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CENTRAL LIMIT THEOREM FOR EIGENVECTORS OF HEAVY

TAILED MATRICES

FLORENT BENAYCH-GEORGES, ALICE GUIONNET

Abstract. We consider the eigenvectors of symmetric matrices with independent heavy
tailed entries, such as matrices with entries in the domain of attraction of α-stable laws,
or adjacency matrices of Erdös-Rényi graphs. We denote by U = [uij ] the eigenvectors
matrix (corresponding to increasing eigenvalues) and prove that the bivariate process

Bn
s,t :=

1√
n

∑

1≤i≤ns
1≤j≤nt

(|uij |2 −
1

n
) (0 ≤ s, t ≤ 1),

converges in law to a non trivial Gaussian process. An interesting part of this result is
the 1√

n
rescaling, proving that from this point of view, the eigenvectors matrix U behaves

more like a permutation matrix (as it was proved in [14] that for U a permutation matrix,
1√
n
is the right scaling) than like a Haar-distributed orthogonal or unitary matrix (as it

was proved in [15] that for U such a matrix, the right scaling is 1).

1. Introduction

During the last decade, many breakthroughs were achieved in the study of random matri-
ces belonging to the GUE universality-class, that is Hermitian matrices with independent
and equidistributed entries (modulo the symmetry constraint) with enough finite moments.
The first key result about such matrices is due to Wigner [36] in the fifties who showed that
the macroscopic behavior of their eigenvalues is universal and asymptotically described by
the semi-circle distribution. However, it took a long time to get more precise information
on the local behavior of the eigenvalues, and for instance about the asymptotic distribution
of their spacings. Even though local results were conjectured, for instance by Dyson and
Mehta [27], it is only in the nineties that rigorous results were derived, such as the conver-
gence of the joint probability distribution of eigenvalues in an interval of size of order N−1
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or the fluctuations of the largest eigenvalues, see [34]. Yet these results were restricted to
Gaussian ensembles for which the joint law of the eigenvalues is known. Recently, these
results were shown to be universal, that is to hold also for matrices with independent non
Gaussian entries, provided they have enough finite moments [17, 20, 22, 23, 32]. Such a
simple question as the convergence of the law of a single spacing was open, even in the
GUE case, until recently when it was solved by Tao [33]. Once considering non Gaussian
matrices, it is natural to wonder about the behavior of the eigenvectors and whether they
are delocalized (that is go to zero in L∞ norm) as for GUE matrices. This was indeed
shown by Erdös, Schlein and Yau [18].

Despite the numerous breakthroughs concerning random matrices belonging to the GUE
universality-class, not much is yet known about other matrices. A famous example of
such a matrix is given by the adjacency matrix of an Erdös-Rényi graph. Its entries
are independent (modulo the symmetry hypothesis) and equal to one with probability
p = p(N), zero otherwise. If pN goes to infinity fast enough, the matrix belongs to the GUE
universality class [16]. However if pN converges to a finite constant non zero constant, the
matrix behaves quite differently, more like a “heavy tailed random matrix”, i.e. a matrix
filled with independent entries which have no finite second moment. Also in this case, it is
known that, once properly normalized, the empirical measure of the eigenvalues converges
weakly almost surely but the limit differs from the semi-circle distribution [35, 5, 4, 7, 12, 8].
Moreover, the fluctuations of the empirical measure could be studied [8, 28, 24, 25]. It turns
out that it fluctuates much more than in the case of matrices from the GUE universality-
class, as fluctuations are square root of the dimension bigger. However, there is no result
about the local fluctuations of the eigenvalues except in the case of matrices with entries
in the domain of attraction of an α-stable law in which case it was shown [2, 31] that the
largest eigenvalues are much bigger than the others, converge to a Poisson distribution
and have localized eigenvectors. About localization and delocalization of the eigenvectors,
some models are conjectured [13, 30] to exhibit a phase transition; eigenvalues in a compact
would have more delocalized eigenvectors than outside this compact. Unfortunately, very
little could be proved so far in this direction. Only the case where the entries are α-stable
random variables could be tackled [12]; it was shown that for α > 1 the eigenvectors are
delocalized whereas for α < 1 and large eigenvalues, a weak form of localization holds.

In this article, we study another type of properties of the eigenvectors of a random
matrix. Namely we consider the bivariate process

Gn
s,t :=

∑

1≤i≤ns
1≤j≤nt

(|uij|2 −
1

n
) (0 ≤ s ≤ 1, 0 ≤ t ≤ 1) ,

where U = [uij] is an orthogonal matrix whose columns are the eigenvectors of an Hermitian
random matrix A. In the case where A is a GUE matrix [15], and then a more general
matrix in the GUE universality-class [6], it was shown that this process converges in law
towards a bivariate Brownian bridge. Here, we investigate the same process in the case
where A is a heavy tailed random matrix and show that it fluctuates much more, namely it
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is 1√
n
Gn which converges in law. The limit is a Gaussian process whose covariance depends

on the model and is not trivial (note that when the uij’s are the entries of a uniformly
distributed random permutation, i.e. of a somehow sparse matrix, the process 1√

n
Gn also

converges in law, towards the bivariate Brownian bridge [14]).

More precisely, we consider a real symmetric random n× n matrix A that can be either
a Wigner matrix with exploding moments (which includes the adjacency matrix for Erdös-
Rényi graphs) or a matrix with i.i.d. entries in the domain of attraction of a stable law (or
more generally a matrix satisfying the hypotheses detailed in Hypothesis 2.1). We then
introduce an orthogonal matrix U = [uij] whose columns are the eigenvectors of A so that
we have A = U diag(λ1, . . . , λn)U

∗. We then define the bivariate processes

Bn
s,t :=

1√
n

∑

1≤i≤ns
1≤j≤nt

(|uij|2 −
1

n
) (0 ≤ s ≤ 1, 0 ≤ t ≤ 1)

and

Cn
s,λ :=

1√
n

∑

1≤i≤ns
1≤j≤n ; λj≤λ

(|uij|2 −
1

n
) (0 ≤ s ≤ 1, λ ∈ R)

and prove, in Theorem 2.4, that both of these processes (with a little technical restriction
on the domain of B) converge in law to (non trivial) Gaussian processes linked by the
relation

Bs,FµΦ
(λ) = Cs,λ,

where FµΦ
(λ) = µΦ((−∞, λ]) denotes the cumulative distribution function of the limit

spectral law µΦ of A, i.e.

(1) FµΦ
(λ) = lim

n→∞
Fn(λ), with Fn(λ) :=

1

n
|{i ; λi ≤ λ}|.

The idea of the proof is the following one. We first notice that for any s ∈ [0, 1], the
function λ 7→ Cn

s,λ is the cumulative distribution function of the random signed measure
νs,n on R defined by

(2) νs,n :=
1√
n

∑

1≤i≤ns

n∑

j=1

(

|uij|2 −
1

n

)

δλj

(i.e. that for any λ ∈ R, Cn
s,λ = νs,n((−∞, λ])). Then, we introduce the Cauchy transform

Xn(s, z) :=

∫

λ∈R

dνs,n(λ)

z − λ
of νs,n and prove (Proposition 2.8) that the process (Xn(s, z))s,z

converges in law to a limit Gaussian process (Hs,z). This convergence is proved thanks
to the classical CLT for martingales (Theorem 6.3 of the Appendix) together with the
Schur complement formula and fixed points characterizations like the ones of the papers
[5, 4, 8]. Then to deduce the convergence in law of the process (Cn

s,λ)s,λ, we use the idea
that the cumulative distribution function of a signed measure is entirely determined by its
Cauchy transform. In fact, as the measures νs,n of (2) are random, things are slightly more
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complicated, and we need to prove a tightness lemma for the process (Cn
s,λ)s,λ (specifically

Lemma 6.1 of the Appendix, first applied to the process (Bn
s,t) and then transferred to

(Cn
s,λ) by Formula (3) below). This lemma reduces the problem to the proof of the unicity

of the possible limits for (Cn
s,λ). Then, we use the formula
∫

λ∈R

Cn
s,λ

(z − λ)2
dλ = −Xn(s, z)

and Lemma 6.2 of the appendix to be able to claim that (Cn
s,λ)s,λ has a unique limit point.

The result proved for (Cn
s,λ) can then be transferred to (Bn

s,t) thanks to Formula (3) below,
where Fn(λ), defined at (1) above, converges to the deterministic limit FµΦ

(λ):

(3) Cn
s,λ = Bn

s,Fn(λ).

Organization of the paper. The main results are stated in Section 2. In Section 3,
we give a proof of Theorem 2.4, based on Proposition 2.8, which is proved in Section 4.
Proposition 2.6 is proved in Section 5. At last, some technical results are proved or recalled
in the Appendix.

Notations. For u, v depending implicitly on n, we write u ≪ v when u/v −→ 0 as
n → ∞. For x a random variable, Var(x) denotes the variance of x, i.e. E[|x|2]− |Ex|2.
Power functions are defined on C\R− via the standard determination of the argument on
this set taking values in (−π, π). The set C

+ (resp. C
−) denotes the open upper (resp.

lower) half plane and for any z ∈ C, sgnz := sign(ℑz).

2. Main results

Although technical, the model introduced in Hypothesis 2.1 below has the advantage to
be general enough to contain several models of interest.

Hypothesis 2.1. Let, for each n ≥ 1, An = [aij ] be an n × n real symmetric random
matrix whose sub-diagonal entries are some i.i.d. copies of a random variable a (depending
implicitly on n) such that:
• The random variable a can be decomposed into a = b+ c such that as n → ∞,

P(c 6= 0) ≪ n−1(4)

Var(b) ≪ n−1/2(5)

Moreover, if the bi’s are independent copies of b,

(6) lim
K→∞

lim
n→∞

P

(
n∑

i=1

(bi − E(bi))
2 ≥ K

)

= 0 .

• For any ε > 0 independent ofN , the random variable a can be decomposed into a = bε+cε
such that

(7) lim sup
n→∞

nP(cε 6= 0) ≤ ε
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for all k ≥ 1, nE[(bε − E bε)
2k] has a finite limit Cε,k as n → ∞.

• For φn the function defined on the closure C− of C− := {λ ∈ C ; ℑλ < 0} by

(8) φn(λ) := E
[
exp(−iλa2)

]
,

we have the convergence, uniform on compact subsets of C−,

(9) n(φn(λ)− 1) −→ Φ(λ),

for a certain function Φ defined on C−.

• The function Φ of (9) admits the decomposition

(10) Φ(z) =

∫ ∞

0

g(y)ei
y
z dy

where g(y) is a function such that for some constants K, γ > −1, κ ≥ 0, we have

(11) |g(y)| ≤ K1y≤1y
γ +K1y≥1y

κ, ∀y > 0.

• The function Φ of (9) also either has the form

(12) Φ(x) = −σ(ix)α/2

or admits the (other) decomposition, for x, y non zero:

(13) Φ(x+ y) =

∫∫

(R+)2
ei

v
x
+i v

′

y dτ(v, v′) +

∫

R+

ei
v
xdµ(v) +

∫

R+

ei
v′

y dµ(v′)

for some complex measures τ, µ on respectively (R+)2 and R+ such that for all b > 0,
∫
e−bvd|µ|(v) is finite and for some constants K > 0, −1 < γ ≤ 0 and κ ≥ 0, and

d|τ |(v, v′)
dvdv′

≤ K
(
vγ1v∈]0,1] + vκ1v∈]1,∞[

)(
v′

γ1v′∈]0,1] + v′
κ1v′∈]1,∞[

)
.(14)

Remark 2.1. When Φ satisfies (12) (e.g. for Lévy matrices), (13) holds as well. Indeed,
for all x, y ∈ C+ (with a constant Cα that can change at every line),

Φ(x−1 + y−1) = Cα(
1

x
+

1

y
)α/2 = Cα

1

xα/2

1

yα/2
(x+ y)α/2(15)

= Cα

∫ ∞

0

dw

∫ ∞

0

dw′
∫ ∞

0

dvwα/2−1w′α/2−1
v−α/2−1eiwx+iw′y(eiv(x+y) − 1)

(where we used the formula zα/2 = Cα

∫ +∞

t=0

eitz − 1

tα/2+1
dt for any z ∈ C+ and α ∈ (0, 2),

which can be proved with the residues formula) so that (13) holds with µ = 0 and τ(v, v′)
with density with respect to Lebesgue measure given by

Cα

∫ +∞

0

u−α/2−1{(v − u)α/2−1(v′ − u)α/2−110≤u≤v∧v′ − vα/2−1v′
α/2−1}du.(16)

Unfortunately τ does not satisfy (14) as its density blows up at v = v′: we shall treat both
case separately.
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Examples of random matrices satisfying Hypothesis 2.1 are defined as follows.

Definition 2.2 (Models of symmetric heavy tailed matrices). Let A = (ai,j)i,j=1,...,n be a
random symmetric matrix with i.i.d. sub-diagonal entries.

1. We say that A is a Lévy matrix of parameter α in ]0, 2[ when A = X/an where
the entries xij of X have absolute values in the domain of attraction of α-stable
distribution, more precisely

(17) P (|xij | ≥ u) =
L(u)

uα

with a slowly varying function L, and

an = inf{u : P (|xij | ≥ u) ≤ 1

n
}

(an = L̃(n)n1/α, with L̃(·) a slowly varying function).

2. We say that A is a Wigner matrix with exploding moments with parameter
(Ck)k≥1 whenever the entries of A are centered, and for any k ≥ 1

(18) nE
[
(aij)

2k
]
−→
n→∞

Ck,

with for a constant C > 0. We assume that there exists a unique measure m on
R+ such that for all k ≥ 0,

(19) Ck+1 =

∫

xkdm(x).

The following proposition has been proved at Lemmas 1.3, 1.8 and 1.11 of [8].

Proposition 2.3. Both Lévy matrices and Wigner matrices with exploding moments satisfy
Hypothesis 2.1:

• For Lévy matrices, the function Φ of (9) is given by formula

(20) Φ(λ) = −σ(iλ)α/2

for some constant σ ≥ 0, the function g of (10) is g(y) = Cαy
α
2
−1, with Cα = −σiα/2.

• For Wigner matrices with exploding moments, the function Φ of (9) is given by

(21) Φ(λ) =

∫
e−iλx − 1

x
︸ ︷︷ ︸

:=−iλ for x = 0

dm(x),

for m the measure of (19), the function g of (10) is

(22) g(y) = −
∫

R+

J1(2
√
xy)

√
xy

︸ ︷︷ ︸

:=1 for xy=0

dm(x),



CENTRAL LIMIT THEOREM FOR EIGENVECTORS OF HEAVY TAILED MATRICES 7

for J1 the Bessel function of the first kind defined by J1(s) =
s

2

∑

k≥0

(−s2/4)k

k!(k + 1)!
, and the

measures τ and µ of (13) are absolutely continuous with densities

(23)
dτ(v, v′)

dvdv′
:=

∫
J1(2

√
vx)J1(2

√
v′x)√

vv′
dm(x) and

dµ(v)

dv
:= −

∫
J1(2

√
vx)√
v

dm(x).

One can easily see that our results also apply to complex Hermitian matrices: in this
case, one only needs to require Hypothesis 2.1 to be satisfied by the absolute value of non
diagonal entries and to have a11 going to zero as N → ∞.

A Lévy matrix whose entries are truncated in an appropriate way is a Wigner matrix
with exploding moments [5, 26, 35]. The recentered version1 of the adjacency matrix of an
Erdös-Rényi graph, i.e. of a matrix A such that

(24) Aij = 1 with probability p/n and 0 with probability 1− p/n,

is also an exploding moments Wigner matrix, with Φ(λ) = p(e−iλ − 1) (the measure m is
pδ1). In this case the fluctuations were already studied in [28].

It has been proved in [8] (see also [35, 28]) that under Hypothesis 2.1, the empirical
spectral law

(25) µn :=
1

n

n∑

j=1

δλj

converges weakly in probability to a deterministic probability measure µΦ that depends
only on Φ, i.e. that for any continuous bounded function f : R → C, we have the almost
sure convergence

(26)
1

n
Tr f(A) =

1

n

n∑

j=1

f(λj) −→
n→∞

∫

f(x)dµΦ(x).

We introduce FµΦ
(λ) := µΦ((−∞, λ]), cumulative distribution function of µΦ and define

the set EΦ ⊂ [0, 1] by

(27) EΦ := {0} ∪ FµΦ
(R) ∪ {1}.

In the case of Lévy matrices, it has been proved in [4, Theorem 1.3] that µΦ has no
atoms (because it is absolutely continuous), so that EΦ = [0, 1].

We introduce the eigenvalues λ1 ≤ · · · ≤ λn of A and an orthogonal matrix U = [uij]
such that A = U diag(λ1, . . . , λn)U

∗. We assume U defined in such a way that the rows

1The recentering has in fact asymptotically no effect on the spectral measure A as it is a rank one
perturbation.
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of the matrix [|uij|] are exchangeable (this is possible2 because A is invariant, in law, by
conjugation by any permutation matrix). Then define the bivariate processes

Bn
s,t :=

1√
n

∑

1≤i≤ns
1≤j≤nt

(|uij|2 −
1

n
) (0 ≤ s ≤ 1, 0 ≤ t ≤ 1)

and

Cn
s,λ :=

1√
n

∑

1≤i≤ns
1≤j≤n ;λj≤λ

(|uij|2 −
1

n
) (0 ≤ s ≤ 1, λ ∈ R).

The following theorem is the main result of this article. We endow D([0, 1]2) and
D([0, 1] × R) with the Skorokhod topology and D([0, 1] × EΦ) with the topology in-
duced by the Skorokhod topology on D([0, 1]2) by the projection map from D([0, 1]2)
onto D([0, 1]×EΦ) (see Section 4.1 of [6] for the corresponding definitions).

Theorem 2.4. As n → ∞, the joint distribution of the processes

(Bn
s,t)(s,t)∈[0,1]×EΦ

and (Cn
s,λ)(s,λ)∈[0,1]×R

converges weakly to the joint distribution of some centered Gaussian processes

(Bs,t)(s,t)∈[0,1]×EΦ
and (Cs,λ)(s,λ)∈[0,1]×R

vanishing on the boundaries of their domains and satisfying the relation

(28) Bs,FµΦ
(λ) = Cs,λ

for all s ∈ [0, 1], λ ∈ R. Moreover, the process the process (Bs,t) is continuous on [0, 1]×EΦ.

Remark 2.5. Note that the limit of Bn
s,t is only given here when t ∈ EΦ, i.e. when t is

not in the “holes” of FµΦ
(R). But as these holes result from the existence of some atoms

in the limit spectral distribution of A, the variations of Bn
s,t when t varies in one of these

holes may especially depend on the way we choose the columns of A for eigenvalues with
multiplicity larger than one. By the results of [15], in the case where the atoms of µΦ

result in atoms (with asymptotically same weight) of µn, the choice we made here should
lead to a limit process (Bs,t)(s,t)∈[0,1]2 which would interpolate (Bs,t)(s,t)∈[0,1]×EΦ

with some
Brownian bridges in these “holes”, namely for when t ∈ [0, 1]\EΦ.

The following proposition insures that the
1√
n
scaling in the definitions of Bn

s,t and Cn
s,λ

is the right one.

Proposition 2.6. If the function Φ(z) of (9) is not identically equal to z, then for any
fixed s ∈ (0, 1), the covariance of the process (Bs,t)t∈EΦ

(hence also that of (Cs,λ)λ∈R) is
not identically null.

2Such a matrix U can be defined, for example, by choosing some orthogonal bases of all eigenspaces of
A with uniform distributions, independently with each other and independently of A (given its eigenspaces
of course).
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Remark 2.7. One could wonder if the covariance might vanish uniformly on some compact
in the t variable, hence giving some support to the belief that the eigenvectors could behave
more alike the eigenvectors of GUE for “small” eigenvalues (in the latter case the covariance
should vanish). Unfortunately, it does not seem that the covariance should be so closely
related with the localization/delocalization properties of the eigenvectors. Indeed, let us
consider Lévy matrices with α ∈ (1, 2). Their eigenvectors are delocalized [12], so that one
could expect the covariance of the process (Bs,t)t∈EΦ

to vanish. This is in contradiction with
the fact that such matrices enter our model, hence have eigenvectors satisfying Theorem
2.4 and Proposition 2.6.

To prove Theorem 2.4, a key step will be to prove the following proposition, which also
allows to make the variance of the limiting processes in Theorem 2.4 more explicit.

Let us define, for z ∈ C\R and s ∈ [0, 1],

(29) Xn(s, z) :=
1√
n

(

Tr(Ps
1

z − A
)− snTr

1

z − A

)

,

where Ps denotes the diagonal matrix with diagonal entries 1i≤ns (1 ≤ i ≤ n) and

sn :=
1

n
TrPs =

⌊ns⌋
n

.

Proposition 2.8. The distribution of the random process

(Xn(s, z))s∈[0,1],z∈C\R

converges weakly in the sense of finite marginals towards the distribution of a centered
Gaussian process

(30) (Hs,z)s∈[0,1],z∈C\R

with a covariance given by (51).

As it will appear from the proofs that the process (Cs,λ) of Theorem 2.4 and the process
(Hs,z) from the previous proposition are linked by the formula

(31)

∫

λ∈R

Cs,λ

(z − λ)2
dλ = −Hs,z (s ∈ [0, 1], z ∈ C\R),

the covariance of Cs,λ (hence of Bs,t by (28)) can be deduced from that of the process Hs,z

as follows (the proof of this proposition is a direct application of (31) and of Formula (66)
of the Appendix).

Proposition 2.9. For any s, s′ ∈ [0, 1] and any λ, λ′ ∈ R which are not atoms of µΦ, we
have

(32) E[Cs,λCs′,λ′ ] =
1

π2
lim
η↓0

∫ λ

−∞

∫ λ′

−∞
E[ℑ (Hs,E+iη)ℑ (Hs′,E′+iη)]dEdE ′ .

When λ or λ′ is an atom of µΦ, the covariance can be obtained using (32) and the right
continuity of Cs,λ in λ.
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3. Proof of Theorem 2.4

We introduce the cumulative distribution function

(33) Fn(λ) :=
1

n
|{j ; λj ≤ λ}|

of the empirical spectral law µn defined at (25). We shall use the following formula several
times: for all s ∈ [0, 1] and λ ∈ R,

(34) Cn
s,λ = Bn

s,Fn(λ).

We know, by Lemma 6.1 of the appendix, that the sequence (distribution(Bn))n≥1 is
tight and has all its accumulation points supported by the set of continuous functions on
[0, 1]2. As Fn converges to FµΦ

for the Skorokhod topology, it follows that the sequences

B̃n := (Bn
s,t)(s,t)∈[0,1]×EΦ

and (Cn
s,λ = Bn

s,Fn(λ))(s,λ)∈[0,1]×R

are tight in their respective spaces. To prove the theorem, it suffices to prove that the
sequence (distribution(B̃n, Cn))n≥1 has only one accumulation point (which is Gaussian
centered, vanishing on the boundaries, supported by continuous functions as far as the first
component is concerned and satisfying (28)). So let ((B̃s,t)(s,t)∈[0,1]×EΦ

, (Cs,λ)(s,λ)∈[0,1]×R) be
a pair of random processes having for distribution such an accumulation point. By (34),
we have

B̃s,FµΦ
(λ) = Cs,λ

for all s ∈ [0, 1], λ ∈ R. Hence it suffices to prove that the distribution of C is totally
prescribed and Gaussian centered.

First, let us note that one can suppose that along the corresponding subsequence, the
distribution of ((Bn

s,t)(s,t)∈[0,1]2 , (C
n
s,λ)(s,λ)∈[0,1]×R) converges weakly to the distribution of a

pair (B,C) of processes such that B is continuous and vanishing on the boundary of [0, 1]2

(not that the difference with what was supposed above is that now, t varies in [0, 1] and
not only in EΦ). Again, by (34), we have

(35) Bs,FµΦ
(λ) = Cs,λ

for all s ∈ [0, 1], λ ∈ R. Hence the process C is continuous in s and continuous in λ at any
λ which is not an atom of the (non random) probability measure µΦ. Hence it follows from
Lemma 6.2 of the appendix that it suffices to prove that the distribution of the process

(

X(s, z) :=

∫

λ∈R

Cs,λ

(z − λ)2
dλ

)

s∈[0,1],z∈C\R

is totally prescribed (and Gaussian centered). This distribution is the limit distribution,
along our subsequence, of the process

(36)

(∫

λ∈R

Cn
s,λ

(z − λ)2
dλ

)

s∈[0,1],z∈C\R
.
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But by Lemma 3.1 below, the process of (36) is simply (the opposite of) the process
(Xn(s, z))s,z, defined above at (29). As Proposition 2.8 states that (regardless to the
subsequence considered) the distribution of the process (Xn(s, z))s,z converges weakly to
a Gaussian centered limit, this concludes the proof of Theorem 2.4.

Lemma 3.1. For any s ∈ [0, 1] and any z ∈ C\R, we have

(37)

∫

λ∈R

Cn
s,λ

(z − λ)2
dλ = −Xn(s, z).

Proof. Let us introduce, for s ∈ [0, 1], the random signed measure νs,n on R defined by

νs,n :=
1√
n

∑

1≤i≤ns

n∑

j=1

(

|uij|2 −
1

n

)

δλj
.

Then for any λ ∈ R, Cn
s,λ = νs,n((−∞, λ]). Moreover, by Fubini, we know that for any

finite signed measure m on R,

(38)

∫

λ∈R

m((−∞, λ])

(z − λ)2
dλ = −

∫

λ∈R

dm(λ)

z − λ
.

Hence ∫

λ∈R

Cn
s,λ

(z − λ)2
dλ = −

∫

λ∈R

dνs,n(λ)

z − λ
.

On the other hand, we have

Xn(s, z) =
1√
n

(
∑

1≤i≤ns

(
1

z −A

)

ii

− 1

n

∑

1≤i≤ns

n∑

i=1

1

z − λj

)

=
1√
n

(
∑

1≤i≤ns

n∑

i=1

|uij|2
1

z − λj

− 1

n

∑

1≤i≤ns

n∑

i=1

1

z − λj

)

=
1√
n

∑

1≤i≤ns

n∑

i=1

(

|uij|2 −
1

n

)
1

z − λj

=

∫

λ∈R

dνs,n(λ)

z − λ
.

This concludes the proof. �

4. Proof of Proposition 2.8

To prove Proposition 2.8, one needs to prove that the distribution of any linear combi-
nation of the Xn(s, z)’s (s ∈ [0, 1], z ∈ R) converges weakly. For s = 0 or 1, νs,n is null, as
Xn(s, z), hence we can focus on s ∈ (0, 1). Any such linear combination can be written

Mn :=

p
∑

i=1

αiX
n(si, zi),
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for some αi’s in C, some si’s in [0, 1] and some complex non real numbers zi.

We want to prove that Mn converges in law to a certain complex centered Gaussian
variable. We are going to use the CLT for martingales stated at Theorem 6.3 of the
appendix. Indeed, for F n

k the σ-algebra generated by the first k rows (or columns) of the
symmetric matrix A, the sequence (Mn

k := E[Mn|F n
k ])k=0,...,n is a centered martingale (to

see that it is centered, just use the fact that as A is invariant, in law, by conjugation by
any permutation matrix, for all z, the expectation of ( 1

z−A
)jj does not depend on j).

Then, denoting E[ · |F n
k ] by Ek, and defining

Yk := (Ek −Ek−1)(M
n)

(which depends implicitely on n), we need to prove that for any ε > 0,

(39) Ln(ε) :=

n∑

k=1

E(|Yk|21|Yk |≥ε) −→
n→∞

0,

and that the sequences
n∑

k=1

Ek−1(|Yk|2) and
n∑

k=1

Ek−1(Y
2
k )

converge in probability towards some deterministic limits. As Xn(s, z) = Xn(s, z), it is in
fact enough to fix s, s′ ∈ (0, 1) and z, z′ ∈ C\R and to prove that for

(40) Yk := (Ek −Ek−1)(X
n(s, z)) and Y ′

k := (Ek −Ek−1)(X
n(s′, z′)),

we have (39) for any ε > 0 and that
n∑

k=1

Ek−1(YkY
′
k)

converges in probability towards a deterministic constant. We introduce the notation

G :=
1

z −A
and G′ :=

1

z′ −A
.

Let A(k) be the symmetric matrix with size n − 1 obtained by removing the k-th row
and the k-th column of A and set G(k) := 1

z−A(k) . Note that Ek G
(k) = Ek−1G

(k), so that

Yk, which is equal to
1√
n
(Ek −Ek−1) (Tr(PsG)− snTrG), can be rewritten

Yk =
1√
n
(Ek −Ek−1)

(
(Tr(PsG)− Tr(P (k)

s G(k)))− sn(TrG− TrG(k))
)

Then, (39) is obvious by Formula (68) of the appendix (indeed, Ln(ε) is null for n large
enough). Let us now apply Formula (67) of the appendix. We get

(41) Yk =
1√
n
(Ek −Ek−1)

(1k≤ns − sn + a∗
kG

(k)(P
(k)
s − sn)G

(k)ak

z − akk − a∗
kG

(k)ak

)

.
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Then by Lemma 7.7 of [8], one can neglect the non diagonal terms in the expansions of

the quadratic forms in (41), so that one can replace Yk by
1√
n
(Ek −Ek−1) (fk), with

(42) fk := fk(z, s) =
1k≤ns − sn +

∑

j ak(j)
2{G(k)(P

(k)
s − sn)G

(k)}jj
z −∑j ak(j)2G

(k)
jj

.

It follows that

(43)
n∑

k=1

Ek−1(YkY
′
k) =

1

n

n∑

k=1

Ek−1[fkf
′
k]− Ek−1[fk]Ek−1[fk] + o(1),

where f ′
k is defined as fk in (42), replacing the function s by s′ and z by z′.

Let us denote by Eak
the expectation with respect to the randomness of the k-th column

of A (i.e. the conditional expectation with respect to the σ-algebra generated by the aij’s
such that k /∈ {i, j}). Note that Ek−1 = Eak

◦Ek = Ek ◦Eak
, hence

(44) Ek−1[fkf
′
k]− Ek−1[fk]Ek−1[f

′
k] = Eak

[Ek fk Ek f
′
k]− Ek Eak

fk × Ek Eak
f ′
k.

For each s ∈ (0, 1) let us define C2
s to be the set of pairs (z, z̃) of complex numbers such

that

(ℑz > 0 and − ℑz
1− s

< ℑz̃ <
ℑz
s
) or (ℑz < 0 and

ℑz
s

< ℑz̃ < − ℑz
1− s

).

Note that C2
s is the set of pairs (z, z̃) of complex numbers such that ℑz 6= 0 and both

ℑ(z + (1− s)z̃) and ℑ(z − sz̃) have the same sign as ℑz.
Lemma 4.1. For any fixed z ∈ C\R and any fixed s ∈ (0, 1), as n, k −→ ∞ in such a way
that k/n −→ u ∈ [0, 1], we have the convergence in probability

lim
N→∞

Eak
[fk(z, s)] = Lu(z, s) := −

∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t(z+z̃(1u≤s−s))eρz,z̃,s(t)dt,

where for s ∈ (0, 1) fixed, (z, z̃, t) 7−→ ρz,z̃,s(t) is the unique function defined on C2
s × R+,

analytic in its two first variables and continuous in its second one, taking values into
{z ∈ C ; ℜz ≤ 0}, solution of

ρz,z̃,s(t) = t

∫ ∞

0

g(ty)(seiy sgnz z̃ + (1− s))eiy sgnz(z−sz̃)eρz,z̃,s(y)dy

where g is the function introduced at (10).

Proof. We use the fact that for z ∈ C\R,

(45)
1

z
= −i sgnz ×

∫ +∞

0

esgnz itzdt,
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where sgnz has been defined above by sgnz = sgn(ℑz). Hence by (42),

fk = −i sgnz

∫ +∞

0

{1k≤ns −sn+
∑

j

(G(k)(P (k)
s −sn)G

(k))jjak(j)
2}ei sgnz t(z−∑

j(G
(k))jjak(j)

2)dt.

Let us define G(k)(·, ·) on C2
sn by

G(k)(z, z̃) :=
1

z + z̃(P
(k)
s − sn)− A(k)

(note that G(k)(·, ·) is well defined the remark following the definition of C2
s). Then for any

fixed z ∈ C\R,
Gk(z)(P

(k)
s − sn)Gk(z) = −∂z̃,z̃=0G

(k)(z, z̃).

Hence

{1k≤ns − sn +
∑

j

(G(k)(P (k)
s − sn)G

(k))jjak(j)
2}ei sgnz t(z−

∑
j(G

(k))jjak(j)
2)

=
1

it sgnz

∂z̃,z̃=0e
i sgnz t{z+z̃(1k≤ns−sn)−

∑
j(G

(k)(z,z̃)jjak(j)
2}

and

(46) fk = −
∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t{z+z̃(1k≤ns−sn)−
∑

j G
(k)(z,z̃)jjak(j)

2}dt.

Thus for φn as defined as in (18) by φn(λ) = E e−iλa211 , we have (permuting E and
∫ +∞
0

because z ∈ C\R is fixed and for each j, −G(k)(z, z̃)jj has imaginary part with the same
sign as z for z̃ small enough),

Eak
(fk) = −

∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t(z+z̃(1k≤ns−sn)
∏

j

φn(sgnz tG
(k)(z, z̃)jj)dt

Now, by (18), we have n(φn − 1) −→ Φ as n → ∞. As ℜ(i sgnz z) < 0, the integrals are
well dominated at infinity and the integral

∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t(z+z̃(1k≤ns−sn)) e
1
n

∑
j Φ(sgnz tG

(k)(z,z̃)jj)dt

is well converging at the origin as the derivative in z̃ is of order t since Φ is analytic on C−

where G(k)(z, z̃)jj almost surely takes its values, while being uniformly bounded, hence

Eak
(fk) = o(1)−

∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t(z+z̃(1k≤ns−sn)) e
1
n

∑
j Φ(sgnz tG

(k)(z,z̃)jj )dt .

We therefore basically need to compute the asymptotics of

ρnz,z̃,s(t) :=
1

n

∑

j

Φ(sgnz tG
(k)(z, z̃)jj).

Note that by definition of Φ, for any λ ∈ C−, ℜΦ(λ) ≤ 0. Thus ρnz,z̃,s(t) is analytic
in z ∈ C\R, and uniformly bounded on compact subsets of C\R and takes values in
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{z ∈ C ; ℜz ≤ 0}. By Montel’s theorem, all limit points of this function for uniform
convergence on compact subsets will satisfy the same property. Now, notice that by Schur
complement formula and the usual removal of the non diagonal terms (Lemma 7.7 of [8]
again), that for n ≫ 1,

G(k)(z, z̃)jj ≃
1

z + z̃(1k≤ns − sn)−
∑

ℓ a
2
ℓℓG

(k,j)(z, z̃)ℓℓ

where G(k,j) is the resolvent where two rows and columns have been suppressed. We
can now proceed as usual to write that by invariance of the law of A by conjugation by
permutation matrices, for all j,

E[Φ(sgnz tG
(k)(z, z̃)jj)] =







E[Φ(sgnz tG
(k)(z, z̃)11)] if j ≤ ns,

E[Φ(sgnz tG
(k)(z, z̃)nn)] if j > ns,

so that by concentration arguments, see [8, Appendix], ρnz,z̃,s(t) self-averages so that for
n ≫ 1,

ρnz,z̃,s(t) ≃ E[
1

n

∑

j

Φ(sgnz tG
(k)(z, z̃)jj)]

= sE[Φ(sgnz tG
(k)(z, z̃)11)] + (1− s)E[Φ(sgnz tG

(k)(z, z̃)nn)].

On the other side, with the function g introduced in the hypothesis at (10), we have

E[Φ(sgnz tG
(k)(z, z̃)11)] = t

∫ ∞

0

g(ty)eiy sgnz(z+z̃(1−sn))
∏

j

φn(y sgnz G
(k,1)(z, z̃)jj)dy

∼ t

∫ ∞

0

g(ty)eiy sgnz(z+z̃(1−sn))eρ
n
z,z̃,s(y)dy

E[Φ(sgnz tG
(k)(z, z̃)nn)] = t

∫ ∞

0

g(ty)eiy sgnz(z−snz̃)
∏

j

φn(sgnz yG
(k,1)(z, z̃)jj)dy

∼ t

∫ ∞

0

g(ty)eiy sgnz(z−snz̃)eρ
n
z,z̃,s(y)dy

so that we deduce that the limit points ρz,z̃,s(t) of ρ
n
z,z̃,s(t) satisfy

ρz,z̃,s(t) = t

∫ ∞

0

g(ty)(seiy sgnz z̃ + (1− s))eiy sgnz(z−sz̃)eρz,z̃,s(y)dy.

Let us now prove that for each fixed s ∈ (0, 1), there exists a unique function satisfying
this equation and the conditions stated in the lemma. So let us suppose that we have two
solutions ρz,z̃,s(t) and ρ̃z,z̃,s(t). Then

∆z,z̃(t) := ρz,z̃,s(t)− ρ̃z,z̃,s(t)



16 FLORENT BENAYCH-GEORGES, ALICE GUIONNET

satisfies

∆z,z̃(t) = t

∫ ∞

0

g(ty)(seiy sgnz z̃ + (1− s))eiy sgnz(z−sz̃)(eρz,z̃,s(y) − eρ̃z,z̃,s(y))dy,

hence for

δ(z, z̃) := min{sgnz ℑ(z + (1− s)z̃), sgnz ℑ(z − sz̃)} > 0,

we have

|∆z,z̃(t)| ≤ t

∫ ∞

0

|g(ty)|e−δ(z,z̃)y|∆z,z̃(y)|dy

Thus by the hypothesis made on g at (11),

|∆z,z̃(t)| ≤ Ktγ+1

∫ ∞

0

yγe−δ(z,z̃)y|∆z,z̃(y)|dy
︸ ︷︷ ︸

:=I1(z,z̃)

+Ktκ+1

∫ ∞

0

yκe−δ(z,z̃)y|∆z,z̃(y)|dy
︸ ︷︷ ︸

:=I2(z,z̃)

It follows that the numbers I1(z, z̃) and I2(z, z̃) defined above satisfy

I1(z, z̃) ≤ K

(

I1(z, z̃)

∫ ∞

0

y2γ+1e−δ(z,z̃)ydy + I2(z, z̃)

∫ ∞

0

yγ+κ+1e−δ(z,z̃)ydy

)

,

I2(z, z̃) ≤ K

(

I1(z, z̃)

∫ ∞

0

yγ+κ+1e−δ(z,z̃)ydy + I2(z, z̃)

∫ ∞

0

y2κ+1e−δ(z,z̃)ydy

)

.

For δ(z, z̃) large enough, the integrals above are all strictly less that 1
4K

), so that I1(z, z̃) =
I2(z, z̃) = 0. It follows that for ℑz large enough and ℑz̃ small enough, both solutions
coincide. By analytic continuation, unicity follows. �

Getting back to (43) and (44), we shall now, as in [8], analyze

Ln
k(s, z; s

′, z′) := Ek−1[fkf
′
k].

Let us first define the measure τ̃ := τ + δ0 ⊗ µ+ µ⊗ δ0 on (R+)2 for τ and µ the measures
introduced at (13) or at Remark 2.1. We always have, for x, y ∈ C+,:

(47) Φ(x−1 + y−1) =

∫∫

(R+)2
ei(xv+yv′)dτ̃ (v, v′)

Lemma 4.2. Let us fix s1, s2 ∈ (0, 1). As k, n −→ ∞ in such a way that k/n goes to
u ∈ [0, 1], Ln

k(s1, z; s2, z
′) tends to

Lu(s1, z; s2, z
′) :=

∫∫

R2
+

∂z̃,z̃=0∂z̃′,z̃′=0e
i sgnz t(z+z̃(1u≤s1

−s1))+i sgnz′ t
′(z′+z̃′(1u≤s2

−s2))+ρu(s1,t,z,z̃;s2,t′,z′,z̃′)
dtdt′

tt′

where the function

(t, z, z̃, t′, z′, z̃′) ∈ R+ × C
2
s1 × R+ × C

2
s2 7−→ ρu(s1, t, z, z̃; s2, t

′, z′, z̃′)
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is characterized as follows : ρu(s1, t, z, z̃; s2, t
′, z′, z̃′) = ρu(s2, t

′, z′, z̃′; s1, t, z, z̃) and if, for
example, s1 ≤ s2, then for γ1 = s1, γ2 = s2 − s1, γ3 = 1− s2,

ρu(s1, t, z, z̃; s2, t
′, z′, z̃′) =

3∑

β=1

γβρ
β
u(s1, t, z, z̃; s2, t

′, z′, z̃′)

where the functions

(t, z, z̃, t′, z′, z̃′) ∈ R+ × C
2
s1
× R+ × C

2
s2
7−→ ρβu(s1, t, z, z̃; s2, t

′, z′, z̃′) (β = 1, 2, 3)

are the unique analytic in z, z̃, z′, z̃′ and continuous in t and in t′ functions such that

ρβu(s, t1, z1, z̃1; s2, t2, z2, z̃2) =

∫∫

e
∑

r=1,2 sgnzr
ivr
tr

(zr+z̃r(1β≤r−sr))+u
1u>sβ ρu(z1,z̃1,s1,

v1
t1

;z2,z̃2,s2,
v2
t2

)

e(1−u)
1u>sβ ρz1,z̃1,s1 (v1/t1)+(1−u)

1u>sβ ρz2,z̃2,s2(v2/t2)dτ̃(v1, v2).

Proof. Of course, Ln
k(s1, z; s2, z

′) = Ln
k(s2, z

′; s1, z). Let us suppose for example that s1 ≤
s2. For short, we write s := s1 and s′ := s2. Note that

Ln
k(s, z; s

′, z′) := Ek[Eak
[fkf̃k]]

where f ′′
k is defined as f ′

k replacing the matrix A by the matrix

(48) A′ = [a′ij ]1≤i,j≤N

defined by the the fact that the a′ij ’s such that i > k and j > k are i.i.d. copies of a11
(modulo the fact that A′ is symmetric), independent of A, for all other pairs (i, j), a′ij = aij .

We define, for (z′, z̃) ∈ C2
sn,

G′(k)(z′, z̃) :=
1

z′ + z̃(P
(k)
s′ − s′n)− A′(k)

.

First recall the following formula for fk established at Equation (46):

fk = −
∫ +∞

0

1

t
∂z̃,z̃=0e

i sgnz t{z+z̃(1k≤ns−sn)−
∑

j G
(k)(z,z̃)jjak(j)

2}dt.

In the same way, we find

f ′′
k = −

∫ +∞

0

1

t′
∂z̃,z̃=0e

i sgnz′ t
′{z′+z̃(1k≤ns′−s′n)−

∑
j G

′(k)(z′,z̃)jjak(j)
2}dt.
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Hence we have

Ln
k(s, z; s

′, z′) =

∫∫

R2
+

∂z̃,z̃=0∂z̃′,z̃′=0e
i sgnz t{z+z̃(1k≤ns−sn)}+i sgnz′ t

′{z′+z̃′(1k≤ns′−s′n)} ×

∏

j

φn(sgnz tG
(k)(z, z̃)jj + sgnz′ t

′G′(k)(z′, z̃′)jj)
dtdt′

tt′

≃
∫∫

R2
+

∂z̃,z̃=0∂z̃′,z̃′=0e
i sgnz t{z+z̃(1k≤ns−sn)}+i sgnz′ t

′{z′+z̃′(1k≤ns′−s′n)} ×

exp(ρnk(s, t, z, z̃; s
′, t′, z′, z̃′))

dtdt′

tt′

with

ρnk(s, t, z, z̃; s
′, t′, z′, z̃′) :=

1

n

∑

j

Φ(sgnz tG
(k)(z, z̃)jj + sgnz′ t

′G′(k)(z′, z̃′)jj).

We can derive the asymptotics of this term as before thanks to (47). We have to separate
the j’s according to whether j ≤ k or j > k and k ≥ sn or k ≥ s′n. Assume j ≤ k so that
a′jℓ = ajℓ for all ℓ. Then

Φ(sgnz tG
(k)(z, z̃)jj + sgnz′ t

′G′(k)(z′, z̃′)jj)

≃
∫∫

R2
+

esgnz
iv
t
{z+z̃(1j≤ns−s)−

∑
ℓ a

2
ℓℓ
G(k,j)(z,z̃)ℓℓ}esgnz′

iv′

t′
{z′+z̃′(1j≤ns′−s′)−

∑
ℓ a

2
ℓℓ
G′(k,j)(z′,z̃′)ℓℓ}dτ̃ (v, v′)

thus using the concentration around the expectation, we get

Φ(sgnz tG
(k)(z, z̃)jj + sgnz′ t

′G′(k)(z′, z̃′)jj)

≃
∫∫

R2
+

esgnz
iv
t
{z+z̃(1j≤ns−s)}+sgnz′

iv′

t′
{z′+z̃′(1j≤ns′−s′)} eρ

n
k
(s, v

t
,z,z̃,s′, v

′

t′
,z′,z̃′)dτ̃(v, v′)

Assume now that j > k so that aℓℓ and a′ℓℓ are independent if ℓ ≥ k. Then

Φ(sgnz tG
(k)(z, z̃)jj + sgnz′ t

′G′(k)(z′, z̃′)jj)

≃
∫∫

R2
+

esgnz
iv
t
{z+z̃(1j≤ns−s)−∑

ℓ a
2
ℓℓ
G(k,j)(z,z̃)ℓℓ}esgnz′

iv′

t′
{z′+z̃′(1j≤ns′−s′)−∑

ℓ a
′
ℓℓ

2G′(k,j)(z′,z̃′)ℓℓ}dτ̃ (v, v′)

and using again the concentration around the expectation, we get

Φ(sgnz tG
(k)(z, z̃)jj + sgnz′ t

′G′(k)(z′, z̃′)jj)

≃
∫∫

R2
+

esgnz
iv
t
{z+z̃(1j≤ns−s)}+sgnz′

iv′

t′
{z′+z̃′(1j≤ns′−s′)} ×

e
k
n
ρn
k
(s, v

t
,z,z̃,s′, v

′

t′
,z′,z̃′)+(1− k

n
){ρz,z̃,s( vt )+ρz′,z̃′,s′(

v′

t′
)}dτ̃(v, v′)
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From these equations, we see that, under our hypothesis that s1 ≤ s2, we have 3 possible
regimes, each of them giving rise to a limit point and an equation. Hence the whole system
is governed by 3 equations. The proof of the fact that under analyticity hypotheses, the
limit points are uniquely described by the resulting equations goes along the same lines as
the proofs in Section 5.2 of [8], sketched as follows. First, we have to consider separately
the case where Φ satisfies (12) and the case where Φ satisfies (13). In the case where Φ
satisfies (12), the proof is very similar to the proof of the corresponding case in Section
5.2 of [8] and to the detailed proof of the uniqueness for Lemma 4.1 of the present paper,
using (14) instead of (11). The case where Φ satisfies (13) is a little more delicate. As in
Lemma 5.1 of [8], one first needs to notice that considered as functions of t, t′, t′′, the limit
points satisfy an Hölder bound, using essentially the facts that for any 2κ ∈ (0, α/2)

(49) lim sup
N≥1

E

[(∑

|a1i|2
)2κ
]

< ∞ ,

and that for any β ∈ (α/1, 1], there exists a constant c = c(α, β) such that for any x, y in
C−,

(50) |xα
2 − y

α
2 | ≤ c|x− y|β (|x| ∧ |y|)α

2
−β .

Then one has to interpret the equation relating the limit points associated to the 3 pos-
sible regimes as a fixed point equation for a strictly contracting function in a space of
Hölder functions: the key argument, to prove that the function is contracting, is to use the
estimates given in Lemma 5.7 of [12]. �

This concludes the proof of Proposition 2.8 and it follows from this that the covariance
of the process Hs,z is given by

(51) C(s, z; s′, z′) := E[Hs,zHs′,z′] =

∫ 1

0

du(Lu(s, z; s
′, z′)− Lu(z, s)Lu(z

′, s′))

with the functions L defined in Lemmas 4.1 and 4.2.

5. Proof of Proposition 2.6

Let us now prove that the limit covariance of (Cs,λ) is not identically zero (hence this is
also the case for (Bs,t) by (28)). Using Lemma 6.1 and (34), one easily sees that (Cn

s,λ) is

uniformly bounded in L4. It follows that

(52) Var(Cs,λ) = E[(Cs,λ)
2] = lim

n→∞
E[(Cn

s,λ)
2].

Thus we shall prove that the limit of E[(Cn
s,λ)

2] is not identically zero.

First note that for x1, . . . , xn ∈ C such that x1 + · · · + xn = 0, for any 0 ≤ ℓ ≤ n, we
have

(53)
ℓ∑

i=1

xi =
n∑

i=1

αixi for αi :=

{

1− ℓ
n

if i ≤ ℓ,

− ℓ
n

if i > ℓ,
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and that α1+ · · ·+αn = 0. Note also that for (X1, . . . , Xn) an exchangeable random vector
and α1, . . . , αn ∈ C such that α1 + · · ·+ αn = 0, we have

(54) E

∑

i,i′

αiαi′XiXi′ =
∑

i

α2
i E[X1(X1 −X2)].

It follows easily from (53) and (54) that if we also suppose that almost surely, the Xi’s
sum up to zero, then for any 0 ≤ ℓ ≤ n, we have

(55) E

∑

1≤i≤ℓ
1≤i′≤ℓ

XiXi′ = n

(
ℓ

n
− ℓ2

n2

)

E[X1(X1 −X2)].

Let us now fix s ∈ (0, 1) and λ ∈ R and apply (55) with Xi =
∑

j ; λj≤λ(|uij|2 −n−1) and

ℓ = ⌊ns⌋. For s̃ := ⌊ns⌋/n, we get

(56) Var(Cn
s,λ) = E[(Cn

s,λ)
2] =

(
s̃− s̃2

)
E[X1(X1 −X2)]

Note also that as each |uij|2 has expectation n−1,

E[X1(X1 −X2)] = E[
∑

j ;λj≤λ
j′ ;λj′≤λ

|u1j|2|u1j′|2 − |u1j|2|u2j′|2]

Moreover, by exchangeability of the rows of U (which is true even conditionally to the λj’s)
and the fact that its columns have norm one, we easily see that for any j, j′,

n(n− 1)E[1λj ,λj′≤λ|u1j|2|u2j′|2] + nE[1λj ,λj′≤λ|u1j|2|u1j′|2] = 1,

so that

E[X1(X1 −X2)] = O

(
1

n

)

+

(

1− 1

n

)

E[
∑

j,j′ ; λj ,λj′≤λ

(|u1j|2|u1j′|2 − n−2)].

By (56), we deduce that

E[(Cn
s,λ)

2] = O

(
1

n

)

+

(

1− 1

n

)
(
s̃− s̃2

)
E[

∑

j,j′ ;λj ,λj′≤λ

(|u1j|2|u1j′|2 − n−2)],

so that

(57) E[(Cn
s,λ)

2] = O

(
1

n

)

+
(
s̃− s̃2

)
E[

(
∑

j ;λj≤λ

(|u1j|2 − n−1)

)2

]

Note that
∑

j ; λj≤λ

|u1j|2 = µn,e1((−∞, λ])
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where µn,e1 :=

n∑

j=1

|u1j|2δλj
is the empirical spectral law of A according to the first vector

e1 of the canonical basis, also defined by the fact that for any test function f ,
∫

f(x)dµn,e1(x) = (f(A))11.

Thus for µn defined by (25), we have
∑

j ;λj≤λ

(|u1j|2 − n−1) = (µn,e1 − µn)((−∞, λ])

Hence by (57),

(58) E[(Cn
s,λ)

2] = O

(
1

n

)

+
(
s̃− s̃2

)
E[{(µn,e1 − µn)((−∞, λ])}2].

Let us now suppose that for a certain s ∈ (0, 1), we have Var(Cs,λ) = 0 for all λ ∈ R. To
conclude the proof, we shall now exhibit a contradiction. By (52) and (58), we know that
for all λ, E[{(µn,e1 − µn)((−∞, λ])}2] −→ 0 as n → ∞. Thus by dominated convergence,
as n → ∞,

∫

λ∈R

‖(µn,e1 − µn)((−∞, λ])‖L2

|z − λ|2 dλ −→ 0

and by the triangular inequality, we deduce that as n → ∞,
∫

λ∈R

(µn,e1 − µn)((−∞, λ])

(z − λ)2
dλ

L2

−→ 0.

But by (38), for any z ∈ C\R, with the notation G(z) := (z −A)−1,
∫

λ∈R

(µn,e1 − µn)((−∞, λ])

(z − λ)2
dλ = −

∫

λ∈R

d(µn,e1 − µn)(λ)

z − λ

=
1

n
TrG(z)−G(z)11.

We deduce that as n → ∞,

(59)
1

n
TrG(z)−G(z)11

L2

−→ 0.

Note that by exchangeability of the rows of A, the LHT of (59) is centered, hence converges
in probability to zero. By (26), we deduce that G(z)11 converges in probability to the
Stieltjes transform GµΦ

(z) of the limit empirical spectral law µΦ of A. By the Schur
complement formula (see [1, Lem. 2.4.6]) and the asymptotic vanishing of non diagonal
terms in the quadratic form (Lemma 7.7 of [8]), we deduce that, for A(1) the matrix obtained
after having removed the first row and the first column to A and G(1)(z) := (z − A(1))−1,

(60) z −
n∑

j=2

|a1j|2G(1)(z)jj
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converges in probability to 1/GµΦ
(z).

But one can easily deduce from our hypotheses that the random variable of (60) con-
verges in distribution to a random variable which is non constant (because Φ(z) is not
identically equal to z).

6. Appendix

6.1. A tightness lemma for bivariate processes. Let us endow the space D([0, 1]2)
with the Skorokhod topology (see [6] for the definitions).

Let M = [mij ]1≤i,j≤n be a random bistochastic matrix depending implicitly on n. We
define the random process of D([0, 1]2)

Sn(s, t) :=
1√
n

∑

1≤i≤ns
1≤j≤nt

(

mij −
1

n

)

.

Lemma 6.1. Let us suppose that M is, in law, invariant under left multiplication by
any permutation matrix. Then the process Sn is C-tight in D([0, 1]2), i.e. the sequence
(distribution(Sn))n≥1 is tight and has all its accumulation points supported by the set of
continuous functions on [0, 1]2. Moreover, the process Sn is uniformly bounded in L4.

Proof. Let us prove that for all 0 ≤ s < s′ ≤ 1, 0 ≤ t < t′ ≤ 1,

(61) E[(∆s,s′,t,t′S
n)4] ≤ 7

n
+ 6(s′ − s)2(t′ − t)2(1− (s′ − s))2,

where ∆s,s′,t,t′S
n denotes the increment of Sn on [s, s′]× [t, t′], i.e.

(62) ∆s,s′,t,t′S
n :=

1√
n

∑

ns<i≤ns′

nt≤j≤nt′

(mij −
1

n
).

As Sn vanishes on the boundary on [0, 1]2, according to [9, Th. 3], (61) will imply the
lemma.

To prove (61), we fix 0 ≤ s < s′ ≤ 1, 0 ≤ t < t′ ≤ 1. Let us now introduce some notation
(where the dependence on n will by dropped for readability). We define the sets

I := {i ∈ {1, . . . , n} ; ns < i ≤ ns′} and J := {j ∈ {1, . . . , n} ; nt < j ≤ nt′},
the numbers (αi)1≤i≤n defined by

αi :=







− 1√
n
|I|
n

if i /∈ I

1√
n

(

1− |I|
n

)

if i ∈ I
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and the exchangeable random vector (implicitly depending on n) (X1, . . . , Xn) defined by

Xi =
∑

j∈J
mij .

Note that

∆s,s′,t,t′S
n =

1√
n

((
∑

i∈I
Xi

)

− |I||J |
n

)

and that as columns of M sum up to one, |J | =
∑

j∈J

n∑

i=1

mij =

n∑

i=1

Xi, hence

∆s,s′,t,t′S
n =

1√
n

(
∑

i∈I
Xi −

|I|
n

n∑

i=1

Xi

)

=
n∑

i=1

αiXi.

Thus by exchangeability of the Xi’s, we have

E[(∆s,s′,t,t′S
n)4] = E(X4

1 ) sum4(α) + 4E(X3
1X2) sum3,1(α) + 3E(X2

1X
2
2 ) sum2,2(α)

+6E(X2
1X2X3) sum2,1,1(α) + E(X1X2X3X4) sum1,1,1,1(α),

with

sum4(α) :=

n∑

i=1

α4
i , sum3,1(α) :=

∑

i 6=j

α3
iαj , sum2,2(α) :=

∑

i 6=j

α2
iα

2
j ,

sum2,1,1(α) :=
∑

i,j,k
pairwise 6=

α2
iαjαk, sum1,1,1,1(α) :=

∑

i,j,k,ℓ
pairwise 6=

αiαjαkαℓ.

As the αi’s sum up to zero, we have

sum3,1(α) =
∑

i

(α3
i

∑

j 6=i

αj) = − sum4(α),

sum2,1,1(α) =
∑

i

(α2
i

∑

j 6=i

(αj

∑

k/∈{i,j}
αk) =

∑

i

(α2
i

∑

j 6=i

(αj(−αi − αj))

= − sum3,1(α)− sum2,2(α) = sum4(α)− sum2,2(α)

sum1,1,1,1(α) = −3 sum2,1,1(α) = 3 sum2,2(α)− 3 sum4(α)

Thus

E[(∆s,s′,t,t′S
n)4] = sum4(α)(E(X

4
1 )− 4E(X3

1X2) + 6E(X2
1X2X3)− 3E(X1X2X3X4))

+ sum2,2(α)(3E(X
2
1X

2
2 )− 6E(X2

1X2X3) + 3E(X1X2X3X4)),

Now, as for all i, |αi| ≤ 1√
n
, we have sum4(α) ≤ 1

n
, and as for all i, 0 ≤ Xi ≤ 1 (because

the rows of s sum up to one), we have

E[(∆s,s′,t,t′S
n)4] ≤ 7

n
+ 3 sum2,2(α)(E(X

2
1X

2
2 ) + E(X1X2X3X4)).
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To conclude the proof of (61), we shall prove that

(63) sum2,2(α) ≤ (s′ − s)2

and

(64) E(X2
1X

2
2 ) + E(X1X2X3X4) ≤ 2(t′ − t)2.

Let us first check (63). We have

sum2,2(α) ≤ (
∑

i

α2
i )

2 =

{

(n− |I|) |I|
2

n3
+ |I| 1

n
(1− |I|/n)2

}2

=

{ |I|
n
(1− |I|

n
)

}2

,

which gives (63). Let us now check (64). As 0 ≤ Xi ≤ 1, it suffices to prove that

(65) E(X1X2) ≤ (t′ − t)2.

We have

E(X1X2) =
∑

j,j′∈J
E(m1jm2j′),

so it suffices to prove that uniformly on j, j′ ∈ {1, . . . , n}, E(m1jm2j′) ≤
1

n(n− 1)
. We get

this as follows: using the exchangeability of the rows of M and the fact that its rows sum
up to one, we have, for any j, j′ ∈ {1, . . . , n},

1 = E((
∑

i

mij)(
∑

i′

mi′j′)) = n(n− 1)E(m1jm2j′) + nE(m1jm1j′).

This concludes the proof. �

6.2. Injectivity of the Cauchy transform for certain classes of functions.

Lemma 6.2. Let f be a real valued bounded càdlàg function on R vanishing at infinity
with at most countably many discontinuity points. Then f is entirely determined by the
function

Kf (z) :=

∫
f(λ)

(z − λ)2
dλ (z ∈ C\R).

More precisely, for any λ ∈ R, we have

(66) f(λ) = lim
λ̃↓λ

f is cont. at λ̃

lim
η↓0

1

π

∫ λ̃

−∞
ℑKf (E + iη)dE.

Proof. Let us introduce the Cauchy transform of f , defined, on C\R, byHf(z) :=

∫
f(λ)

z − λ
dλ.

It is well known that at any λ̃ where f is continuous, we have

f(λ̃) = lim
η↓0

−1

π
ℑHf (λ̃+ iη).
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Then, the result follows because for all λ̃ ∈ R, η > 0,

−Hf (λ̃+ iη) =

∫ λ̃

−∞
Kf (E + iη)dE.

�

6.3. CLT for martingales. Let (Fk)k≥0 be a filtration such that F0 = {∅,Ω} and let
(Mk)k≥0 be a square-integrable complex-valued martingale starting at zero with respect to
this filtration. For k ≥ 1, we define the random variables

Yk := Mk −Mk−1 vk := E[|Yk|2 | Fk−1] τk := E[Y 2
k | Fk−1]

and we also define

v :=
∑

k≥1

vk τ :=
∑

k≥1

τk L(ε) :=
∑

k≥1

E[|Yk|21|Yk |≥ε].

Let now everything depend on a parameter n, so that Fk = F n
k ,Mk = Mn

k , Yk = Y n
k , v =

vn, τ = τn, L(ε) = Ln(ε), . . .

Then we have the following theorem. It is proved in the real case at [10, Th. 35.12].
The complex case can be deduced noticing that for z ∈ C, ℜ(z)2,ℑ(z)2 and ℜ(z)ℑ(z) are
linear combinations of z2, z2, |z|2.
Theorem 6.3. Suppose that for some constants v ≥ 0, τ ∈ C, we have the convergence in
probability

vn −→
n→∞

v τn −→
n→∞

τ

and that for each ε > 0,

Ln(ε) −→
n→∞

0.

Then we have the convergence in distribution

Mn
n −→

n→∞
Z,

where Z is a centered complex Gaussian variable such that E(|Z|2) = v and E(Z2) = τ .

6.4. Some linear algebra lemmas. Let ‖ · ‖∞ denote the operator norm of matrices
associated with the canonical Hermitian norm.

Lemma 6.4. Let A = [aij ] be an n × n Hermitian matrix, z ∈ C\R, G := (z − A)−1,
P be a diagonal matrix. For 1 ≤ k ≤ n we denote by A(k), P (k) be the matrices with
size n − 1 obtained by removing the k-th row and the k-th column of A and P and set
G(k) := (z −A(k))−1. Then

(67) Tr(PG)− Tr(P (k)G(k)) =
Pkk + a∗

kG
(k)P (k)G(k)ak

z − akk − a∗
kG

(k)ak

,
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with ak the k-th column of A where the diagonal entry has been removed. Moreover,

(68) |Tr(PG)− Tr(P (k)G(k))| ≤ 5‖P‖∞
|ℑz| .

Proof. • Let us first prove (67). By linearity, one can suppose that P has only one nonzero
diagonal entry, say the ith one, equal to one. Using the well known formula

((z − A)−1)ii − 1i 6=k((z − A(k))−1)ii =
GkiGik

Gkk
,

we have

Tr(PG)− Tr(P (k)G(k)) = ((z −A)−1)ii − 1i 6=k ((z −A(k))−1)ii

=
GkiGik

Gkk

=
((z −A)−1P (z − A)−1)kk

((z − A)−1)kk

=
∂t|t=0

((z − A− tP )−1)kk

((z − A)−1)kk

Let log denote the determination of the log on C\R− vanishing at one. Then

Tr(PG)− Tr(P (k)G(k)) = ∂t|t=0
log{((z −A− tP )−1)kk}

= ∂t|t=0
log

1

z − akk − t1k=i − a∗
k(z −X(k) − tP (k))−1ak

= −∂t|t=0
log(z − akk − t1k=i − a∗

k(z −X(k) − tP (k))−1ak)

=
−∂t|t=0

(z − akk − t1k=i − a∗
k(z −X(k) − tP (k))−1ak)

(z − akk − t1k=i − a∗
k(z −X(k) − tP (k))−1ak)|t=0

=
Pkk + a∗

kG
(k)PG(k)ak

z − akk − a∗
kG

(k)ak

• Let us now prove (68) (the proof does not use (67)). One can suppose that k = 1. Let
us introduce

Ã :=







a11 0 · · · 0
0
... A(1)

0







and define G̃ and G̃(1) as G and G(1) with Ã instead of A. We have

|Tr(PG)−Tr(P (1)G(1))| ≤ |Tr(P (G−G̃))|+|Tr(PG̃)−Tr(P (1)G̃(1))|+|Tr(P (1)(G(1)−G̃(1)))|.
Let us treat the terms of the RHT separately.
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The third term is null because Ã(1) = A(1). We have

|Tr(P (G− G̃))| ≤ ‖P (G− G̃)‖∞ rank(G− G̃)

which is ≤ 4‖P‖∞
|ℑz| by the resolvant formula. At last, as P is diagonal and the matrix z− Ã

can be inverted by blocs, we have

|Tr(PG̃)− Tr(P (1)G̃(1))| = |P11G̃11| ≤
‖P‖∞
|ℑz| .

�
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