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Abstract—In the current intensively changing technological
environment, wireless network operators try to manage the
increase of global traffic, optimizing the use of the available
resources. This involves associating each user to one of its
reachable wireless networks; a decision that can be made on the
user side, in which case inefficiencies stem from user selfishness.

This paper aims at correcting that efficiency loss through
the use of a one-dimensional incentive signal, interpreted as
a price. While the so-called Pigovian taxes allow to deal with
homogeneous users, we consider here two classes with different
sensitivities to the Quality of Service, reflecting the dichotomy
between delay-sensitive and delay-insensitive applications. We
consider a geographic area covered by two wireless networks,
among which users choose based on a trade-off between the
quality of service and the price to pay.

Using a non-atomic routing game model, we study analytically
the case of constant demand levels. We show that when properly
designed, the incentives elicit efficient user-network associations.
Moreover, those optimal incentives can be simply computed by
the wireless operator, using only some information that is easily
available. Finally, the performance of the incentive scheme under
dynamic demand (users opening and closing connections over
time) are investigated through simulations, our incentive scheme
also yielding significant improvements in that case.

I. INTRODUCTION

The last years witnessed a tendency in the world of mobile
devices, toward an increase in the number of different wireless
network interfaces handled simultaneously. This gives mobile
users a possibility to easily choose between several types of
access points available, and soon it will be also possible that
different applications on a mobile device use different network
interfaces (each application favoring its best-suited network).

Recently in [8], the term always-best-connected was coined,
to describe a system where mobile devices automatically
choose the most suitable network connection at every moment
of time, depending on some concrete application needs, state
of mobile device, economical reasons, etc. This kind of ap-
proach could cause a number of problems, one of which being
the overload of some technologies and the underutilization of
others. To cope with this particular problem, network providers
have to use some sophisticated management schemes in order
to avoid inefficient load distributions in their systems.

This topic is of high importance, and some recent papers
address that same problem. A commonly used approach is
to introduce a special bias for using lower-quality networks,
which has a common interpretation as a tax imposed on higher-
quality ones. How to determine appropriate taxes to influence
users choices is discussed in [3], [6], [10]. We apply the same
idea to a case of wireless heterogeneous networks, modeling
the problem as a routing game.

The idea that users select the cheapest network with some
additional penalty (tax) imposed by a network manager is
not new. For the case when all users are equal from the
point of view of tax perception (homogeneous users case),
Beckmann et al. [2] showed that the so-called Pigovian taxes
–applied on each link, and computed using the derivative of
the cost functions of the links– produce a minimum-latency
(delay) traffic routing (see [13]). In [3] the case when users
may perceive differently the relative costs of delay and taxes
is considered (heterogeneous users case). It was proven that
there also exist taxes which move a system to a situation
when the average latency is minimized. These results have
been generalized to the multicommodity settings (i.e. several
source-destination pairs) in [10], [11].

While talking about effective users allocation, it is worth
mentioning a totally different approach: to seek for an optimal
user admission policy in the system through SMDP (Semi
Markov Decision Processes). One could find this approach
applied to the problem of global expected throughput maxi-
mization with the help of a central controller (taking admission
decisions) in [4], [5], [12].

The contributions of this paper are as follows.
• Using the theoretical results of [10] proving the existence

of taxes leading to an optimal flow repartition, we derive
an analytical expression of that optimal tax.

• We focus on the feasibility of the scheme, showing that
the information needed to compute the optimal taxes is
easily available to the network owner.

• We evaluate, through simulations, the performance of our
incentive mechanism in a more realistic context, where
players are atomic and dynamically enter and leave the
system over time.



II. MODEL AND PROBLEM FORMULATION

In this section, we present the network topology and the
mathematical description of user behavior. More specifically,
we investigate how users distribute over the different access
networks, depending on their sensitivity, the taxes applied, and
the QoS provided by the network access points. Finally, we
summarize some previous results for the case without taxes,
when users selfishly select wireless networks based on QoS.

A. Network topology

We consider a system with two wireless access networks
(labeled by 1 and 2), owned by the same operator, who aims
to achieve an efficient use of his access points. We assume
that users seek an Internet connection through one of the two
available networks, and their choices depend on the values
of the taxes fixed by the operator and the QoS (here, the
congestion-dependent latency) they experience.

Two classes of users are considered, which are characterized
by different sensitivities to the taxes. All users are assumed
to have the choice between the two networks, i.e. they are in
a common coverage area of both networks, and their devices
support both networks’ wireless access technologies.

B. Mathematical formulation

From a logic point of view, the system can be seen as
a routing problem with a directed graph composed of two
parallel arcs, linking a source s to a destination t, as drawn on
Figure 1. The source node represents the (common) coverage
area of networks 1 and 2, while the destination represents
the worldwide Internet. Each one of the classes of users is
assumed to be willing to send some flow to the Internet. To
do so, users have to select one of the two access networks,
modeled as two parallel links from s to t.

We assume that users perceive the quality of a connection
as a mixture of the QoS provided and the penalty (tax)
imposed on the network. For sake of simplicity, we interpret
the QoS value users are sensitive to as the latency (or delay)
of connection. It is a matter of fact, that various types of
applications suffer differently from delay degradation, e.g. for
real-time voice and video applications admissible delay bounds
are much smaller than for social network clients and web-
browsing. For this reason, we consider a system where users
perceive delay in different ways. We divide users into two
classes based on their delay perception, so as to model the
distinction between real-time and non-real-time traffic. Since
users will have to weigh delay versus taxes when making
their network choice, different delay perceptions correspond
to different weights between tax and delay, or to different tax
sensitivities if we keep the same weight for delay for both
classes (our choice in this paper).

Each class i of users, i ∈ {A,B}, is characterized in our
model by an aggregate demand di > 0 (the total throughput
from class-i users), and a tax-sensitivity parameter αi. We
assume further, without loss of generality, that αA > αB > 0,
which means that class-B users are more sensitive to delay
than class-A ones: if a tax is to be applied class-B users focus

more on delay, and are less likely to be influenced by the tax
than class-A users.

An outcome of class i users actions is a flow vector
fi = (f1,i, f2,i), where fp,i denotes a non-negative flow
routed through network p. We call such flow vector feasible
if f1,i + f2,i = di, i.e. if the sum of flows of class i users
routed through both networks is equal to the total demand of
this class. We denote the total throughput demand of users by
D = dA + dB , and assume it to be nonelastic (i.e. it does not
depend on the taxes) and such that D < c1 + c2. Also we will
denote by f = (f1, f2) a feasible flow assignment of demand,
i.e. a repartition of total demand D = f1 + f2 over two links,
where fp ≥ 0 is the flow sent through network p.

s t

`2(f2) + αiτ2

`1(f1) + αiτ1

dA, dB dA, dB

Fig. 1. Logic representation of the network selection problem as a routing
problem.

The operator is assumed to be able to impose and modify
tolls on its networks, that can be used to make revenue, but
here mainly to drive the system to a more efficient resource
usage. Similarly to [10], we assume that the cost perceived by
a class-i user connected to network p ∈ {1, 2} equals

Cp(f) := `p(fp) + αiτp, i = 1, 2 (1)

where τp is the tax imposed on network p. The delay on each
network p = 1, 2 is assumed to increase with the network load
fp, through the delay function `p described below.

Assumption A: Each network p has a given capacity cp, and
without loss of generality, we assume that c2 > c1. The delay
of a network carrying some flow level fp is assumed to be
given by the mean sojourn time in an M/M/1 queue:

`p(fp) =

{
(cp − fp)−1 if fp < cp,

∞ if fp ≥ cp.
(2)

The units used need to be clarified: modeling the packets as
clients of an M/M/1 queue, the average sojourn time should
be the one in (2), but multiplied by the packet size in the
network. Assuming that the packet size is the same on both
networks, we remove that multiplicative constant without loss
of generality, leading to an interpretation of the tax τp as the
price charged per packet sent on network p.

Note that we do not claim here that packet arrivals follow a
Poisson process or that their size is exponentially distributed:
we mainly choose the delay function (2) because it reflects the
congestion effects and is widely used in the literature.

C. Social cost

Since we aim at optimally using the network, i.e. maxi-
mizing user satisfaction while satisfying demand, the global



objective measure we consider here is the total delay C(f),
experienced by users. For a flow assignment f = (f1, f2), this
can simply be computed as

C(f) = f1`1(f1) + f2`2(f2), (3)

which is the total cost classically considered in routing
games [2], [15].

D. User Equilibrium

In order to model user behavior, we follow a common
assumption of users being selfish, in the sense that each
user routes his flow to the network which minimizes his
individual cost (delay+tax) given in (1). We assume that the
number of users is large enough and all users have comparable
demand levels, so that users are non-atomic [1], i.e. individual
actions have no influence on the congestion levels. The cost
functions given by (1) define a game between users, where the
equilibrium situation follows the so-called Wardrop’s principle
[16]:
• At equilibrium for each source-destination pair the travel

costs on all the routes actually used are equal, or less
than the travel costs on all non used routes.

Such a flow repartition is called a Wardrop equilibrium among
users. It is actually the non-atomic version of the more general
concept of Nash equilibrium [7], i.e. a situation where no user
has an interest in unilaterally changing his decision.

In our simple setting modeled by the graph on Figure 1,
a Wardrop equilibrium can be described mathematically as
follows:

Definition 1: A Wardrop equilibrium is a feasible flow
repartition f̄ = (f̄1, f̄2), decomposed into f̄p = f̄p,A + f̄p,B
for p = 1, 2, such that if f̄p,i > 0 for some p ∈ {1, 2} and
i ∈ {A,B}, then

`p(f̄p) + αiτp ≤ `p′(f̄p′) + αiτp′ (4)

where p′ 6= p.
In general, selfish user behavior leads to inefficient situa-

tions. By applying taxes, the operator aims to affect the selfish
behavior outcome, eliciting them to spread more efficiently in
the sense of the total cost (3).

E. Previous analysis

In this section we briefly recall some existing results for
the routing problem considered, when no taxes are applied.
Notice that without taxes, user heterogeneity in terms of QoS
sensitivity does not have any impact, hence those results are
independent of the decomposition of total demand D into dA
and dB . The proofs for the following results can be found
in [9].
• Under Assumption A, user selfish behavior leads to a

unique Wardrop equilibrium fWE = (fWE
1 , fWE

2 ):

fWE =

{
(0, D) if D ≤ c2 − c1,
(D+c1−c2

2 , D+c2−c1
2 ) otherwise.

(5)

• An optimal flow assignment f opt = (f opt
1 , f opt

2 ) in the
sense of the global cost defined in (3) is the solution of
the following mathematical program:

min
f1,f2

f1`1(f1) + f2`2(f2) (6)

s.t.

{
f1 + f2 = D

f1 ≥ 0, f2 ≥ 0

Under Assumption A, there exists a unique optimal
assignment. Using Karush-Kuhn-Tucker optimality con-
ditions [14], we have

f opt=

{
(0, D) if D≤c2−

√
c1c2,(

(D−c2)
√
c1+c1

√
c2√

c1+
√
c2

,
(D−c1)

√
c2+c2

√
c1√

c1+
√
c2

)
oth., (7)

with the corresponding total cost

Copt =

{
D

c2−D if D ≤ c2 −
√
c1c2,

2D−c1−c2+2
√
c2c1

c1+c2−D otherwise.
(8)

• Under Assumption A, for given values of network capac-
ities (ci)i=1,2 and total demand D, we have f opt

2 ≤ fWE
2 ,

i.e. the traffic flow which is routed through network 2
(the largest capacity network) at equilibrium is greater
than or equal to the optimum traffic flow in this network.
Therefore the tax should be applied to network 2, to elicit
some users to rather use network 1.

• Under Assumption A, for given values of network ca-
pacities (ci)i=1,2 and total demand D, the total cost is
minimized at equilibrium when D ≤ c2 −

√
c1c2, hence

no tax is necessary in that case.
This paper extends the model studied in [9], introducing a
distinction between the classes of users expressed through their
tax (or equivalently, QoS) sensitivities.

III. ELICITING OPTIMAL USER-NETWORK ASSOCIATIONS
WITH TAXES

In this section we derive an analytical expression of the
taxes yielding an optimal flow repartition, and discuss the
information required for their computation. The existence of
such optimal taxes has been established in [3], [6], [10].

A. Expression of optimal taxes

As we pointed out in Subsection II-E, under Assumption A
a tax needs to be applied to the largest-capacity network
(network 2 in our model), and only when the system is
sufficiently loaded. Let us denote by τ2 that optimal tax: when
applied to network 2, the Wardrop equilibrium f̄ among users
must be equal to the optimum traffic flow:{

f̄1,A + f̄1,B = f opt
1 ,

f̄2,A + f̄2,B = f opt
2 .

(9)

The following proposition shows that when the system is
sufficiently loaded, the expression of the optimal tax depends
only on total demand D, and on the sign of (dB − f opt

2 ).
Proposition 1: Under Assumption A, for given values of

network capacities (cp)p=1,2, demand D = dA+dB < c1+c2,



and sensitivities (αi)i∈{A,B}, an optimal tax τ2 to apply to
network 2 when D > c2 −

√
c1c2 is given by

τ2 =

{
c2−c1

αA
√
c1c2(c2+c1−D) if dB ≤ f opt

2 ,
c2−c1

αB
√
c1c2(c2+c1−D) otherwise.

(10)

When D ≤ c2 −
√
c1c2, no tax is necessary.

The proof is omitted due to lack of space, but can be found
in the full-version of the paper available from arXiv.org.

B. Effect of optimal taxes on the perceived delay
As intended, our approach allows to separate delay-sensitive

and delay-insensitive users, as illustrated on Figure 2, where
the average latencies experienced by both user classes are plot-
ted when the proportion of class-A users vary, and compared
to the no-tax case (where both classes have the same latency).
Note that delay-sensitive class-B users benefit from the best
quality in average (lower latency), at the expense of class-A
users which suffer higher delay but are less sensitive to it.
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Fig. 2. Average latency of both classes at the no-tax equilibrium and with
optimal taxes. In the latter case, when dA < f

opt
1 (resp. dA > f

opt
1 ) all

type-A (resp. type-B) users select network 1 (resp. 2). Parameter values:
D = 8Mbit/s, c1 = 4Mbit/s, c2 = 11Mbit/s.

C. Practical issues
The total demand dB of users of class B can be hard

to measure in practice, since the network owner can not
determine the exact number of users from each class being
connected to his networks at a particular moment of time (and
users may have incentives to misreport their types if asked to
declare it). However, we recall that the exact value of dB is
not needed: Indeed, both expressions of the optimal tax in (10)
only involve the total demand D, that is directly observable
by the network owner. Only the sign of dB − f opt

2 has to be
determined to select the appropriate form. An approximation
we propose is to use the average load of users of class B,
which is much easier to determine, as an estimator of dB . We
can indeed assume that the arrival process of class B members
and the time they spend in average in the network are known
stochastically, and calculate the average class B load. The
impact of such an approximation will be evaluated through
simulations in the next section.

IV. SIMULATION SCENARIO

This section complements the mathematical analysis, by
providing a simulation model to evaluate the performance
of our tax mechanism in a wireless network where users
dynamically enter and leave the system.

A. Simulation model and scenarios

We consider a simple scenario where the operator owns
two access points, with respective WiFi implementations IEEE
802.11b (c1 = 4Mbit/s) and IEEE 802.11g (c2 = 11Mbit/s).
We assume mobile users of class i ∈ {A,B} join the system
according to a Poisson process with parameter λi. We further
assume that the classes correspond to different services:
• Streaming audio (non-real time: music or radio, for

example) for users of class A, with individual throughput
εA = 0.064Mbit/s.

• Delay-sensitive (real-time) video conversation call for
users of class B, with individual throughput εB =
0.184Mbit/s.

Those definitions are compliant with our model convention,
where type-B users are more delay-sensitive than type-A, thus
αA > αB .

Note that each user has a non-zero individual throughput,
hence the game is not perfectly non-atomic. Nevertheless,
the individual throughput values are small with regard to the
network capacities (c1 = 4Mbit/s, c2 = 11Mbit/s), so that the
impact on QoS of individual choices remain small.

Each user is connected to the network for a duration
modeled as a random variable, following an exponential
distribution with parameter µi. The average listening time of
class-A users is therefore 1

µA
(seconds), and the average video

conversation time of class-B users is 1
µB

(seconds). Users
choose an access network upon their arrival, selecting the
cheapest one in the sense of their cost (given in Equation (1)).
We investigate two settings: in the first setting, users remain
attached to the same network for the whole duration of their
connection (no handovers), even if QoS conditions vary. In
the second setting, vertical handovers between networks can
occur.

Note that under our assumptions, the process describing the
number of users of each class in each network is a continuous-
time Markov chain, which we study through simulations
due to the excessively large number of states. Note that the
latency function we consider (Equation (2)) are only defined
when demand is below capacity. We tackle this problem by
dropping the arriving users for which there is no sufficient
available capacity on any network. The resulting blocking rate
is measured in our simulations.

We investigate three different scenarios for each aforemen-
tioned simulation setting. In the first scenario, the tax is not
applied at all - the users act without any intervention from
the provider’s side. In the second scenario, the operator is
willing to apply the optimal tax expressed in Proposition 1,
but is not able to measure the exact value of dB . In that case
the tax expression is chosen based on the average load of



class-B users (d̂B = εBλB

µB
) in the network, assuming that the

arrival rate λB of type-B users and their average connection
duration 1

µB
are known by the operator. The third scenario,

called the optimum situation, assumes that the operator is able
to determine precisely the load dB of class-B users, and thus
to apply the exact optimal tax of Proposition 1. Recall that
for the scenarios involving taxes, the tax is applied only when
the network load D exceeds c2−

√
c1c2, i.e. when selfish user

behavior does not lead to an optimal situation.

B. Simulation results

This section presents the results obtained with the sim-
ulation scenarios described above, for the parameter values
1
µA

= 4 minutes, 1
µB

= 2.5 minutes, λA = 3 (arrivals/minute),
λB = 4.5 (arrivals/minute), and the tax sensitivities parameters
αA = 2 and αB = 1 (cost units per (dollar per packet)).

In particular, we analyze the (average) Price of Anarchy
(PoA), that is the ratio between the total delay (Equation (3))
resulting from selfish user behavior and the minimum total
delay [10]. This metric helps us investigate the efficiency of tax
application for different flow conditions. We finally compare
both settings, whether vertical handovers can occur or not.

The evolution of the total network load for one simulation
trajectory is shown on Figure 3, with the horizontal line
corresponding to the threshold value of total load c2−

√
c1c2,

above which taxes are needed to reduce the total delay C.
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Fig. 3. Total load versus time

Figure 4 displays the corresponding evolution over time of
the Price of Anarchy (PoA) for the three tax scenarios, when
no vertical handovers occur (i.e., users do not constantly adapt
to the changes in delay and price). We notice that even in
that case, taxation can yield significant performance gains.
Interestingly, we remark that the optimal tax does not always
imply the lowest total delay, the total delay with that tax
being sometimes even higher than without any tax. We have
to recall here that there are several differences between our
mathematical model and the simulation model considered in
this section. Notably, we do not allow here users to switch
networks, which can lead to the following situation. Consider
some moment of time when the total flow suddenly falls below

10 11 12 13 14 15 16

1

1.02

1.04

1.06

1.08

Time (min)

Pr
ic

e
of

A
na

rc
hy

C
/
C

op
t

No tax
Approx. tax
Optimal tax

Fig. 4. Price of Anarchy versus time, without vertical handovers.

the c2 −
√
c1c2 threshold; the optimal flow in the network 1

then equals zero (see (7)). But in general more users (among
those still in the system) had chosen network 1 when a tax
was previously applied on network 2, hence the no-tax case
leads temporarily to a situation closer to the optimal one. In
other words, our simulation system without vertical handovers
shows some inertia: the flow distribution cannot instantly
change when QoS conditions evolve. This situation occurs in
Figure 4 around t = 10 minutes for example, and similar
cases (when demand suddenly drops and inertia impacts the
outcome) occur around time t = 14 and t = 15 minutes even
if demand remains above c2 −

√
c1c2.

Those phenomena being highlighted on one trajectory, we
now turn our attention to their statistical impact, through
extensively many simulations of the same scenarios. The
results of these repeated simulations are presented on Fig-
ures 5-6, when the total average load D̄

c1+c2
varies, with

D̄ = λA

µA
εA + λB

µB
εB :the parameters evolving are λA and λB ,

with their ratio maintained at λA/λB = 1.5.
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We first notice from Figures 5-6 that the no-tax curve has
a form similar to the one predicted by the theoretical study
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Fig. 6. Average Price of Anarchy versus load without vertical handovers.

in [9]. On those figures, we also depicted the demand thresh-
olds corresponding to some blocking rates values (proportion
of users rejected due to lack of capacity). Since wireless
systems are designed to have low blocking rates (below 1%),
those values show that the load range of interest lies between
0 and 0.8.

When vertical handovers are permitted, we observe that
optimal taxes drive the system very close to the optimal
situation - the Price of Anarchy (PoA) does not rise above
1.01. For the approximate tax the PoA can reach 1.03, which
is still significantly lower than the PoA of the no-tax case
(that goes up to 1.10). We also observe a significative influ-
ence on efficiency, of the presence of vertical handovers. As
mentioned before, prohibiting handovers prevents the system
from balancing rapidly the load among networks, implying
larger costs.

A curious phenomenon worth mentioning from Figure 6 is
the small range of average total load for which the average
PoA of the no-tax case is lower than for the case with taxes
(load values between 0.2 and 0.3). This suggests that the
situations explained before on the single trajectory (Figure 4)
are not so rare in that case. Indeed, as a result of total load
being low, at very few moments of time does the load exceed
c2−
√
c1c2, which causes the taxes introduction, deterring new

entrants from using network 2. But this situation does not hold
for a long time: quite soon the load goes below the threshold
value, and because of handovers being forbidden, the flow
in the first network remains positive, causing inefficiencies.
Nevertheless, this inefficiency range remains small, and the
PoA difference is limited, so this does not question the gain
of our incentive mechanism. In our simulations, the taxation
approach appears to be most effective for average total loads
above 30% (for the considered simulation parameters) of the
total capacity, and the highest efficiency gain is reached around
loads corresponding to 50% of the total capacity.

V. CONCLUSION AND FUTURE WORK

This paper focuses on the selfish behavior of users in wire-
less systems, and on the possibility of influencing it through

taxation in the particular case when delay-sensitive and delay-
insensitive flows coexist. We have derived the analytical
expression for the optimal tax in a wireless heterogeneous
network scenario. Simulation results highlight a significant
performance gain, both for the situation when the operator
has a complete, and a partial information about the current
network state.

Future work will consider the generalization to the case
of more than two user classes, and more than two networks
coexisting. Our model still applies in these cases, though
computations are more difficult. Trying to go towards more re-
alistic scenarios, we could also assume that users have different
sets of access networks available, because of the technologies
implemented in their terminals, or their geographical location.
Finally, it would also be interesting to include user mobility
in the model.

ACKNOWLEDGEMENTS

This work has been partially funded by the Bretagne Region
through the ARED program, and by the Fondation Telecom
through the “Futur&Ruptures” program.

REFERENCES

[1] R. J. Aumann and L. S. Shapley, Values of Non-Atomic Games. Prince-
ton University Press, 1974.

[2] M. Beckmann, C. B. McGuire, and C. B. Winsten, Studies in the
Economics of Transportation. Yale University Press, 1956.

[3] R. Cole, Y. Dodis, and T. Roughgarden, “Pricing network edges for
heterogeneous selfish users,” in Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, 2003.

[4] P. Coucheney, C. T. E. Hyon, and B. Gaujal, “Myopic versus clairvoyant
admission policies in wireless networks,” in VALUETOOLS: Proceed-
ings of the Fourth International ICST Conference on Performance
Evaluation Methodologies and Tools, 2009.

[5] M. Coupechoux, J.-M. Kelif, and P. Godlewski, “Network controlled
joint radio resource management for heterogeneous networks,” in Pro-
ceedings of IEEE Vehicular Technology Conference (VTC), 2008.

[6] L. Fleischer, K. Jain, and M. Mahdian, “Tolls for heterogeneous selfish
users in multicommodity networks and generalized congestion games,”
in IEEE Symposium on Fondations of Computer Science, 2004.

[7] D. Fudenberg and J. Tirole, Game Theory. MIT Press, Cambridge,
1991.

[8] E. Gustafsson and A. Jonsson, “Always best connected,” IEEE Wireless
Communications, February 2003.
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