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ABSTRACT

Time derivatives of a noisy signal are estimated using a
Kriging-based filter. Under the assumption of regularly
spaced samples, the resulting differentiator turns out to be a
finite impulse response filter (FIR) with constant coefficients.
The method is employed to estimate the acceleration of a
maneuvering target in the context of missile guidance and the
results are compared with those obtained with conventional
Kalman filtering.

Index Terms— FIR filtering, Kriging, numerical differ-
entiation, noisy data, target tracking

1. INTRODUCTION

Accurate estimation of time derivatives of a noisy signal is
often required in signal processing or control. This problem
has received considerable attention in the literature. In par-
ticular, “model-free” control methods use estimates of time
derivatives for computing the control input, thus bypassing
the construction of dynamical process models [1].

The finite-difference method is usually inapplicable,
since small perturbations of the signal lead to large errors
in the computed derivatives [2]. Another widespread method,
Savitzky-Golay filtering [3], fits polynomials on a sliding
window and uses their derivatives as estimates. Other surro-
gate models, such as splines or wavelets, can also be used.
A comparison of methods based on these approaches can be
found in [4].

Techniques based on dynamical models and observers
have been investigated [5], in particular with sliding modes [6].
Underlying dynamical models should be defined to make
these techniques applicable. Algebraic numerical differen-
tiation from noisy signals has also received recent atten-
tion [7, 8].

In the field of surrogate modeling, Kriging [9] (also
known as Gaussian process regression [10]) is a widely-used
approach that provides the best linear unbiased prediction
on input-output data under some precisely stated hypothe-
ses. Methods for evaluating derivatives based on Kriging
have been proposed in [11, 12]. The method advocated in

this paper elaborates from these previous works to propose a
practical scheme for estimating successive time derivatives at
a low computational cost, under the form of a finite impulse
response (FIR) filter with constant coefficients, in the case of
regularly spaced samples.

Section 2 presents the Kriging-based method for estimat-
ing derivatives and the associated filter. Section 3 describes
its application to the tracking of a maneuvering target in the
context of missile guidance.

2. KRIGING-BASED EVALUATION OF
DERIVATIVES

2.1. Kriging

Consider a set of n instants of time Tn = {t1, ..., tn} and the
corresponding measurements of a signal f(t), pooled in the
vector fn = [f(t1), ..., f(tn)]

T.
In its simplest form, Kriging models f(·) as a zero-

mean Gaussian Process (GP) F (·) with covariance function
cov(·, ·) [9]. This covariance function is usually assumed
stationary and written as

cov (F (ti) , F (tj)) = σ2
FR (ti − tj) , (1)

where σ2
F is the GP variance and R (·) a parametric correla-

tion function. The widely-used correlation function adopted
here is

R (ti − tj) = exp

(
− (ti − tj)2

θ2

)
, (2)

where θ is a scale factor to be chosen. This choice is ade-
quate for smooth functions, yet many other correlation func-
tions may be considered. Under these assumptions, Kriging
makes it possible to predict the value of the function f at any
instant of time t by

f̂(t) = λT(t)fn, (3)

where λ(t) is the solution of the linear system

Rλ(t) = r(t), (4)
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in which{
r (t) = [R (t− t1) , . . . , R (t− tn)]T ,
R|ij = R (ti − tj) .

(5)

The value computed by (3) is the best linear unbiased pre-
dictor of the value taken by f(·) at any t [13] (in the simple
case considered here, it is also a minimum MSE linear pre-
dictor). This prediction interpolates the data, which is not ap-
propriate in the presence of measurement noise. Zero-mean
additive Gaussian white noise with variance σ2

N can be taken
into account in the prediction [10] by replacing (4) by(

R+ σ2
NIn

)
λ(t) = r(t). (6)

In the following, R+σ2
NIn is denoted by Rσ . An interesting

feature of GPs is their ability to estimate the variance of the
prediction error, which can be used as a confidence measure
in the prediction (3), as

σ̂2(t) = σ2
F

(
1− λT(t)r(t)

)
, (7)

where the GP variance σ2
F can be estimated by maximum-

likelihood,

σ̂2
F =

1

n
fTnR

−1fn. (8)

As in (6), measurements corrupted by an additive zero-
mean Gaussian white noise with variance σ2

N can be handled
by using Rσ instead of R in (8).

2.2. Estimation of signal derivatives

In the predictor (3), only λ (t) depends on t. Therefore, an
estimate of the l-th time derivative of f is

f̂ (l)(t) = λT
l (t)fn, (9)

where λl(t) is the solution of the linear system

Rσλl(t) = r(l)(t), (10)

in which

r(l) (t) =
[
R(l) (t− t1) , . . . , R(l) (t− tn)

]T
. (11)

It is of course necessary for the correlation function R to
be differentiable at least l times. Following [11], confidence
intervals for the l-th derivative can be computed from

σ̂2
l (t) = σ̂2

F

(
(−1)lR(2l)(0)− λT

l (t)r
(l)(t)

)
. (12)

This formula requires the correlation function to be differen-
tiable 2l times. The correlation function (2) used in this work
is appropriate, since it is infinitely differentiable.

Consider now the implementation of this filter on a sliding
window of n points for estimating f (l), which is a common

strategy. At time tk, the input data (time instants) and the
corresponding measurements, assumed to be corrupted by an
additive zero-mean Gaussian white noise with variance σ2

N,
are such that

tk = [tk−n+1, . . . , tk]
T
,

fk = [f (tk−n+1) , . . . , f (tk)]
T
.

(13)

From this data, the l-th derivative of f at time t is evalu-
ated by

f̂ (l)(t) = λT
l (t)fk, (14)

where λl(t) is the solution of(
Rk + σ2

NIn
)
λl(t) = r

(l)
k (t) , (15)

in which{
r
(l)
k (t) =

[
R(l) (t− tk−n+1) , . . . , R

(l) (t− tk)
]T
,

Rk|ij = R (tk−n+i − tk−n+j) .
(16)

Note that it is preferable to choose tk−n+1 < t < tk, but
this is not mandatory. Interesting locations to compute the
derivatives could be, for example, the last time instant tk or
the middle of the sliding window. It is also possible to use
Kriging for predicting the value of the derivatives at the next
time instant tk+1, which may be useful in predictive schemes.

The implementation of this derivative filter on a sliding
window requires computing rk and Rk (most of their com-
ponents being available from time tk−1), and solving (15) for
λl(t) at each time step. The 0-th order derivative is equivalent
to the Kriging prediction (6) and can be used to filter the data,
using prior knowledge on the noise standard deviation σN.

2.3. Formulation in the regular sampling case

The method for estimating derivatives recalled in the previous
section can be used when sampling is irregular. However, it
is assumed in this paper that sampling is performed with a
constant time step ts, as is usual in signal processing. It is also
assumed that the scale factor θ, involved in the correlation
function (2), is kept constant.

With a constant sampling time step ts, the data from (13)
at time tk can be rewritten as

tk = [tk − (n− 1)ts, . . . , tk − ts, tk]T ,
fk = [f (tk − (n− 1)ts) , . . . , f (tk − ts) , f (tk)]T .

(17)
Assume, for example, that the l-th derivative is to be eval-

uated at t = tk (other time instants can be handled by shifting
indices). Equation (16) then translates into{

r
(l)
k (tk) =

[
R(l) ((n− 1)ts) , . . . , R

(l) (ts) , R
(l) (0)

]T
,

Rk|ij = R ((i− j)ts) .
(18)



Since r
(l)
k and Rk in (18) are no longer function of k or

tk, (14) can be expressed at time tk as the FIR filter

f̂ (l)(tk) = hT
l fk, (19)

where hl is solution of(
R+ σ2

NIn
)
hl = rl (20)

with{
rl =

[
R(l) ((n− 1)ts) , . . . , R

(l) (ts) , R
(l) (0)

]T
,

R|ij = R ((i− j)ts) .
(21)

The expression of hl is now the same at each time step
and can thus be computed once and for all, provided that the
following tuning parameters have been chosen:

• n (sliding window length),

• σN (noise standard deviation),

• θ (scale factor, similar to a classical filter bandwith).

The time step ts could be included in the tuning parameters if
it is not considered as a given.

It is also possible to compute confidence intervals for the
value of the derivative based on the following variance esti-
mate, obtained by combining (8) and (12),

σ̂2
l (tk) =

1

n

(
fTk R

−1
σ fk

) (
(−1)lR(2l)(0)− hT

l rl

)
, (22)

where only fk changes at each time step.
For example, if the correlation function (2) is used and the

first derivative is to be computed at t = tk, then (21) implies
that

r1 =


− 2(n−1)ts

θ2 R((n− 1)ts)
...

− 2ts
θ2 R(ts)
0

 , (23)

R =


1 R(ts) · · · R((n− 1)ts)

R(ts)
. . . . . .

...
...

. . . . . . R(ts)
R((n− 1)ts) · · · R(ts) 1

 .
(24)

2.4. Illustrative example

The function f(t) = sin(2t) is considered as an illustrative
example, with time step ts = 0.01s and measurements cor-
rupted by an additive zero-mean Gaussian white noise with
standard deviation σN = 0.1. Figure 1 shows the measured
signal, its smoothing by Kriging and the first-order deriva-
tive estimated via finite difference, which is unusable. Fig-
ure 2 presents the Kriging-based estimation of the first-order

derivative with parameters n = 100 and θ = 1.5. For com-
parison, the estimate obtained with a Savitzky-Golay filter us-
ing a first-order polynomial is also presented (no estimate is
computed before n measurements have been acquired). Both
methods achieve satisfactory filtering of the derivative, how-
ever it could be seen on this example that the polynomial
fit induces a larger delay in the estimation than the Kriging-
based filter. Kriging also provides 99% confidence intervals
for its estimates, computed as f̂ (l)(t)± 3σ̂l(t) using (22).

(a) Signal (b) Finite difference

Fig. 1. Noisy signal (a) and first-order finite difference (b)

(a) Kriging and 1st-order polynomial (b) Kriging confidence intervals

Fig. 2. First-order derivative estimate via Kriging

2.5. Tuning

The method proposed, as well as many other methods for es-
timating signal derivatives, requires the tuning of its internal
parameters (here n, θ and σN), which have a strong impact
on performance. In particular, for real-time control appli-
cations where an estimate should be obtained at each time
step, a trade-off should be achieved between noise filtering
and estimation delay. A suitable performance criterion can
be defined on a set of representative test-cases and a global
optimization strategy can be employed to find the best vec-
tor of tuning parameters. Such a strategy has been proposed
in [14] using Kriging-based optimization, making it possible
to find an adequate tuning with very few simulations of (pos-
sibly very complex) test cases. An extension has also been
presented in [15] to take into account sources of uncertainty



in the test cases and determine the best possible tuning with
respect to the worst case of uncertainty.
Figure 3 shows the influence of the tuning parameters θ and
σN on the mean squared error between the estimated first-
order derivative and the actual one, which can be used as a
performance criterion for tuning. It can be seen that many
combinations {θ, σN} provide an accurate estimation.

Fig. 3. Influence of the tuning parameters θ and σN

3. APPLICATION TO THE TRACKING OF A
MANEUVERING TARGET

Endgame missile guidance aims at defining control laws that
enable a missile to intercept a moving target, using radar
measurements that may be embedded (seeker) or exogenous
(ground radar). A maneuver (change in target acceleration)
can be modeled as an unknown input acting on the joint
missile-target dynamics. Classical methods, based for exam-
ple on Kalman filters and simplified target modeling, have
been developed to estimate the target acceleration [16]. This
information is then used in a guidance law designed for en-
suring collision between the missile and its target.

Fig. 4. Missile guidance geometry

The planar interception geometry is presented in Fig-
ure 4 [17]. The following notation is used:

• am is the missile acceleration (assumed to be instanta-
neously achieved), vm the missile speed, θm the missile
flight-path angle, and {xm, ym} the missile position;

• at is the target acceleration, vt the target speed, β the
target flight-path angle, and {xt, yt} the target position;

• the line of sight (LOS) is the missile-target position
vector; its norm is the range d, λ is the line-of-sight
angle, and vc the closing velocity.

3.1. Kinematics

At a given time step, the target may perform a maneuver of
acceleration magnitude at, resulting in

β̇ =
at
vt
, vt =

√
v2t,x + v2t,y,

ẋt = −vt cos(β), ẏt = vt sin(β).
(25)

A guidange law provides the desired lateral acceleration am
to the missile, such that

ẋm = vm,x, ẏm = vm,y,
v̇m,x = −am sin(λ), v̇m,y = am cos(λ).

(26)

Other important variables of the engagement are

x = xt − xm, y = yt − ym,
d =

√
x2 + y2, vc = −ḋ = −xẋ+ yẏ

d
,

λ = arctan
(y
x

)
, λ̇ =

xẏ − yẋ
d2

.

(27)

3.2. Linearized model

The linearized planar engagement model is often considered
for estimation and control analysis. It is assumed that the
velocities vm and vt are almost aligned with the LOS and that
λ is small. The relative vertical position y, which can be used
as an approximation of the miss distance at the end of the
engagement, is then such that

ÿ = at − am. (28)

If the target were not maneuvering, (28) would simplify into
ÿ = −am. A potential time-varying maneuver can thus be de-
scribed by the additional unknown input at. The engagement
is then governed by[

ẏ
ÿ

]
=

[
0 1
0 0

] [
y
ẏ

]
+ [] +

[
0
−1

]
am +

[
0
1

]
at,

(29)
where an equivalent noisy measurement ymes of y can be ob-
tained using an embedded seeker that would in practice pro-
vide relative angular measurements, assuming that the range
and possibly the range rate can be measured by a ground
radar.



3.3. Classical method for target estimation

In the nominal case with no target maneuver, proportional
navigation guidance (PNG) is widely used. It computes the
acceleration to be given to the missile as

am = Nvcλ̇, (30)

with N a constant gain. The objective of this guidance law
is to keep the direction of the LOS constant during the en-
gagement, which ensures interception [18]. Augmented PNG
(APNG) can be used to improve interception performance
when dealing with a maneuvering target. It modifies (30) into

am = N
(
vcλ̇+

at
2

)
, (31)

where the target acceleration at should be estimated on-line
with as small a delay as possible.

It is usually assumed that the target performs an evasive
maneuver with constant (but unknown) acceleration at. This
acceleration can be estimated by, e.g., a Kalman filter using
the following classical estimation model [17] ẏ

ÿ
ȧt

 =

 0 1 0
0 0 1
0 0 0

 y
ẏ
at

+
 0

0
−1

 am+

 0
0
w

 ,
(32)

where w is a zero-mean Gaussian white noise, whose vari-
ance is a tuning parameter of the Kalman filter. The covari-
ance and gain matrices must be updated at each time step, and
the resulting performance is dependent on the underlying tar-
get model (32). As an alternative, the Kriging-based filtering
method for estimating derivatives can be considered.

3.4. Target tracking via Kriged estimation of derivatives

Since (28) implies that at = ÿ+ am, an estimate of at is easy
to compute if an accurate estimate of the second-order time
derivative of the noisy measurement of y can be provided,
for example with the Kriging-based method proposed in this
paper.

The performance of Kriging-based FIR and Kalman fil-
tering have been compared on two typical trajectories: an
evading maneuver of magnitude 20 m/s2 (Figure 5) and a
weaving maneuver of magnitude 70 m/s2 and frequency
0.64 Hz (Figure 6). Figure 7 displays the first and second-
order derivatives as estimated by FIR filtering, together with
the actual values and estimated 99% confidence intervals. The
engagement parameters, used for all the results presented, are
vm = 500 m/s, vt = 200 m/s, d = 3000 m, β = 5◦, equiva-
lent noise standard deviation of 0.25 m on the measurement
of y and time step equal to 0.01 s.

The Kriging-based scheme achieves a performance simi-
lar to that of the Kalman filter The Kriging-based method was
tuned with n = 50, θ = 1.5 and σN = 10−2 for the two
maneuvers. Many good trade-offs between noise filtering and

(a) Kriging filter (b) Kalman filter

Fig. 5. Estimation of evasive target maneuver with Kriging (a)
and Kalman (b) filters

(a) Kriging filter (b) Kalman filter

Fig. 6. Estimation of weaving target maneuver with Krig-
ing (a) and Kalman (b) filters

(a) First-order derivative (b) Second-order derivative

Fig. 7. First-order (a) and second-order (b) derivatives pro-
vided by the Kriging filter in the weaving case

estimation delay can be achieved by modifying the values of
θ and σN, as seen in Figure 3. Note that increasing θ or σN
smooths the prediction, so the situation slightly differs from
the one of the Kalman filter where the process and noise vari-
ances have opposite effects.

The estimated acceleration can be used in the guidance
loop with the APNG law (31). Figure 8 presents the compari-
son of PNG (without estimation) and APNG (with the Kriged
estimate) for intercepting the evading target maneuvering at
20 m/s2. It can be seen that the estimated acceleration is ac-
curate enough to anticipate the target movement and facilitate
interception.



(a) PNG (b) APNG

Fig. 8. Target interception with PNG (a) and APNG (b)

4. CONCLUSIONS AND PERSPECTIVES

A filter based on Gaussian processes has been proposed to
estimate the time derivatives of a noisy signal. Under the as-
sumption that the measurements are regularly sampled with
a known time step, Kriging-based derivative estimation on
a sliding window is carried out by an FIR filter. This sim-
ple method is thus an attractive alternative, which deserves to
be further investigated. Its applicability has been illustrated
for estimating the motion of a maneuvering target in the con-
text of missile guidance with promising results. The optimal
tuning of the filter parameters on more complex test cases
can be performed by considering the methodology proposed
in [14, 15].
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