0, 2/3), it is not possible to identify more than Kα = ⌈ 2

α − 1⌉ moments of the
compound law and the intensity. Indeed, it is possible to exhibit to different compound
Poisson processes that cannot be distinguished from their discrete observation. Thus,
compound laws characterized by their M ≥ Kα first moments cannot be estimated from
observations (1). Part 2 of Theorem 3 states that when ∆T goes rapidly to infinity, the
Gaussian approximation is valid. It is not possible to distinguish the increments of a
compound Poisson process from the increments of a Brownian motion. Thus, using a
continuous model even though the phenomena is per se discontinuous is justified in those
regime (see e.g. Cont and de Larrard [3]).
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The case K = 1, where parameter θ reduces to θ = λ, is not covered by Theorem 3.
Since θ then appears in the limit variance, it is always identifiable. This case is studied
for a particular discrete compound law in Duval and Hoffmann [4], where an efficient
estimator of θ is given and the asymptotic equivalence with a Gaussian experiment is

established for ∆ going rapidly to infinity, namely T/∆
1+1/4
T = o((log(T/∆T ))

−1/4). This
constraint is harsher than the one of Theorem 3 due to the discreteness of the compound
law, a regularizing kernel is needed to prove the equivalence and imposes the condition.
In the case K = 2, the parameter becomes θ = (λ,m2), a particular example is studied
in Section 2. Corroborating Theorem 3, Theorem 2 shows that it is not possible to
estimate θ whenever T∆−2

T → 0 as T → ∞ and when more than two parameters are to
be estimated.

4 Discussion

An immediate consequence of the results of the paper is that nonparametric estimation
for compound Poisson processes is impossible when ∆ goes to infinity as a power of
T , since it requires to estimate an infinite number of parameters (see Theorem 3). In
this paper we did not investigate the existence and properties of consistent estimation
procedures when they exist. From the example of Section 2, we may expect that such
procedures exist but have optimal rates of convergence that deteriorate as the number
of parameters increases.

A natural generalization of Theorem 3 would be to relax the constraint on the third
moment of the compound law in

∫
R xηfθ(x)dx < ∞ for some η > 0, and more specifically

for η ∈ (0, 2). This allows to exhibit at the limit a convergence to any stable process
and not only to a Brownian motion (see for instance Kotulski [9] or Levy and Taqqu
[11]). The stable limit law is parametric, then if the initial process depends on too many
parameters questions i) and ii) (modifying the limit experiment accordingly) of Section
1.1 can also be raised. However, the methodology used in this paper highly rely on the
hypothesis

∫
R x3fθ(x)dx < ∞ (see the proof of Theorem 3 and the use of Edgeworth

expansions). Another generalization might be to add a long range dependence structure
between the jump times or the jumps themselves that remains at the macroscopic limit.
Our methodology uses heavily the Lévy structure of the process.
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5 Proof

5.1 Proof of Proposition 1

Preparation

The increments of Y are independent and identically distributed. Conditional on the
presence of jumps, the density of Ỹ∆ + λ∆/β is

P∆[fβ ](x) =
∞∑

m=1

P(R∆ = m|R∆ 6= 0)f⋆m
β (x) =

e−λ∆

1− e−λ∆

∞∑

m=1

(λ∆)m

m!
f⋆m
β (x)

where fβ is the density of an exponentially distributed random variable with parameter
β and ⋆ denotes the convolution product. It follows that f⋆m

β is the density of a gamma
distribution. Then, for x ≥ 0

P∆[fβ ](x) =
e−λ∆

1− e−λ∆
e−βxλ∆β

∞∑

m=0

(λ∆βx)m

m!(m+ 1)!
.

Let k ∈ N and introduce the function

gk(x) =

∞∑

m=0

xm

m!(m+ k)!
, x ∈ [0,∞). (9)

It is related to the modified Bessel function of the first kind Ik as follows

gk(x) =
1

xk/2
Ik(2

√
x), x > 0, (10)

where

Ik(x) =
∞∑

m=0

(x
2

)2m+k 1

m!Γ(m+ k + 1)
.

Rewriting P∆[fβ ] and adding the drift part we get the density p̃∆,θ of Ỹ∆, for x ≥ −λ∆/β

p̃∆,θ(x) =
e−2λ∆−βx

1− e−λ∆
λ∆βg1

(
λ∆βx+ λ2∆2

)
.

Technical Lemmas

Lemma 2. Let k ∈ N, the modified Bessel function of the first kind Ik(x) satisfies for
all M ∈ N

e−xIk(x) =
1

(2πx)1/2

M∑

m=0

(−1)m

(2x)m
Γ(k +m+ 1

2)

m!Γ(k −m+ 1
2)

+O
( 1

xM+3/2

)
,

where the remainder depends on k and M .
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Proof. See Watson [20].

We need to control the moments of Ỹ∆ and compute the first ones. For that we use
relation (4) and the moments of Y∆ derived from the Lévy-Kintchine formula

φY∆
(w) = E

[
eiwY∆

]
= exp

(
λ∆((1− iw/β)−1 − 1− iw/β)

)

by the relation

E
[
Y m
∆

]
=

1

im
∂mφY∆

(w)

∂wm

∣∣∣
w=0

, m ∈ N.

The control of the moments of Y∆ is given in Lemma 4 hereafter, which is a consequence
of the following Lemma, whose proof can be found in the Appendix.

Lemma 3. Let K ∈ N, suppose X is a compound Poisson process whose compound law
is centered and has moment up to order K. Then for ∆ large enough and m ≤ K we
have

∣∣E
[
Xm

∆

]∣∣ ≤ C∆⌊m/2⌋, where C continuously depends on λ and the K first moments.

Remark 7. Lemma 3 and Cauchy-Schwarz inequality imply E
[∣∣X2m+1

∆

∣∣] ≤ C∆m+1/2.

Lemma 4. Let K ≥ 2, then
∣∣E
[
Ỹ m
∆

]∣∣ ≤ C∆⌊m/2⌋, where C continuously depends on θ.

Proof of Lemma 4. The process Y is not in P, nevertheless a convex inequality leads to

E
[
Y m
∆

]
≤ 2m

(
E
[( R∆∑

i=1

(
ξi − 1

β

))m]
+

1

βm
E
[
(R∆ − λ∆)m

])
.

We apply Lemma 3 to the first term of the right hand part of the inequality. We control
the second term using Faà di Bruno’s formula; we compute the nth derivative of the
Laplace transform of R∆ − λ∆ at 0 as follows

dn

dtn
E
[
et(R∆−λ∆)

]
=

dn

dtn
eλ∆(et−t−1) =

dn

dtn
F (G(t))

where F (t) = eλ∆(t−1) and G(t) = et − t, which satisfy F (n)(t)|t=0 = (λ∆)n and
G(n)(t)|t=0 = 1n 6=1 for all n ≥ 1. Applying Faà di Bruno’s formula we get

dn

dtn
E
[
et(R∆−λ∆)

]
=

∑

m1,m2,...,mn
m1+2m2+...+nmn=n

n!
m1!m2!...mn!

F (m1+m2+...+mn)(G(t))

n∏

j=1

(G(j)(t)

j!

)mj

.

Let t = 0. All the terms corresponding to m1 6= 0 are null, we obtain

E
[
(R∆ − λ∆)n

]
=

∑

m2,...,mn
2m2+...+nmn=n

n!
m1!m2!...mn!

(λ∆)m2+...+mn ≤ C∆⌊n/2⌋,

for large enough ∆ since the exponent m2+ . . .+mn is maximal for m3 = . . . = mn = 0.
The constant C depends on λ. To conclude we control the moments of Ỹ∆ using (4)

E
[
Ỹ m
∆

]
=

1

(1− e−λ∆)

(
E
[
Y m
∆

]
− e−λ∆ λ∆

β

)
≤ C∆⌊m/2⌋,

for ∆ large enough and where C continuously depends on θ.
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Completion of the proof of Proposition 1

Since observations (3) are independent and identically distributed, the Fisher information
satisfies I⌊T∆−1

T ⌋,∆T
(θ) = ⌊T∆−1

T ⌋I1,∆T
(θ)

I1,∆T
(θ) =

(
I∆T

(λ, λ) I∆T
(λ, β)

I∆T
(β, λ) I∆T

(β, β)

)

where

I∆T
(λ, λ) = −EP̃θ

[ ∂2

∂λ2
logp̃∆,θ(Ỹ∆T

, λ, β)
]
, I∆T

(β, β) = −EP̃θ

[ ∂2

∂β2
log p̃∆,θ(Ỹ∆T

, λ, β)
]

I∆T
(λ, β) = I∆T

(β, λ) = −EP̃θ

[ ∂2

∂λ∂β
log p̃∆,θ(Ỹ∆T

, λ, β)
]

From (9) we derive g′k(x) = gk+1(x). Straightforward computations lead to

I∆T
(λ, λ) =EP̃θ

[
∆2

T e
−2λ∆T

(1− e−λ∆T )2
+

∆2
T e

−λ∆T

1− e−λ∆T
+

1

λ2
− 2∆2

T

g2(λ∆TβỸ∆T
+ λ2∆2

T )

g1(λ∆TβỸ∆T
+ λ2∆2

T )

− (β∆T Ỹ∆T
+ 2λ∆2

T )
2

×
(
g3(λ∆TβỸ∆T

+ λ2∆2
T )

g1(λ∆TβỸ∆T
+ λ2∆2

T )
−
(g2(λ∆TβỸ∆T

+ λ2∆2
T )

g1(λ∆TβỸ∆T
+ λ2∆2

T )

)2)]

I∆T
(λ, β) =EP̃θ

[
−∆T Ỹ∆T

g2(λ∆TβỸ∆T
+ λ2∆2

T )

g1(λ∆TβỸ∆T
+ λ2∆2

T )
− λ∆T Ỹ∆T

(β∆T Ỹ∆T
+ 2λ∆2

T )

×
(
g3(λ∆TβỸ∆T

+ λ2∆2
T )

g1(λ∆TβỸ∆T
+ λ2∆2

T )
−
(g2(λ∆TβỸ∆T

+ λ2∆2
T )

g1(λ∆TβỸ∆T
+ λ2∆2

T )

)2)]

I∆T
(β, β) =EP̃θ

[
1

β2
− (λ∆T Ỹ∆T

)2
(
g3(λ∆TβỸ∆T

+ λ2∆2
T )

g1(λ∆TβỸ∆T
+ λ2∆2

T )

−
(g2(λ∆TβỸ∆T

+ λ2∆2
T )

g1(λ∆TβỸ∆T
+ λ2∆2

T )

)2)]
.

Finally equation (10), Lemma 2 applied with M = 8, Lemma 4 (with Remark 7) and the
Taylor expansions around 0 of z → 1/(1 + z) up to order 4 in ∆ lead to Proposition 1.
Computations are made with Mathematica.

5.2 Proof of Theorem 1

Preliminary

Lemma 5. Let ∆T be such that ∆T → ∞ and T∆−2
T → l ∈ [0,∞) as T → ∞, then for

γ > 0 and γ 6= 1

EPθ0

[
log
( g1(λ0β0∆T Ỹ∆T

+λ2
0∆

2
T )

g1(γ3λ0β0∆T Ỹ∆T
+γ4λ2

0∆
2
T )

)]
=2λ0∆T (1− γ2) + 3 log(γ)− 9(γ2−1)

16γ2λ0∆T
+O

(
1

∆
3/2
T

)
.
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Proof. It is a consequence of (10), Lemma 2 applied with M = 8 and Lemma 4 (with
Remark 7). Computations are made with Mathematica.

Completion of the proof of Theorem 1

The following inequality holds for all θ0 ∈ Θ and δ > 0

sup
θ∈Vδ(θ0)

E
⌊T∆−1

T
⌋

P̃θ

[
‖θ̂ − θ‖

]
≥
∫

Vδ(θ0)
E

⌊T∆−1
T

⌋

P̃θ

[
‖θ̂ − θ‖

]
µ(dθ)

where Vδ(θ0) is a neighborhood of θ0 such that diam(Vδ(θ0)) < δ and µ is the following
measure on Vδ(θ0)

µ(dx) =
1

2

(
δθ0(dx) + δhγ(θ0)(dx)

)

where hγ(θ0) ∈ V(θ0) is a perturbation of θ0 and δθ denotes the Dirac distribution in θ.
It follows that
∫

Vδ(θ0)
E

⌊T∆−1
T

⌋

P̃θ

[
‖θ̂ − θ‖

]
µ(dθ) =

1

2

(
E

⌊T∆−1
T

⌋

P̃θ0

[
‖θ̂ − θ0‖

]
+ E

⌊T∆−1
T

⌋

P̃θ0

[
‖θ̂ − hγ(θ0)‖

dP̃
⌊T∆−1

T
⌋

hγ (θ0)

dP̃
⌊T∆−1

T
⌋

θ0

])

≥ E
⌊T∆−1

T
⌋

P̃θ0

[e−s

2
(‖θ̂ − θ0‖+ ‖θ̂ − hγ(θ0)‖)1

{dP̃
⌊T∆−1

T
⌋

hγ (θ0)

dP̃
⌊T∆−1

T
⌋

θ0

> e−s
}]

(11)

for any s > 0. The triangle inequality applied to (11) gives

∫

Vδ(θ0)
E

⌊T∆−1
T

⌋

P̃θ

[
‖θ̂ − θ‖

]
µ(dθ) ≥ e−s

2
‖θ0 − hγ(θ0)‖P̃θ0

(dP̃
⌊T∆−1

T
⌋

hγ (θ0)

dP̃
⌊T∆−1

T
⌋

θ0

> e−s
)
.

From Markov’s inequality and ‖P − Q‖TV =
∫
|dP − dQ|, we derive that for any s > 0

and P and Q some probabilities

P
(dQ
dP

> e−s
)
≤ 1− 1

1− e−s
‖P−Q‖TV .

Then, for all s > 0
∫

Vδ(θ0)
E

⌊T∆−1
T

⌋

P̃θ

[
‖θ̂ − θ‖

]
µ(dθ) ≥ ‖θ0 − hγ(θ0)‖

e−s

2

(
1− 1

1− e−s
‖P̃⌊T∆−1

T
⌋

θ0
− P̃

⌊T∆−1
T

⌋

hγ(θ0)
‖TV

)
.

Hence,
∫

Vδ(θ0)
E

⌊T∆−1
T

⌋

P̃θ

[
‖θ̂ − θ‖

]
µ(dθ) ≥ ‖θ0 − hγ(θ0)‖Φ

(
‖P̃⌊T∆−1

T
⌋

θ0
− P̃

⌊T∆−1
T

⌋

hγ(θ0)
‖TV

)
(12)

where

Φ(x) = sup
s∈(0,∞)

e−s

2

(
1− 1

1− e−s
x
)
= Φ(x) =

(1−√
x)2

2
, x ∈ [0, 1].

If x is bounded away from 1, Φ is strictly positive. In the remaining of the proof we
choose hγ such that

13



• ‖P̃⌊T∆−1
T

⌋

θ0,∆T
− P̃

⌊T∆−1
T

⌋

hγ(θ0),∆T
‖TV ≤ C1 < 1 for some constant C1,

• ‖θ0 − hγ(θ0)‖ ≥ C2 > 0 for some constant C2 possibly depending on θ0.

Define the function hγ : θ → hγ(θ) = (γ2λ, γβ) where γ 6= 1 is positive. First, Pinsker’s
inequality gives

∥∥P̃⌊T∆−1
T

⌋

θ0
− P̃

⌊T∆−1
T

⌋

hγ(θ0)

∥∥
TV

≤
√

⌊T∆−1
T ⌋
2 K

(
P̃θ0

, P̃hγ (θ0)

)
, (13)

where K is the Kullback divergence and

K
(
P̃θ0,∆T

, P̃hγ (θ0),∆T

)
=

∫ ∞

−∞

(
log(p̃θ0(x))− log(p̃hγ(θ0)(x))

)
p̃θ0(x)dx

= EP̃θ0

[
log
( g1(λ0β0∆TX∆T

+λ2
0∆

2
T )

g1(γ3λ0β0∆TX∆T
+γ4λ2

0∆
2
T )

)]
− 2λ0∆(1− γ2)− 3 log(γ).

In view of Lemma 5,

K
(
P̃θ0

, P̃hγ (θ0)

)
=

9(1− γ2)

16γ2λ0∆T
+O

(
1

∆
3/2
T

)
,

and

∥∥P̃⌊T∆−1
T

⌋

θ0
− P̃

⌊T∆−1
T

⌋

hγ(θ0)

∥∥
TV

≤
√

9(1− γ2)

32γ2λ0

⌊T∆−1
T ⌋

∆T
+O

(
T

∆
5/2
T

)
. (14)

Then, if T/∆2
T → 0 as T → ∞, for large enough T there exits C1 < 1 such that

∥∥P̃⌊T∆−1
T

⌋

θ0
− P̃

⌊T∆−1
T

⌋

hγ(θ0)

∥∥
TV

≤ C1 < 1. (15)

The inequality holds for any γ. If T/∆2
T → l > 0 as T → ∞, take γ 6= 1 such that

0 <
1

16λ0
9l + 1

< γ2. (16)

Then, (14) ensures that there exists C1 < 1 such that

‖P̃⌊T∆−1
T

⌋

θ0
− P̃

⌊T∆−1
T

⌋

hγ(θ0)
‖TV ≤ C1 < 1. (17)

Second, we bound from below ‖θ0 − hγ(θ0)‖, here ‖.‖ denotes the L2 norm. Since

‖θ0 − hγ(θ0)‖ =
√
(1− γ2)2λ2

0 + (1− γ)2β2
0 = |1− γ|

√
(1 + γ)2λ2

0 + β2
0 ,

we choose γ 6= 1 such that (16) is satisfied and hγ(θ0) ∈ Vδ(θ0). That latest condition
can always be fulfilled since we can have either γ > 1 or γ < 1, avoiding boundary issues.
Finally, there exists C2 > 0, depending on γ and θ0, such that

‖θ0 − hγ(θ0)‖ ≥ C2 > 0. (18)

We complete the proof plugging (15), (17) and (18) into (12) and taking limits.

Remark 8. To bound the total variation norm in (13) we prefer the Kullback divergence
over the Hellinger distance since the logarithm makes easier the manipulation of the
density p̃θ,∆ (see Lemma 5).
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5.3 Proof of Lemma 1

Both experiments En and Gn are dominated by νn,θ(dx) = µn,θ(dx) + dx, where µn,θ is
a dominating measure for wn,∆, therefore to establish the asymptotic equivalence it is
sufficient to show (see Le Cam and Yang [10])

sup
θ∈Σ

∥∥Pn
θ −Qn

θ

∥∥
TV

→ 0 as n → ∞,

where ‖.‖TV denotes the total variation norm. Since each experiment is the n fold product
of independent and identically distributed random variables1 the result

∥∥Pn
θ −Qn

θ

∥∥
TV

→ 0 as n → ∞.

is implied by ∥∥L(X)− L(Z)
∥∥
TV

= o
(
n−1

)
,

if X has density pn(θ, .) and Z has density qn(θ, .). The connection between the total
variation norm and the L1 norm leads to

∥∥L(X)− L(Z)
∥∥
TV

=
1

2

∫

R

∣∣pn(θ, x)− qn(θ, x)
∣∣νn,θ(dx)

=
an(θ)

2

∫

R

∣∣fn(θ, x)− wn,θ(x)
∣∣νn(dx) ≤ an(θ).

The condition supθ∈Σ an(θ) = o
(
1
n

)
completes the proof of Lemma 1.

Remark 9. The last inequality is an equality when µn,θ and the Lebesgue measure are
orthogonal.

5.4 Proof of Theorem 2

A preliminary result. The process Y defined in Section 2 is not in P, we build
a compound Poisson process V close to Y in total variation norm. Keeping up with
notation of Section 2, θ = (λ, β) ∈= Θ, where Θ is compact subset of (0,∞) × (0,∞),
consider the process V

Vs =

Ns∑

i=1

ǫi, s ≥ 0 (19)

where N is a Poisson process of intensity 8
9λ and independent of (ǫi) which are indepen-

dent and identically distributed centered exponential variables with parameter 2
3β. Their

common density is

fθ(x) =
2
3βe

−2
3β
(
x+1/(

2
3β)
)
, x ≥ −1/β. (20)

1For instance, by using the bound (see Tsybakov [18] pp. 83 – 90)
∥

∥P⊗n −Q⊗n
∥

∥

TV
≤

√
2
(

1−
(

1− 1
2
‖P−Q‖TV

)n)1/2
.
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Remark 10. The multiplicative constants 8
9 and 2

3 in front of λ and β ensure that Y∆
defined by (2) and V∆ have same moments of order 2 and 3.

Consider the observations
(
Vi∆−V(i−1)∆, i = 1, . . . , ⌊T∆−1⌋

)
and denote by Q

⌊T∆−1
T

⌋

θ

its law. We have the following Lemma.

Lemma 6. Let ∆T → ∞ such that T/∆T → ∞ and T/∆2
T = o((log(T/∆T ))

−1/4) as
T → ∞. Then, for any compact set Θ ⊂ (0,∞)× (0,∞)

sup
θ∈Θ

∥∥P⌊T∆−1
T

⌋

θ −Q
⌊T∆−1

T
⌋

θ

∥∥
TV

→ 0,

where P
⌊T∆−1

T
⌋

θ denotes the law of
(
Yi∆ − Y(i−1)∆, i = 1, . . . , ⌊T∆−1⌋

)
.

Proof of Lemma 6 can be found in the Appendix. The steps of the proof follows the
lines of the proof of Theorem 3 hereafter.

Completion of the proof of Theorem 2

Let rθ = (λ, fβ) defined from (19) and (20), for all r0 ∈ F and δ > 0

sup
r∈Vδ(r0)

E
⌊T∆−1

T
⌋

Pr

[
‖r̂ − r‖2,P

]
≥ sup

rθ∈Vδ(rθ0 )
E

⌊T∆−1
T

⌋

Qθ

[
‖r̂ − rθ‖2,P

]

where Vδ(r0) (resp. Vδ(rθ0)) is a neighborhood of r0 (resp. rθ0) such that diam(Vδ(r0)) <
δ, diam(Vδ(rθ0)) < δ and Vδ(rθ0) ⊂ Vδ(r0). Notice that

inf
r̂

sup
rθ∈Vδ(rθ0 )

E
⌊T∆−1

T
⌋

Qθ

[
‖r̂ − rθ‖2,P

]
= inf

r̂∈Vδ(rθ0 )
sup

rθ∈Vδ(rθ0 )
E

⌊T∆−1
T

⌋

Qθ

[
‖r̂ − rθ‖2,P

]
.

Otherwise if r̂ /∈ Vδ(rθ0), define ΠVδ(rθ0 )
the projector over Vδ(rθ0), we immediately get

for all rθ ∈ Vδ(rθ0)
‖r̂ − rθ‖2,P ≥ ‖ΠVδ(rθ0 )

[r̂]− rθ‖2,P .
It follows that for all r̂, rθ in Vδ(rθ0) we have

‖r̂ − rθ‖2,P ≤ 2(δ + ‖rθ0‖2,P). (21)

The remainder of the proof is a consequence of Scheffé’s theorem. Let F be a bounded
function then for every measures P and Q

∣∣EP[F (X)]− EQ[F (X)]
∣∣ ≤ ‖F‖∞

∫
|dP− dQ| = 2‖F‖∞‖P−Q‖TV . (22)

It follows from (21) and (22)

E
⌊T∆−1

T
⌋

Qθ

[
‖r̂ − rθ‖2,P

]
≥ E

⌊T∆−1
T

⌋

Pθ

[
‖r̂ − rθ‖2,P

]
− 2
(
2(δ + ‖rθ0‖)‖Pθ −Qθ‖TV

)
.

We conclude the proof with Lemma 6, Theorem 1 and taking limits.
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5.5 Proof of Theorem 3

We show that the total variation norm between the experiments vanishes, using the Lévy
structure of the processes X, Z and W . The experiments X∆T , Z∆T and W∆T are
dominated by the measure δ0(dx) + dx. Introduce

p∆T ,θ(x) = e−λ∆T δ0(x) + (1− e−λ∆T )p̃∆T ,θ(x) (23)

q∆T ,hγ(θ)(x) = e−γλ∆T δ0(x) + (1− e−γλ∆T )q̃∆T ,hγ(θ)(x) (24)

where p∆T ,θ and q∆T ,hγ(θ) are the distributions of X∆T
and Z∆T

and p̃∆T ,θ and q̃∆T ,hγ(θ)

are absolutely continuous with respect to the Lebesgue measure.

Proof of Theorem 3.1

We prove that for K ≥ 2, ∆T satisfying the rate restriction

T/∆
(K+1)/2
T = o((log(T/∆T ))

−1/4) as T → ∞ (25)

and the condition supθ∈ΣK

∫
x3fθ(x)dx < ∞ the experiments X∆T and Z∆T are asymp-

totically equivalent. They live on the same state space and are the ⌊T∆−1
T ⌋ fold product

of independent and identically distributed random variables, therefore to establish the
asymptotic equivalence it is sufficient to show (see the proof of Lemma 1)

∥∥L(X∆T
)− L(Z∆T

)
∥∥
TV

= o
(
(T/∆T )

−1
)
. (26)

We have

‖L(X∆T
)− L(Z∆T

)‖TV =
1

2

∫

R
|(1− e−ϑ∆T )p̃∆T ,θ(x)− (1− e−γϑ∆T )q̃∆T ,hγ (θ)(x)|dx

+
1

2
|e−λ∆T − e−γλ∆T |.

Where |e−λ∆T − e−γλ∆T | = o(⌊T∆−1⌋−1), as ∆ is of the order of Tα for some α > 0.
Applying successively the triangle inequality and Cauchy-Schwarz we obtain

∫

R
|(1− e−ϑ∆T )p̃∆T ,θ(x)− (1− e−γϑ∆T )q̃∆T ,hγ (θ)(x)|dx ≤ I + II + III

where for any η > 0,

I =
√

2η
(∫

R

(
(1− e−ϑ∆T )p̃∆T ,θ(x)− (1− e−γϑ∆T )q̃∆T ,hγ (θ)(x)

)2
dx
)1/2

,

II = (1− e−ϑ∆T )

∫

|x|>η
p̃∆T ,θ(x)dx and III = (1− e−γϑ∆T )

∫

|x|>η
q̃∆T ,hγ (θ)(x)dx.

Set η = ηT = κ
√

∆T log(T/∆T ), we claim that for κ2 > 2λm, the terms I, II and III
are o

(
(T/∆−1

T )
)
hence (26) and the result.
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Bounding terms II and III. For II we use that

(1− e−ϑ∆T )

∫

|x|>ηT

p̃∆T ,θ(x)dx = Pθ(|X∆T
| > ηT ) ≤ 2Pθ(|X∆T

| > ηT )

and that X∆T
is a centered compound Poisson process whose compound law has finite

variance, it follows that

X∆T√
∆T

→ N (0, λm2) as T → ∞.

Let D ∼ N (0, λm2), the triangle inequality gives

Pθ

(
|X∆T

| ≥ ηT
)
≤ P

(
|D| ≥ κ

√
log(T/∆T )

)

+
∣∣P
(
|D| ≥ κ

√
log(T/∆T )

)
− P

(∣∣X∆T√
∆T

∣∣ ≥ κ
√

log(T/∆T )
)∣∣.

We readily obtain

P
(
|D| ≥ κ

√
log(T/∆T )

)
≤ 2(T/∆T )

−κ2/(2λm2) = o
(
(T/∆T )

−1
)
.

We bound the second term using Edgeworth series, even if it means conditioning on the
value of the Poisson process associated to X. By assumption, the compound law has
finite moment of order 3, denoted m3, uniformly bounded over ΣK , we derive

∣∣P
(
|D| ≥κ

√
log(T/∆T )

)
− Pθ

(∣∣X∆T√
∆T

∣∣ ≥ κ
√

log(T/∆T )
)∣∣

≤
∣∣∣ C√

∆T

∂3

∂x3

∫ ∞

x
e
− s2

2λm2 ds
)
x=κ

√
log(T/∆T )

∣∣∣

=
C

λm2

√
∆T

∣∣∣1− κ2 log(T/∆T )

λm2

∣∣∣e−
κ2 log(T/∆T )

2λm2

≤ C log(T/∆T )√
∆T

(T/∆T )
−κ2/(2λm2)) = o

(
(T/∆T )

−1
)

where C continuously depends on λ, m2 andm3 and which is o
(
(T/∆T )

−1
)
for κ2 ≥ 2λm2.

The term III is treated similarly as II, the parameter γ simplifies. We do not reproduce
computations. Thus II and III have the right order, the choice of κ and the bounds on
II and III is made independent of θ taking the supremum over the compact set ΣK .
Bounding term I. Plancherel theorem gives

A =

∫

R

(
(1− e−ϑ∆T )p̃∆T ,θ(x)− (1− e−γϑ∆T )q̃∆T ,θ(x)

)2
dx

=
1

2π

∫

R
|(1− e−ϑ∆T )̂̃p∆T ,θ(ξ)− (1− e−γϑ∆T )̂̃q∆T ,θ(ξ)|2dξ.
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The Fourier transforms are computed using (23) and (24) and the Lévy-Kintchine formula

(1− e−ϑ∆T )̂̃p∆T ,θ(ξ) = exp
(
λ∆T (f̂θ(ξ)− 1)

)
− e−λ∆T

(1− e−γϑ∆T )̂̃q∆T ,θ(ξ) = exp
(
γλ∆T (f̂hγ(θ)(ξ)− 1)

)
− e−γλ∆T .

Then, A =
1

2π

∫

R

∣∣(1− e−ϑ∆T )̂̃p∆T ,θ(
ξ√
∆T

)− (1− e−γϑ∆T ) ̂q̃∆T ,hγ (θ)(
ξ√
∆T

)
∣∣2 dξ√

∆T

≤ IV + V + V I,

where for ρ ≥ 0

IV =
1

2π

∫

|ξ|≤ρ
√
∆T

∣∣(1− e−ϑ∆T )̂̃p∆T ,θ(
ξ√
∆T

)− (1− e−γϑ∆T ) ̂q̃∆T ,hγ (θ)(
ξ√
∆T

)
∣∣2 dξ√

∆T
,

V =
1

2π

∫

|ξ|>ρ

∣∣(1− e−ϑ∆T )̂̃p∆T ,θ(ξ)
∣∣2dξ

V I =
1

2π

∫

|ξ|>ρ

∣∣(1− e−γϑ∆T ) ̂q̃∆T ,hγ (θ)(ξ)
∣∣2dξ.

Bounding term IV . Since fθ and fhγ(θ) have their K first moments finite, we get the
following expansion for any bounded ξ

f̂θ(ξ)−
(
1− m2ξ

2

2
+ . . .+

iKmKξK

K!

)
= ξK+1α1(ξ)

and f̂hγ(θ)(ξ)−
(
1− m2ξ

2

2γ
+ . . .+

iKmKξK

K!γ

)
= ξK+1α2(ξ)

for some bounded functions ξ ; α1(ξ) and ξ ; α2(ξ). It follows that IV is less than

∫

|ξ|≤ρ
√
∆T

∣∣∣e
−λm2

ξ2

2 +...+iKλmK
ξK√

∆T
K−2

K!
∣∣∣
2 ξ2K+2

∆K−1
T

α2( ξ√
∆T

)

× exp
(
2

ξK+1

√
∆T

K−1
α
( ξ√

∆T

)) dξ√
∆T

+ 2ρ
√

∆T (e
−λ∆T + e−γλ∆T )

for some bounded function ξ ; α(ξ). Set α = supx |α(x)|. then IV is bounded by

α2

∫

|ξ|≤ρ
√
∆T

ξ2K+2

∆K−1
T

exp
(
−
(
λ(m2 −

⌊K/2⌋∑

k=2

(−1)km2kρ
2k−2

2(2k)! ) + 2ρK−1α
)
ξ2
) dξ√

∆T

+ 2ρ
√

∆T (e
−λ∆T + e−γλ∆T ).

We pick ρ such that (8) is satisfied with C = α, then term IV is of order ∆
−(2K−1)/2
T .

19



Bounding terms V and V I. We use that fθ and fhγ(θ) are in F(C, ρ,A, a),

V = (1−e−λ∆T )
2π

∫

|ξ|>ρ

∣∣̂̃p∆T ,θ(ξ)
∣∣2dξ =

e−λ∆T

2π

∫

|ξ|>ρ

∣∣eλ∆T f̂θ(ξ) − 1
∣∣2dξ

=
e−λ∆T

2π

∫

A>|ξ|>ρ

∣∣eλ∆T f̂θ(ξ) − 1
∣∣2dξ + e−λ∆T

2π

∫

|ξ|>A

∣∣eλ∆T f̂θ(ξ) − 1
∣∣2dξ

= V II + V III.

First, V II is bounded by a constant times Ae−(1−a)λ∆T = o((T/∆T )
−1) as a < 1. Second,

V III ≤ 2e−λ∆T

2π

∫ ∞

A

∣∣∣∣
∞∑

l=1

(λ∆TC)l

l!

1

ξl

∣∣∣∣
2

dξ ≤ e−λ∆T

π

∞∑

l1=1

∞∑

l2=1

(λ∆TC)l1+l2

l1!l2

∫ ∞

A

1

ξl1+l2
dξ

=
e−λ∆T

π

∞∑

l1=1

∞∑

l2=1

(λ∆TC)l1+l2

l1!l2!

1

(l1 + l2 − 1)Al1+l2−1
≤ ρ

π
exp(−(1− 2C

A )λ∆T ).

Thus, if A > 2C, (
√
ηTV )1/2 is of order (

√
∆T e

−(1−2
C
A )λ∆T )1/2 = o((T/∆T )

−1). The
term V I is treated similarly and is of the same order.
Completion of the proof of Theorem 3.1. The leading quantity is IV , we deduce

that I is of order η
1/2
T ∆

−(2K−1)/4
T . The choice ηT = κ

√
∆T log(T/∆T ) and restriction (25)

imply I = o
(
(T/∆T )

−1
)
. The proof of Theorem 3.1 is completed taking the supremum

in θ over the compact set ΣK .

Proof of Theorem 3.2

Proof of part 2 of Theorem 3 is deduced from above computations replacing Z with W
and applying modifications i. or ii.

Appendix

Proof of Lemma 3

We prove the result by induction on m. The Lévy-Kintchine formula gives an explicit
formula of the Fourier transform of X∆

φX∆
(w) = E

[
eiwX∆

]
= exp

(
λ∆(f̂(w)− 1)

)

where f̂(w) = E[eiwξ] denotes the Fourier transform of the compound law and λ is the
intensity of the Poisson process. The moments of X∆ are obtained with

E
[
Xm

∆

]
=

1

im
∂mφX∆

(w)

∂wm

∣∣∣
w=0

, m ∈ N. (27)
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We prove by induction the following property, for all m ≤
⌊
K−1
2

⌋

∂2mφX∆
(w)

∂w2m
=
(
P2m(w,∆) +Q2m(w,∆)

)
exp

(
λ∆(f̂(w)− 1)

)

∂2m+1φX∆
(w)

∂w2m+1
=
(
P2m+1(w,∆) +Q2m+1(w,∆)

)
exp

(
λ∆(f̂(w)− 1)

)

where the functions ∆ → P2m(w,∆), ∆ → Q2m(w,∆), ∆ → P2m+1(w,∆) and ∆ →
Q2m+1(w,∆) are polynomials in ∆, the degree of Q2m and Q2m+1 is smaller than m and
there exist C1 functions (c2m,j(.), c2m+1,j(.), j = 1, . . . ,m), continuously depending on λ,
such that

P2m(w,∆) =

m∑

j=1

c2m,j(w)f̂
′(w)2j∆m+j P2m+1(w,∆) =

m∑

j=1

c2m+1,j(w)f̂
′(w)2j−1∆m+j .

Straightforward computations lead to the result for m = 1

∂2φX∆
(w)

∂w2
=
(
λ∆f̂ (2)(w) + (λ∆f̂ ′(w))2

)
exp

(
λ∆(f̂(w)− 1)

)

∂3φX∆
(w)

∂w3
=
(
λ∆f̂ (3)(w) + 2λ2∆2f̂ ′(w)f̂ (2)(w) + λ∆f̂ ′(w)(λ∆f̂ (2)(w)

+ (λ∆f̂ ′(w))2)
)
× exp

(
λ∆(f̂(w)− 1)

)
.

Assume that the property holds at rank m− 1, we have

∂2mφX∆
(w)

∂w2m
=

∂

∂w

∂2m−1φX∆
(w)

∂w2m−1

=
(
∂wP2m−1(w,∆) + ∂wQ2m−1(w,∆) + λ∆f̂ ′(x)(P2m−1(w,∆)

+Q2m−1(w,∆))
)
× exp

(
λ∆(f̂(w)− 1)

)

where ∂wP2m−1(w,∆) = c2m−1,1(w)
′f̂ ′(w)∆m + c2m−1,1(w)f̂

′′(w)f̂ ′(w)∆m

+
m−2∑

j=1

(
c2m−1,j+1(w)

′f̂ ′(w)2j+1∆m+j

+ c2m−1,j+1(w)(2j + 1)f̂ ′′(w)f̂ ′(w)2j∆m+j
)

λ∆f̂ ′(x)P2m−1(w,∆) = λ
m−1∑

j=1

c2m−1,j(w)f̂
′(w)2j∆m+j .

We set

P2m(w,∆) =

m−2∑

j=1

(
c2m−1,j+1(w)

′f̂ ′(w) + c2m−1,j+1(w)(2j + 1)f̂ ′′(w)
)
f̂ ′(w)2j∆m+j

Q2m(w,∆) =∂wQ2m−1(w,∆) + λ∆f̂ ′(x)Q2m−1(w,∆)
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where P2m have the desired property and from the property at rank m− 1 the degree of
Q2m is lower than m. Similar computations give the result for P2m+1 and Q2m+1. We
complete on the proof with (27), f̂(0) = 1 and using that f is centered: f̂ ′(0) = 0. It
follows that

E
[
X2m

∆

]
≤ C1∆

m and
∣∣E
[
X2m+1

∆

]∣∣ ≤ C2∆
m,

where C1 and C2 continuously depend on λ.

Proof of Lemma 6

To prove Lemma 6 we adopt the same methodology as for the proof of Theorem 3, since
computations are quite similar we do not develop all of them. Since each experiment
is the ⌊T∆−1

T ⌋-fold product of independent and identically distributed random variables
the result is implied1 by

∥∥Pθ −Qθ

∥∥
TV

= o
(
(T/∆T )

−1
)
,

uniformly over the compact set Θ. Let us further denote by p∆T ,θ and q∆T ,θ the densities
of Y∆T

and of V∆T
respectively, which can be decomposed as follows

p∆T ,θ(x) = e−λ∆T δ0
(
x− λ∆T

β

)
+ (1− e−λ∆T )p̃∆T ,θ(x) (28)

q∆T ,θ(x) = e−
8
9λ∆T δ0(x) + (1− e−

8
9λ∆T )q̃∆T ,θ(x) (29)

where p̃∆T ,θ and q̃∆T ,θ are absolutely continuous with respect to the Lebesgue measure.
Then, we have

2
∥∥Pθ −Qθ

∥∥
TV

=

∫

R

∣∣(1−e−λ∆T )p̃θ,∆T
(x)− (1−e

−
8
9λ∆T )q̃θ,∆T

(x)
∣∣dx+ e−

8
9λ∆T − e−λ∆T ,

where e−
8
9λ∆T − e−λ∆T is o(⌊T∆−1⌋−1) as ∆ is of the order of Tα for α > 0. Applying

successively the triangle inequality and Cauchy-Schwarz inequality we get

∫

R

∣∣(1−e−λ∆T )p̃θ,∆T
(x)− (1−e

−
8
9λ∆T )q̃θ,∆T

(x)
∣∣dx ≤ I + II + III,

where for any η > 0,

I =
√

2η
( ∫

R

(
(1−e−λ∆T )p̃θ,∆T

(x)− (1−e
−
8
9λ∆T )q̃θ,∆T

(x)
)2
dx
)1/2

,

II = Pθ

(
|Y∆T

| ≥ η
)

III = Pθ

(
|V∆T

| ≥ η
)
.

Set ηT = κ
√

∆T log(T/∆T ), we show that for κ2 > 3λ, I, II and III are o
(
(T/∆−1

T )
)
.

Bounding terms II and III. The argument used in the proof of Theorem 3 to bound
the similar terms II and III also holds here. Then II and III are o

(
(T/∆T )

−1
)
.
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Bounding term I. We apply the Plancherel theorem to the integral in I, we denote by
̂̃pθ,∆T

and ̂̃qθ,∆T
the Fourier transforms of p̃θ,∆T

and q̃θ,∆T
respectively. They are com-

puted with (28), (29) and the Lévy-Kintchine formula. We introduce the decomposition

∫

R

(
(1−e−λ∆T )p̃θ,∆T

(x)− (1−e
−
8
9λ∆T )q̃θ,∆T

(x)
)2
dx ≤ IV + V + V I,

with for any ρ ≥ 0 and after replacing ξ by ξ/
√
∆T

IV =

∫

|ξ|≤ρ
√
∆T

∣∣(1−e−λ∆T )̂̃pθ,∆T

( ξ√
∆T

)
− (1−e

−
8
9λ∆T )̂̃qθ,∆T

( ξ√
∆T

)∣∣2 dξ√
∆T

,

V =

∫

|ξ|≥ρ

∣∣∣eλ∆T

(
1

1−iξ/β
−1
)
− e−λ∆T

∣∣∣
2
dξ,

V I =

∫

|ξ|≥ρ

∣∣∣e
8
9λ∆T

(
1

1−i3ξ/(2β)
e−i3ξ/(2β)−1

)
− e−

8
9λ∆T

∣∣∣
2
dξ.

Bounding term IV . A first order expansion (see Remark 10) gives that IV is less than

∫

|ξ|≤ρ
√
∆T

e
−2

λξ2

β2
ξ8α2( ξ√

∆T
)

∆2
T

e
2
ξ4

∆T
α
( ξ√

∆T

)
dξ√
∆T

+ 2ρ
√
∆T (e

−8
9λ∆T − e−λ∆T )

for some bounded function ξ ; α(ξ). Set α = supξ |α(ξ)|, we obtain that IV is bounded
by a constant times

∫

R
e
−2(λ−ρ2α)

ξ2

β2 ξ
8α2

∆2
T

dξ√
∆T

.

Choosing ρ such that λ− ρ2α > 0, gives IV of order ∆
−5/2
T .

Bounding terms V ad V I. Since

V = e−λ∆T

∫

|ξ|≥ρ

∣∣∣ exp
(
λ∆T /(1− iξ

β )
)
− 1
∣∣∣
2
dξ

V I = e−
8
9λ∆T

∫

|ξ|≥ρ

∣∣∣ exp
(
8
9λ∆T e

−i3ξ/(2β)/
(
1− i3ξ

2β

))
− 1
∣∣∣
2
dξ,

computations developed in the proof of Theorem 3 (to bound the analogous terms V and
V I) holds for C = β (C = 16β/27) for term V (for term V I), A > 2C and any ρ > 0

leading to a = 1/
√

(1 + ρ2

β2 ) < 1. We derive that V and V I are of the right order.

Completion of the proof of Lemma 6. Finally,
∫
R

(
pλ,∆T

(x)− qλ,∆T
(x)
)2
dx is domi-

nated by the term I which is of order η
1/2
T ∆

−5/4
T . The choice ηT = κ

√
∆T log(T/∆T ) im-

plies I = o
(
(T/∆T )

−1
)
thanks to the restriction condition T/∆2

T = o((log(T/∆T ))
−1/4).

We complete the proof taking the supremum over Θ.

23



Acknowledgment

The author is thankful to Marc Hoffmann for his valuable remarks on this paper.

References

[1] Alexandersson, H. (1985). A Simple Stochastic mode of a Precipitation Process. Journal of
climate and applied meteorology, 24, 1285–1295.

[2] Brown, L.D., Carter, A.V., Low, M.G. and Zhang, C-H. (2004). Equivalence theory for
density estimation, Poisson processes and Gaussian white noise with drift. The Annals of
Statistics, 32, 2074–2097.

[3] Cont, R., and De Larrard, A. (2013). Price dynamics in a Markovian limit order market.
SIAM Journal on Financial Mathematics, 4(1), 1–25.

[4] Duval, C. and Hoffmann, M. (2011) Statistical inference across time scales. Electronic Jour-
nal of Statistics, 5, 2004–2030.

[5] P. Embrechts, C. Klüppelberg, M. Mikosch, Modeling Extremal Events, Springer, 1997.
[6] Gerber, H.U. and Shiu, E. (1998). Pricing perpetual options for jump processes. The North

American Actuarial Journal, 2, 101–112.
[7] F. Guilbaud, H. Pham, Optimal high-frequency trading in a pro-rata microstructure with

predictive information, Arxiv preprint 1205.3051v1 (2012).
[8] Hong, K.J. and Satchell, S. (2012). Defining Single Asset Price Momentum in Terms of a

Stochastic Process. Theoretical Economics Letters, 2, 274–277.
[9] Kotulski, M. (1995). Asymptotic Distributions of the Continuous-Time Random Walks: A

Probabilistic Approach. Journal of Statistical Physics, 81, 777–792.
[10] Le Cam, L. and Yang, L.G. (2000) Asymptotics in Statistics: Some Basic Concepts. 2nd

edition. Springer-Verlag, New York.
[11] Levy, J.B. and Taqqu, M.S. (2000). Renewal reward processes with heavy-tailed inter-

renewal times and heavy-tailed rewards. Bernoulli, 6, 23–44.
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