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ESTIMATION FOR STOCHASTIC DAMPING HAMILTONIAN
SYSTEMS UNDER PARTIAL OBSERVATION.

II. DRIFT TERM.
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AND CLÉMENTINE PRIEUR ♥

♠ Institut de Mathématiques de Toulouse
♣ Escuela de Matemática, Caracas

♥ Laboratoire Jean Kuntzmann, Grenoble

Abstract. This paper is the second part of our study started with Cattiaux, Leon and
Prieur (2012). For some ergodic hamiltonian systems we obtained a central limit theorem
for a non-parametric estimator of the invariant density, under partial observation (only
the positions are observed). Here we obtain similarly a central limit theorem for a non-
parametric estimator of the drift term. This theorem lies on the previous result for the
invariant density.

1. INTRODUCTION.

Let
(
Zt := (Xt, Yt) ∈ R2d , t ≥ 0

)
be governed by the following Ito stochastic differential

equation:

dXt = Ytdt

dYt = σ dWt − (c(Xt, Yt)Yt +∇V (Xt))dt. (1.1)

Each component Y i (1 ≤ i ≤ d) is the velocity of a particle i with position X i. Function
c is called the damping force and V the potential, σ is some (non-zero) constant and W
a standard brownian motion.
We shall assume that c and V are regular enough for the existence and uniqueness of a
non explosive solution of (1.1). We shall also assume that the process is ergodic with a
unique invariant probability measure µ, and that the convergence in the ergodic theorem
is quick enough. Some sufficient conditions will be recalled in the next section.
In our previous work Cattiaux, Leon and Prieur (2012) we proposed a non-parametric
estimator for the invariant density ps of the invariant measure µ. We refer to the intro-
duction of Cattiaux et al. (2012) for some references on this problem, as well as short
discussion of the physical interest of such models.
In the present paper we attack the problem of estimating the drift term

g(x, y) = − (c(x, y)y +∇V (x)) . (1.2)
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As explained in Cattiaux et al. (2012), if there is an impressive literature on non-parametric
estimation for the invariant density or the drift term, most of it deals with elliptic diffu-
sion processes. Here we are looking at a fully degenerate process, but still hypo-elliptic.
In addition we intend to propose an estimator based on the observation of the positions
X only, at some discretized observation times.

The main result of Cattiaux et al. (2012) reads as follows: if ps denotes the invariant
density (see the next section for its existence), then one can find a discretization step hn,
bandwidths b1,n and b2,n and kernels K such that, defining the estimator

p̂n(x, y) :=
1

nbd1,nb
d
2,n

n∑
i=1

K

(
x−Xihn

b1,n
,
y − X(i+1)hn−Xihn

hn

b2,n

)
,

corresponding to partial observation, it holds√
nbd1,nb

d
2,n (p̂n(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(u, v)dudv

)
,

for all pair (x, y). The previous convergence in distribution holds true under the stationary
distribution. In the non stationary case we have to shift the summation. See Theorem
3.3 and the comment following the statement of the Theorem in section 3.

Here we introduce another estimator ĝn defined by

ĝn(x, y) p̂n(x, y) :=
1

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

x−Xihn

b1n
,
y −

X
(i+1

3 )hn
−Xihn

(hn/3)

b2n

 Di,n

(hn/3)2
,

where
Di,n := X(i+1)hn − 2X(i+ 2

3
)hn

+X(i+ 1
3
)hn

.

The necessity of introducing this kind of increments is hidden in the proof of the main
result (see Corollary 4.11) of the present paper which says that, one can find hn and bi,n
(i = 1, 2) such that in the stationary regime√

nbd1,nb
d
2,nhn (ĝn(x, y)− g(x, y))

D−−−−→
n→+∞

N
(

0, (
2

3

σ2

ps(x, y)

∫
K2(u, v)dudv)I

)
,

where I denotes the identity matrix in Rd. As for the invariant density we also prove such
a central limit theorem in the non-stationary regime, shifting the summation (see section
5).

It should be very interesting to estimate separately c(x, y) and ∇V (x), who have
different physical interpretations. Actually, there is no explicit relation between the
invariant density and the drift term, unless c is constant, in which case ps(x, y) =

exp
(
− 2c
σ2 ( |y|

2

2
+ V (x))

)
, so that we have built estimators for both V and ∇V . In full

generality this will require some other ideas.
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2. THE MODEL AND ITS PROPERTIES.

We are obliged to recall some facts on the model. A more detailed discussion is contained
in Cattiaux et al. (2012).

We shall first give some results about non explosion and long time behaviour. In a
sense, coercivity can be seen in this context as some exponential decay to equilibrium.

Let us first introduce some sets of assumptions:

Hypothesis H1:

(i) the potential V is lower bounded, smooth over Rd, V and ∇V have polynomial
growth at infinity and

+∞ ≥ lim inf
|x|→+∞

x.∇V (x)

|x|
≥ v > 0 ,

the latter being often called “drift condition”,
(ii) the damping coefficient c(x, y) is smooth and bounded, and there exist c, L > 0 so

that cs(x, y) ≥ cId > 0, ∀(|x| > L, y ∈ Rd), where cs(x, y) is the symmetrization
of the matrix c(x, y), given by 1

2
(cij(x, y) + cji(x, y))1≤i,j≤d,

These conditions ensure that there is no explosion, and that the process is positive recur-
rent with a unique invariant probability measure µ. We will denote by Ptf(z) = Ez(f(Zt))
which is well defined for all bounded function f , Pt extends as a contraction semi-group
on Lp(µ) for all 1 ≤ p ≤ +∞.

Furthermore µ admits some exponential moment, hence polynomial moments of any
order. Another key feature is that the process is actually α-mixing, i.e.

Proposition 2.1. There exist some constants C > 0 and ρ < 1 such that:

∀ g, f ∈ L∞(µ) , ∀ t ≥ 0,

|Covµ (f(Zt), g(Z0))| ≤ C ρt/2
∥∥∥∥g − ∫ gdµ

∥∥∥∥
∞

∥∥∥∥f − ∫ fdµ

∥∥∥∥
∞
. (2.2)

i.e., in the stationary regime, (Zt, t ≥ 0) is α-mixing with exponential rate.

As explained in section 2.2 of Cattiaux et al. (2012), the infinitesimal generator L is
hypo-elliptic, which implies that

µ(dz) = ps(z) dz

with some smooth function ps. One can relax the C∞ assumption on the coefficients into
a Ck assumption, for a large enough k, but this is irrelevant.

Furthermore it can be shown that ps is everywhere positive, for instance by using an
extension of Girsanov theory which is available here.
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One can relax some assumptions and still have the same conclusions:

Hypothesis H2:

(a) One can relax the boundedness assumption on c in H1, assuming that for all
N > 0: sup|x|≤N,y∈Rd ‖c(x, y)‖H.S. < +∞, where H.S. denotes the Hilbert-Schmidt
norm of matrix; but one has to assume in addition conditions (3.1) and (3.2) in
Wu (2001). An interesting example (the Van der Pol model) in this situation is
described in Wu (2001) subsection 5.3.

(b) The most studied situation is the one when c is a constant matrix. Actually almost
all results obtained in Wu (2001) or Bakry, Cattiaux and Guillin (2008) in this
situation extend to the general bounded case.
Nevertheless we shall assume now that c is a constant matrix.
In this case a very general statement replacing H1 (i) is given in Theorem 6.5 of
Bakry et al. (2008). Tractable examples are discussed in Example 6.6 of the same
paper. In particular one can replace the drift condition on V by

lim inf
|x|→+∞

|∇V |2(x) > 0 and ‖∇2V ‖H.S. � |∇V | .

Notice that one can relax the repealing strength of the potential, and obtain, no
more exponential but sub-exponential or polynomial decay (see the discussion in
Bakry et al. (2008)).

From now on in the whole paper we will assume that Hypothesis H1 (or H2) is fulfilled.
In all the proofs of the paper C denotes some constant which may vary from line to line.

3. Estimation of the invariant density.

In this section we recall the central limit theorem for a non-parametric estimator of the
invariant density ps proposed in Cattiaux et al. (2012).

First we consider that one can observe the whole process Z. at discrete times with
discretization step hn, i.e we consider

p̃n(x, y) :=
1

nbd1,nb
d
2,n

n∑
i=1

K

(
x−Xihn

b1,n
,
y − Yihn
b2,n

)
. (3.1)

Second we consider the partially observed case, where only the position process X. can
be observed, and we approximate the velocity, i.e. we consider

p̂n(x, y) :=
1

nbd1,nb
d
2,n

n∑
i=1

K

(
x−Xihn

b1,n
,
y − X(i+1)hn−Xihn

hn

b2,n

)
. (3.2)

In both cases, the kernel K is some C2 function with compact support A such that∫
A
K(x, y)dxdy = 1. We may also assume, without loss of generality that A is a bounded

ball. Moreover, we assume that there exists m ∈ N∗ such that for all polynomial P (x, y)
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with degree less or equal than m, and more or equal to 1,
∫
P (u, v)K(u, v)dudv = 0. That

is, we assume the kernel K is of order m.
Let us state the main result in this section (Theorem 3.3 below).

Theorem 3.3 (Cattiaux et al. (2012)). Assume Hypothesis H1 or H2 are fulfilled. Recall
that ps denotes the density of the invariant measure µ. Assume that the bandwidths b1,n,
b2,n and the discretization step hn tend to zero as n tends to infinity and satisfy the
following assumptions:

(i) n bd1,n b
d
2,n → +∞,

(ii) b1,n b2,n
h2n

→ 0 ,

(iii) m is such that n bd1,n b
d
2,n max(b1,n, b2,n)2(m+1) → 0.

Then, in the stationary regime, one gets for any (x, y) ∈ R2d√
nbd1,nb

d
2,n (p̃n(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(u, v)dudv

)
.

If in addition

(iv) nhn
bd1,n

b2+d2,n

→ 0,

(v) there exists 1 < p such that nh2n
b
d(2−p)/p
1,n

b2+d2,n

→ 0.

Then, still in the stationary regime, one gets for any (x, y) ∈ R2d√
nbd1,nb

d
2,n (p̂n(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(u, v)dudv

)
.

A similar statement holds true starting from any point z0 ∈ R2d. In this situation we
have to slightly change the definition of our estimators replacing

∑n
i=1 by

∑n+ln
i=1+ln

for
some ln such that ln hn → +∞ as n→ +∞.

4. Estimation of the drift term.

In this section we will consider an estimator of the drift function from R2d into Rd,
g(x, y) = −[c(x, y)y +∇V (x)].

Let K : R2d → R be a C2 2d-dimensional kernel whose support is compact and such
that there exists m ∈ N∗ such that for all polynomial P (x, y) with degree less or equal
than m,

∫
P (u, v)K(u, v)dudv = 0. The estimators of the invariant density, p̃n(x, y) and

p̂n(x, y) are defined as in Section 3. However, for simplicity we will only use p̂n(x, y).
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Define for i ∈ N∗ , n ∈ N∗,
Di,n := X(i+1)hn − 2X(i+ 2

3
)hn

+X(i+ 1
3
)hn

(4.1)

=

∫ (i+1)hn

(i+ 2
3
)hn

(Ys − Y(i+ 2
3
)hn

) ds+

∫ (i+ 2
3
)hn

(i+ 1
3
)hn

(Y(i+ 2
3
)hn
− Ys) ds .

Because one observes only the position of the particle and not its derivative, we must
define our estimator by using only the position. For technical reasons, we first introduce
a kernel estimate of g(x, y) ps(x, y), denoted by H̃n, and defined by:

H̃n(x, y) =
1

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

(
x−Xihn

b1n
,
y − Yihn
b2n

)
Di,n

(hn/3)2
. (4.2)

To see why this definition is meaningful, let us first study the asymptotic bias of this
estimator in the stationary regime.

Using stationarity we get

E[H̃n(x, y)] =
9

bd1nb
d
2n

E
[
K

(
x−X0

b1n
,
y − Y0
b2n

)
D0,n

h2n

]
=

9

bd1nb
d
2n

∫
R2d

K

(
x− u
b1n

,
y − v
b2n

)
E
[
D0,n

h2n
|X0 = uY0 = v

]
ps(u, v)dudv.

Using (4.1), we may write

D0,n

h2n
=

1

h2n

(
σ[

∫ hn

2
3
hn

(Ws −W 2
3
hn

)ds+

∫ 2
3
hn

hn
3

(W 2
3
hn
−Ws)ds] + I(hn)

)
, (4.3)

where

I(hn) =

∫ hn

2
3
hn

∫ t

2
3
hn

g(Xs, Ys)dsdt+

∫ 2
3
hn

hn
3

∫ 2
3
hn

t

g(Xs, Ys)dsdt.

The independence of the increments of W and the semigroup properties yield

E[
D0,n

h2n
|X0 = u , Y0 = v] =

1

h2n

[∫ hn

2
3
hn

∫ t

2
3
hn

Psg(u, v)dsdt+

∫ 2
3
hn

hn
3

∫ 2
3
hn

t

Psg(u, v)dsdt

]
:= G(hn, u, v).

Notice that, G(hn, u, v)→ 1
9
g(u, v) as n→ +∞ since hn → 0.

A change of variable entails

E[H̃n(x, y)] =
9

bd1nb
d
2n

∫
R2d

K

(
x− u
b1n

,
y − v
b2n

)
G(hn, u, v)ps(u, v)dudv

= 9

∫
R2d

K(z1, z2)G(hn, x− b1nz1, y − b2nz2)ps(x− b1nz1, y − b2nz2)dz1dz2 ,
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which converges to g(x, y)ps(x, y) as n tends to infinity, according to the bounded con-
vergence theorem. Hence H̃n is an asymptotically unbiased estimator of gps.

Starting from this consideration, we first state a central limit theorem for the estimator
H̃n(x, y). Let denote I the identity matrix in Rd.
During the proof we shall need an additional assumption namely:

Hypothesis H3: g belongs to the domain of the infinitesimal generator L, in all Lp(µ)
for 1 ≤ p < +∞.

According to the properties we recalled before, for H3 to be satisfied it is enough that:

Hypothesis H4: the function c (resp. V ) and its first two derivatives (resp. its first
three derivatives) have polynomial growth.

Theorem 4.4. Assume that H1, H2 and H3 are satisfied and that the bandwidths b1,n,
b2,n and the discretization step hn tend to zero as n tends to ∞. Assume moreover that
the following assumptions are satisfied:

i) nhn b
d
1,n b

d
2,n → +∞,

ii) m ∈ N∗ is such that nbd1,nb
d
2,nhn max(b1,n, b2,n)2(m+1) −−−−→

n→+∞
0,

iii) ∃ ε1 > 0 such that n(bd1,nb
d
2,n)1−ε1 h3n −−−−→

n→+∞
0,

iv) ∃ 0 < ε2, ε3 < 1 such that h
2(1−ε2)
n

(b1,nb2,n)ε3
−−−−→
n→+∞

0.

Then, in the stationary regime,√
nbd1,nb

d
2,nhn

(
H̃n(x, y)− g(x, y)ps(x, y)

)
D−−−−→

n→+∞
N
(

0, (
2

3
σ2ps(x, y)

∫
K2(u, v)dudv)I

)
.

Proof of Theorem 4.4:
We may replace

√
n by

√
n− 1 without any change. Now decompose

Sn :=
√

(n− 1)bd1nb
d
2nhn

(
H̃n(x, y)− g(x, y)ps(x, y)

)
=

√
(n− 1)bd1nb

d
2nhn

(
H̃n(x, y)− EH̃n(x, y) + EH̃n(x, y)− g(x, y)ps(x, y)

)
:= I1n + I2n.

To prove Theorem 4.4 we first prove that I2n → 0 and then that

I1n
D−−−−→

n→+∞
N (0, (

2

3
σ2ps(x, y)

∫
K2(x, y)dxdy)I).

Define

Ii(hn) := 9

(∫ (i+1)hn

(i+ 2
3
)hn

∫ t

(i+ 2
3
)hn

g(Xs, Ys)ds+

∫ (i+ 2
3
)hn

(i+ 1
3
)hn

∫ (i+ 2
3
)hn

t

g(Xs, Ys)ds

)
,
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and

Wi,n := 9

(∫ (i+1)hn

(i+ 2
3
)hn

(Ws −W(i+ 2
3
)hn

)ds+

∫ (i+ 2
3
)hn

(i+ 1
3
)hn

(W(i+ 2
3
)hn
−Ws)ds

)
.

The vector
√

(n− 1)bd1,nb
d
2,nhnH̃n(x, y) can be decomposed in two terms: the one driving

the bias in the central limit theorem

Sn,1(x, y) :=

√
hn√

(n− 1)bd1,nb
d
2,n

n−1∑
i=1

K

(
x−Xihn

b1,n
,
y − Yihn
b2,n

)
1

h2n
Ii(hn) ,

and the one driving the variance

Sn,2(x, y) :=
σ√

(n− 1)bd1,nb
d
2,n

n−1∑
i=1

K

(
x−Xihn

b1,n
,
y − Yihn
b2,n

)
Wi,n

h
3/2
n

.

Notice that ESn,2(x, y) = 0. We thus have

I2n = ESn,1(x, y)−
√

(n− 1)bd1nb
d
2nhn g(x, y)ps(x, y) , (4.5)

while
I1n = (Sn,1 − ESn,1(x, y)) + Sn,2(x, y) . (4.6)

First step: Study of I2n

We define

Pi,n

9
:=

∫ (i+1)hn

(i+ 2
3
)hn

∫ t

(i+ 2
3
)hn

(Psg(Xihn , Yihn)− g(Xihn , Yihn))dsdt

+

∫ (i+ 2
3
)hn

(i+ 1
3
)hn

∫ (i+ 2
3
)hn

t

(Psg(Xihn , Yihn)− g(Xihn , Yihn))dsdt .

Thanks to stationarity, it holds

I2n =

√
(n− 1)hn
bd1,nb

d
2,n

E
(
K

(
x−X0

b1,n
,
y − Y0
b2,n

)
1

h2n
P0,n

)
+

+

√
(n− 1)hn
bd1,nb

d
2,n

(
E
(
K

(
x−X0

b1,n
,
y − Y0
b2,n

)
g(X0, Y0)

)
− bd1,nbd2,ng(x, y)ps(x, y)

)
.

The second summand in the above expression can be treated as in a classical density
estimation density problem. More precisely, this term is equal to√

(n− 1)bd1,nb
d
2,nhn

∫
K(u, v) {g(x− ub1,n, y − vb2,n)ps(x− ub1,n, y, vb2,n)− g(x, y)ps(x, y)} dudv .
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Thus assuming there exists m ∈ N∗ such that for all polynomial P (x, y) with degree less
or equal to m,

∫
P (u, v)K(u, v)dudv = 0, and performing a Taylor expansion, the above

term converges to zero as n tends to infinity as soon as

nbd1,nb
d
2,nhn max(b1,n, b2,n)2(m+1) −−−−→

n→+∞
0 .

Let us now study the first summand. As each of the coordinates of the drift function
g belongs to the domain of the infinitesimal generator L according to H3, ∀ 1 ≤ p < +∞
(Ptg − g)/t is bounded in Lp(µ) uniformly in t for t ∈ [0, 1], say by Mp.
Now write√

(n− 1)hn
bd1,nb

d
2,n

E
(
K

(
x−X0

b1,n
,
y − Y0
b2,n

)
1

h2n
P0,n

)
= 9

√
(n− 1)hn
bd1,nb

d
2,n

(A1n + A2n)

with

A1n =
1

h2n

∫ ∫ hn

2hn/3

∫ t

2hn/3

(Pag(u, v)− g(u, v)) K

(
x− u
b1,n

,
y − v
b2,n

)
da dt µ(du, dv)

and A2n being similar just changing
∫ hn
2hn/3

∫ t
2hn/3

into
∫ 2hn/3

hn/3

∫ 2hn/3

t
. We thus only study

A1n.
Using Fubini’s theorem we may first integrate with respect to t and write

A1n =
1

h2n

∫ ∫ hn

2hn/3

(hn − a) a

(
Pag(u, v)− g(u, v)

a

)
K

(
x− u
b1,n

,
y − v
b2,n

)
da µ(du, dv) .

Now we integrate with respect to µ, use Cauchy-Schwarz inequality and the remark we
have made about Pag − g (assuming that hn ≤ 1). We thus have (|.| denoting the norm
in Rd)

|A1n| ≤
Mp

h2n

∫ hn

2hn/3

(hn − a) a

(∫
Kr

(
x− u
b1,n

,
y − v
b2,n

)
µ(du, dv)

)1/r

da

≤ CMp hn

(∫
Kr

(
x− u
b1,n

,
y − v
b2,n

)
µ(du, dv)

)1/r

with 1 < p , r < +∞ ∈ N∗ such that 1
p

+ 1
r

= 1. It follows, using again the change of

variables √
(n− 1)hn
bd1,nb

d
2,n

A1n ≤ Cp
√

(n− 1)h3n (b1,nb2,n)d(
1
r
− 1

2
) .

Thanks to assumption iii), one can choose r such that this last term tends to zero as n
tends to infinity.

Second step: Study of Sn,2
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We now consider the term driving the variance. To study the weak convergence of this
sequence we adapt the proof of Theorem 3 in Beska et al. (1982) and study the charac-
teristic function of Sn,2. Let us recall that

Sn,2(x, y) :=
σ√

(n− 1)bd1,nb
d
2,n

n−1∑
i=1

K

(
x−Xihn

b1,n
,
y − Yihn
b2,n

)
Wi,n

h
3/2
n

and that ESn,2(x, y) = 0.

The sketch of the proof of this step is the following. We first prove that the sequence
of random variables {Sn,2(x, y) , n ≥ 1} is tight. We then prove that if Snk,2(x, y) is a
subsequence of the original sequence, which converges in distribution, then it converges
to Y ∼ N (0, 1). We then conclude that the sequence itself converges in distribution to Y .

We proceed now with the proof.

Define for any k ∈ N, Fk := σ ((Xl, Yl) , 0 ≤ l ≤ k). We now introduce

fn(t) :=
n−1∏
i=1

E[e
i<t, σ√

(n−1)bd1,nb
d
2,n

K(
x−Xihn
b1,n

,
y−Yihn
b2,n

)
Wi,n

h
3/2
n

>

|Fihn ] .

Thanks to the independence of the Brownian increments we get

fn(t) =
n−1∏
i=1

e
− t2 2

3σ
2d

2(n−1)bd1,nb
d
2,n

K2(
x−Xihn
b1,n

,
x−Yihn
b2,n

)

= e
− t2 2

3σ
2d

2(n−1)bd1,nb
d
2,n

∑n−1
i=1 K

2(
x−Xihn
b1,n

,
x−Yihn
b2,n

)

.

Now define

Zn =
1

(n− 1)bd1,nb
d
2,n

n−1∑
i=1

K2

(
x−Xihn

b1,n
,
y − Yihn
b2,n

)
.

It satisfies

EZn =
1

bd1,nb
d
2,n

∫
R2d

K2

(
x− u
b1,n

,
y − v
b2,n

)
ps(u, v)dudv → ps(x, y)

∫
K2(u, v)dudv = A.

Furthermore

E (|Zn − A|) ≤
∫ ∣∣∣∣( 1

bd1,nb
d
2,n

K2

(
x− u
b1,n

,
y − v
b2,n

)
ps(u, v)

)
− A

∣∣∣∣ dudv
≤ 1

bd1,nb
d
2,n

∫
K2

(
x− u
b1,n

,
y − v
b2,n

)
|ps(u, v)− ps(x, y)| dudv

≤
∫

K2(u, v) |ps(x− b1,nu, y − b2,nv)− ps(x, y)| dudv

and the latter goes to 0 by using the bounded convergence theorem and the continuity of
ps.
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Thus Zn → ps(x, y)
∫
K2(z1, z2)dz1dz2, in L1. Using the bounded convergence Theorem,

we deduce that

fn(t)
P→ e−

t2( 23 )σ2d

2
ps(x,y)

∫
K2(z1,z2)dz1dz2 := φ(t).

Passing to subsequences if necessary, we can assume that this convergence holds almost
everywhere i.e.

fn(t)→ φ(t) a.e. (4.7)

Let us now define for k = 1, . . . , n the sets

Hnk = {e
− t2 2

3σ
2d

2(n−1)bd1,nb
d
2,n

∑k−1
i=1 K

2(
x−Xihn
b1,n

,
y−Yihn
b2,n

)

≥ 1

2
φ(t)}.

Of course
Hn,n ⊂ Hn,n−1 ⊂ . . . ⊂ Hn,2,

and using (4.7)

P{lim sup
n→∞

Hc
n,n} = 0. (4.8)

Finally, introduce the random variables

ζn,i =
σ√

(n− 1)bd1,nb
d
2,n

K

(
x−Xihn

b1,n
,
y − Yihn
b2,n

)
Wi,n

h
3/2
n

1Hn,i ,

and also

f ∗n(t) =
n−1∏
i=1

E[ei<t,ζn,i>|Fihn ] =
n−1∏
i=1

e
− t2 2

3σ
2d

2(n−1)bd1,nb
d
2,n

K2(
x−Xihn
b1,n

,
y−Yihn
b2,n

)1Hn,i
.

It holds

f ∗n(t) ≥ 1

2
φ(t) by definition and f ∗n(t)→ φ(t) a.e. by (4.8) .

So, we can assume that these two properties hold for the initial variables.

Let us now come back to the study of the weak convergence of Sn,2(x, y). By using
Markov property and the independence of the Brownian increments, we obtain

E
[
ei<t,Sn,2(x,y)>

fn(t)

]
= E

∏n−1
i=1

e

i<t, σ√
(n−1)bd1,nb

d
2,n

K(
x−Xihn
b1,n

,
y−Yihn
b2,n

)
Wi,n

h
3/2
n

>

e

−
t2 2

3σ
2d

2(n−1)bd1,nb
d
2,n

K2(
x−Xihn
b1,n

,
x−Yihn
b2,n

)



= E


n−2∏
i=1

e

i<t, σ√
(n−1)bd1,nb

d
2,n

K(
x−Xihn
b1,n

,
y−Yihn
b2,n

)
Wi,n

h
3/2
n

>

e
− t2 2

3σ
2d

2(n−1)bd1,nb
d
2,n

K2(
x−Xihn
b1,n

,
x−Yihn
b2,n

)

E

e
i<t, σ√

(n−1)bd1,nb
d
2,n

K(
x−X(n−1)hn

b1,n
,
y−Y(n−1)hn

b2,n
)
W(n−1),n

h
3/2
n

>

e
− t2 2

3σ
2d

2(n−1)bd1,nb
d
2,n

K2(
x−X(n−1)hn

b1,n
,
x−Y(n−1)hn

b2,n
)

∣∣∣F(n−1)h




= E

∏n−2
i=1

e

i<t, σ√
(n−1)bd1,nb

d
2,n

K(
x−Xihn
b1,n

,
y−Yihn
b2,n

)
Wi,n

h
3/2
n

>

e

−
t2 2

3σ
2d

2(n−1)bd1,nb
d
2,n

K2(
x−Xihn
b1,n

,
x−Yihn
b2,n

)

 = 1 using induction.
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Now we are ready to prove the weak convergence

∣∣E [ei<t,Sn,2(x,y)>]− φ(t)
∣∣ =

∣∣∣∣E [ei<t,Sn,2(x,y)> − E
[
φ(t)

ei<t,Sn,2(x,y)>

fn(t)

]]∣∣∣∣
=

∣∣∣∣E [ei<t,Sn,2(x,y)>(1− φ(t)

fn(t)

)]∣∣∣∣ ≤ 2

φ(t)
E|fn(t)− φ(t)| → 0.

We may conclude the proof of the tightness of {Sn,2(x, y) , n ≥ 1}. To this end, let

Snk,2(x, y) be a subsequence of the original sequence. We know that fnk(t)
P→ φ(t).Whence

there exists another subsequence fnkj (t)
a.e.→ φ(t). By the above result Snkj converges

weakly to a r.v. Y , moreover E[ei<t,Y >] = φ(t). Thus the tightness.

All the limits of the convergent subsequences being the same, we directly conclude that
the sequence {Sn,2(x, y) , n ≥ 1} converges weakly and that its limit is Y . It concludes
the proof of the second step.

Third step: study of Zn := Sn,1(x, y)− ESn,1(x, y)

Let us denote as before by Pk
i,n the kth coordinate of the vector Pi,n. Defining

Γkn(i, x, y,X, Y ) = K(x−X
b1,n

, y−Y
b2,n

) 1
h2n
Pk
i,n, we write

Zkn =

√
hn√

(n− 1)bd1,nb
d
2,n

n−1∑
i=1

Γkn(i, x, y,Xihn , Yihn),

so that

(n−1)bd1,nbd2,n
hn

V ar(Zkn)

=
( n−1∑
i=1

V ar(Γkn(i, x, y,Xihn , Yihn))+
∑
i 6=l

Cov(Γkn(i, x, y,Xihn , Yihn),Γkn(l, x, y,Xlhn , Ylhn))
)
.

To bound the above expression we first write as we did for the first step

E(Γkn(i, x, y,Xihn , Yihn))2 = U1n + U2n

where, using stationarity,

U1n =
C

h4n
E

[
K2

(
x−X0

b1,n
,
y − Y0
b2,n

)(∫ hn

2hn/3

(hn − s) (Psg(X0, Y0)− g(X0, Y0)) ds

)2
]
,
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U2n being similar just replacing
∫ hn
2hn/3

(hn − s) by
∫ 2hn/3

hn/3
(s− (hn/3)).

Using Cauchy-Schwarz inequality we get

U1n ≤
C

hn

∫ hn

2hn/3

(∫
K2

(
x− u
b1,n

,
y − v
b2,n

)
(Psg(u, v)− g(u, v))2 dµ

)
ds

≤ C hn

∫ hn

2hn/3

(∫
K2

(
x− u
b1,n

,
y − v
b2,n

) (
Psg(u, v)− g(u, v)

s

)2

dµ

)
ds .

We may argue as in the first step, this time using Hölder inequality for some conjugate
pair (p, q) and H3 in L2q, to conclude that

U1n ≤ C h2n (b1,nb2,n)d/p .

It follows

hn
(n− 1)bd1,nb

d
2,n

n−1∑
i=1

V ar(Γkn(i, x, y,Xihn , Yihn)) = O
(
h3n(b1,nb2,n)d(

1
p
−1)
)
.

One can choose p such that the right hand term tends to zero thanks to assumption iv).

Let us now compute the covariances.
One has thanks to stationarity and mixing∑

i 6=l

Cov
(
Γkn(i, x, y,Xihn , Yihn),Γkn(l, x, y,Xlhn , Ylhn)

)
≤ n

n−2∑
j=1

min
(
ρjhn/2,Var(Γkn(0, x, y,X0, Y0))

)
≤ n

n−2∑
j=1

min
(
ρjhn/2, (b1,nb2,n)

d
ph2n

)
= O

(
n(b1,nb2,n)

d
p
(1−a)h1−2an

)
for any 0 < a < 1.

We thus get

hn
(n− 1)bd1,nb

d
2,n

∑
i 6=l

Cov
(
Γkn(i, x, y,Xihn , Yihn),Γkn(l, x, y,Xlhn , Ylhn)

)
= O

(
(b1,nb2,n)

d
p
(1−a)−dh2(1−a)n

)
.

One can choose p and a such that the right hand term tends to zero as n tends to infinity
thanks to assumption iv). This completes the proof. �

We now deduce the following theorem:
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Theorem 4.9. Define

Ĥn(x, y) =
1

(n− 1)bd1nb
d
2n

n−1∑
i=1

K

x−Xihn

b1n
,
y −

X
(i+1

3 )hn
−Xihn

(hn/3)

b2n

 Di,n

(hn/3)2
.

Then, under the assumptions of Theorem 4.4 and assuming moreover

v) there exist 1 < p < +∞ and ε > 0, such that h2nb
d( 1
p
−1)

1,n b
−(2+d)
2,n −−−−→

n→+∞
0 and

hn
√
nb

d( 1
p(1+ε)

− 1
2
)

1,n b
−( d

2
+1)

2,n −−−−→
n→+∞

0 ,

one gets√
nbd1,nb

d
2,nhn

(
Ĥn(x, y)− ps(x, y)g(x, y)

)
D−−−−→

n→+∞
N
(

0, (
2

3
σ2ps(x, y)

∫
K2(u, v)dudv)I

)
.

Proof of Theorem 4.9:
Starting from Theorem 4.4, it remains now to consider Dn defined by

1√
(n− 1)bd1nb

d
2n

n−1∑
j=1

K (x−Xjhn

b1n
,
y − Yjhn
b2n

)
−K

x−Xjhn

b1n
,
y −

X
(j+1

3 )hn
−Xjh

(hn/3)

b2n

 Dj,n

h3/2
.

Let us define Aj = K
(
x−Xjhn
b1n

,
y−Yjhn
b2n

)
−K

(
x−Xjhn
b1n

,
y−

X
(j+1

3 )hn
−Xjh

(hn/3)

b2n

)
. We then write

Dn =
1√

(n− 1)bd1nb
d
2n

n−1∑
j=1

Aj
Dj,n

h3/2
=

1√
(n− 1)bd1nb

d
2n

n−1∑
j=1

Aj
(σWj,n + Ij(hn))

h3/2
.

Using Hölder Inequality, we bound E
∣∣∣∣ 1√

(n−1)bd1nbd2n

∑n−1
j=1 Aj

Ij(hn)

h3/2

∣∣∣∣ by

1√
(n− 1)bd1,nb

d
2,n

h−3/2
n−1∑
j=1

(
E|Aj|1+ε

)1/(1+ε) (E|Ij(hn)|(1+ε)/ε
)ε/(1+ε)

,

with ε > 0.

We first consider E|Ij(hn)|(1+ε)/ε = E|I0(hn)|(1+ε)/ε by stationarity. We use (4.3) and

we get that E
[
|I0(hn)|(1+ε)/ε |X0 = u, Y0 = v

]
is bounded by∣∣∣∣∣

∫ hn

2
3
hn

∫ t

2
3
hn

Psg(u, v)dsdt+

∫ 2
3
hn

hn
3

∫ 2
3
hn

t

Psg(u, v)dsdt

∣∣∣∣∣
(1+ε)/ε
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which is itself bounded by

C h
2
ε
n

[∫ hn

2
3
hn

∫ t

2
3
hn

Ps|g|
1+ε
ε (u, v)dsdt+

∫ 2
3
hn

hn
3

∫ 2
3
hn

t

Ps|g|
1+ε
ε (u, v)dsdt

]
which is equal to

C h
2
ε
nh

2
nGε(hn, u, v)

with Gε(hn, u, v) −−−−→
n→+∞

|g| 1+εε (u, v).

Using now similar arguments as in Step 2 in the proof of Theorem 3.3 in Cattiaux et
al. (2012) (Theorem 3.3 of the present paper), one bounds E|Ai|1+ε by

O
(
h1+εn b

d
p

1,nb
−(1+ε)
2,n

)
. (4.10)

Thus E
∣∣∣∣ 1√

(n−1)bd1nbd2n

∑n−1
j=1 Aj

Ij(hn)

h3/2

∣∣∣∣ is bounded by

O
(
hn
√
nb

d( 1
p(1+ε)

− 1
2
)

1,n b
−( d

2
+1)

2,n

)
with 1 < p < +∞. It converges to zero as we assumed vii).

It remains now to bound E
∣∣∣∣ 1√

(n−1)bd1nbd2n

∑n−1
j=1 Aj

σWj,n

h3/2

∣∣∣∣. The terms Aj Wj,n, 1 ≤ j ≤

n−1 are centered and uncorrelated. Thus by stationarity we have to bound σ2

bd1,n b
d
2,n

EA2
0W

2
0,n

h3n
.

First conditioning now on Zhn
3

one gets EA2
0W

2
0,n = h3nEA2

0 . We then conclude by using

(4.10) for ε = 1 which yields EA2
0W

2
0,n = h3nh

2
nb
d/p
1,n b

−2
2,n for all 1 < p < +∞. This completes

the proof, using v). �.

To estimate the drift g we have to divide Ĥn by some estimator of ps. The natural
choice would be to define ĝn = Ĥn/p̂n. For technical reasons (which will be explained in
the proposition following the corollary), we have to slightly modify this natural choice,
introducing two different bandwidths bi,n and ci,n, but with the same discretization step.

We state the following corollary, which is the main result in the stationary situation:

Corollary 4.11. Assume that the assumptions in Theorem 4.9 and Theorem 3.3 are
satisfied respectively with bi,n and ci,n. Define ĝn = Ĥn(b)/p̂n(c) where the indication into
braces indicates the bandwidths we are using. Assume in addition that

hn(b, c) := hn
bd1,nb

d
2,n

cd1,nc
d
2,n

→ 0 as n→ +∞.

Then√
nbd1,nb

d
2,nhn (ĝn(x, y)− g(x, y))

D−−−−→
n→+∞

N
(

0, (
2

3

σ2

ps(x, y)

∫
K2(u, v)dudv)I

)
.
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A similar statement holds defining similarly g̃n = H̃n(b)/p̃n(c) under the assumptions in
Theorem 4.4 and i)-iv) and in Theorem 3.3 respectively.

Proof of Corollary 4.11:

We have

ĝn − g =
Ĥn

p̂n
− g =

Ĥn − psg
ps

+ Ĥn

(
1

p̂n
− 1

ps

)
.

For the first term, we have according to Theorem 4.9,√
nbd1,nb

d
2,nhn

Ĥn − psg
ps

(x, y)
D−−−−→

n→+∞
N
(

0, (
2

3

σ2

ps(x, y)

∫
K2(u, v)dudv)I

)
.

We shall show that the second one goes to 0 in probability and then conclude by using
Slutsky theorem.
We thus decompose√

nbd1,nb
d
2,nhn Ĥn

(
1

p̂n
− 1

ps

)
=

(√
hn(b, c) Ĥn

p̂n ps

) (√
ncd1,nc

d
2,n (ps − p̂n)

)
.

The second term of this product converges in distribution according to Theorem 3.3. We
shall show that the first term in the product goes to 0 in probability.
Indeed, according to Cattiaux et al. (2012), p̂n − ps → 0 in probability as n→ +∞, and

as we previously saw, Ĥn is bounded in L1. Let a > 0. We have

P

(√
hn(b, c) Ĥn

p̂n ps
> a

)
≤ P (p̂n ≤ (ps/2)) + P

(
Ĥn > (a p2s/2

√
hn(b, c))

)
,

and both terms go to 0, using Markov inequality for instance for the second one.
To conclude it remains to recall that if Un goes to 0 in probability and Vn goes to V in
distribution, the product Un Vn goes to 0 in probability. �.

We conclude this section by giving an explicit class of examples for the parameters hn,
bi,n, ci,n to satisfy all the required assumptions in Corollary 4.11.

Proposition 4.12. Choose hn = n−γ, bi,n = n−αi and ci,n = n−βi for some γ, αi, βi > 0.
If

(1) α2 = β2 − ε
d(4+4d)

= 1−2ε
d(4+4d)

,

(2) β1 = 3−2ε+4d
d(4+4d)

, α1 = β1 + β2
2
− 1

2d2
,

(3) 1
2d
< γ < 1

2d
+ 3ε

4+4d
,

(4) m > 1+2d
1−ε .

for some ε > 0 small enough. Then Corollary 4.11 holds true.

In addition the rate of convergence is of order strictly smaller than n
3ε

4+4d .
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Proof. For Theorem 3.3 to be satisfied in this situation we must have (see Remark 3.4 in
Cattiaux et al. (2012))

(a) β1 >
2+β2(3+2d)

1+2d
in particular β1 > β2,

(b) 1− β1d+ β2(2 + d) < γ < 1
2
(β1 + β2) <

1
2d

,

(c) m > 1−d(β1+β2)
2β2

.

Condition (a) ensures that 1− β1d+ β2(2 + d) < 1
2
(β1 + β2), so that we may find some γ

sandwiched by both terms. For both (a) and (b) to be satisfied, it is necessary that

β2 <
1

d(4 + 4d)
, (4.13)

and then we can choose
1

d
− β2 > β1 >

2 + β2(3 + 2d)

1 + 2d
.

Remark that our interest is to take β2 as close as possible to its upper bound, β1 as close
as possible to 1

d
− β2 so that m can be chosen as small as possible (1 is possible). γ can

then be chosen smaller than and close to 1/2d.

Now we look at Theorem 4.9 starting with conditions i)-iv) in Theorem 4.4

(1) 1 > γ + d(α1 + α2),
(2) 1 < d(α1 + α2) + 2(m+ 1)(α1 ∧ α2) + γ,
(3) 1 < 3γ + d(α1 + α2) is enough for getting ε1 > 0 in iii),
(4) 2γ > ε3 (α1 + α2) is enough for getting ε2 in iv).

We see that the latter will be automatically satisfied for ε3 small enough. We have to add

(5) 2γ > (2 + d)α2,
(6) 1

2
< γ + d

2
(α1 − α2)− α2,

which is enough to furnish both p > 1 and ε > 0 in v) of Theorem 4.9.
Finally we have to add

(7) γ > d((β1 + β2)− (α1 + α2)) .

Look at (1). The compatibility with (b) imposes

γ + d(α1 + α2) < 1 < γ + d(β1 + β2)− β2(2 + 2d) .

That is why we cannot take the same bandwidths b and c.
We thus have a first necessary condition

d(α1 + α2) < d(β1 + β2)− β2(2 + 2d) ,

which is satisfied as zoon as

d(α1 + α2) = d(β1 + β2)−
1

2d
. (4.14)
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Now we choose for some small ε (say less than 10−6/d2),

β2 =
1− ε

d(4 + 4d)
, β1 =

3− 2ε+ 4d

d(4 + 4d)
.

(4.13) and the following inequalities are satisfied, as well as the final upper bound in (b).
We have thus to choose γ such that, first γ > 1

2d
for (7) to be satisfied, next for (1) and

the first lower bound of (b) to be satisfied. This amounts to

1− ε
2d

+
3ε

4 + 4d
< γ <

1

2d
+

3ε

4 + 4d
.

The left hand side of the previous inequality is less than 1
2d

since d ≥ 1. So we only have
to choose

1

2d
< γ <

1

2d
+

3ε

4 + 4d
. (4.15)

The upper bound in (b) are then satisfied. If we look at (3) it reduces to

1

2d
+

3ε

4 + 4d
< 3γ

which is satisfied. Now (6) becomes

3ε

4 + 4d
+

1

2d
+ (2d+ 2)α2 < 2γ

which implies (5) and which is satisfied as soon as

3ε

4 + 4d
+ (2d+ 2)α2 <

1

2d
.

Notice that the latter implies α2 < α1. Notice that for ε > 0 we may choose α2 =
β2 − ε

d(4+4d)
. It remains to choose m for (2) to be satisfied. �

Remark that contrary to the case of Theorem 3.3, where it is possible to have m = 1
here m growths linearly with the dimension (m > 2+4d+6εd+2ε

2(1−ε) ).

5. Non-stationary case

In Section 3 we stated the central limit theorem for the estimate of the drift g(x, y) in
the case where the process is in the stationary regime. Let us now define the new estimate

gn(x, y) =

1
(n−1)bd1nbd2n

∑n+ln−1
i=ln+1 K

(
x−Xihn
b1n

,
y−

X
(i+1

3 )hn
−Xihn

(hn/3)

b2n

)
Di,n

(hn/3)2

1
nbd1,nb

d
2,n

∑n+ln
i=ln+1K

(
x−Xihn
b1,n

,
y−

X(i+1)hn
−Xihn

hn

b2,n

) (5.1)

We remark that given Z0 ∼ µ(dz), gn(x, y)
L
= ĝn(x, y) ∀n ∈ N∗.

Theorem 5.2 below states that we can estimate g(x, y) by using gn(x, y) with Z0 = z0 =
(x0, y0).
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Theorem 5.2. Under the assumptions in Corollary 4.11, starting from any initial point
z0 = (x0, y0), it holds√

nhn bd1,nb
d
2,n (gn(x, y)− g(x, y))

D−−−−→
n→+∞

N
(

0, (
2

3

σ2

ps(x, y)

∫
K2(u, v)dudv)I

)
,

provided ln appearing in the definition (5.1) of gn(x, y) satisfies lnhn −−−−→
n→+∞

+∞.

Proof of Theorem 5.2:
Recall that ps : R2d 7→ R+ denotes the invariant density of Z and µ the associated
invariant probability measure.

Denote by Cb(R) the set of bounded continuous functions h : R→ R. It is only necessary
to prove that, for any h ∈ Cb(R), the difference

∆n(h) = E
[
h(
√
hn nbd1,nb

d
2,nĝn(x, y)|Z0 ∼ µ)− h(

√
hn nbd1,nb

d
2,ngn(x, y)|Z0 = z0)

]
= E

[
h(
√
hn nbd1,nb

d
2,ngn(x, y)|Z0 ∼ µ)− h(

√
hn nbd1,nb

d
2,ngn(x, y)|Z0 = z0)

]
goes to zero as n tends to infinity. Let h ∈ Cb(R) and denote θ = ‖h‖∞.

To evaluate E (h(gn(x, y))|Z0 ∼ µ) − E (h(gn(x, y))|Z0 = z0). Let us fix n ∈ N∗. We
first make the computations conditionally to Zjhn , j > ln + 1.

One may write
gn(x, y) = gn(x, y, Z(ln+1)hn , Zjhn , j > ln + 1) and
hZjhn , j>ln+1(z

′) = gn(x, y, z′, Zjhn , j > ln + 1).

Now, conditionally to Zjhn , j > ln + 1, one has:

|E (h(gn(x, y))|Z0 ∼ µ)− E (h(gn(x, y))|Z0 = z0)|

=

∣∣∣∣∫ hZjhn , j>ln+1(z
′)
(
ps(z

′)− q(ln+1)hn(z0, z
′)
)
dz′
∣∣∣∣

≤ θDρ(ln+1)hnΨ(z0) (5.3)

using Inequality (2.1) in Cattiaux et al. (2012).

Finally, as 0 < ρ < 1, we can conclude that ∆n(h) goes to zero as n tends to infinity as
soon as lnhn −−−−→

n→+∞
+∞, which concludes the proof of Theorem 5.2. �
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6. Examples and numerical simulation results

In this section, we consider examples of stochastic differential equations defined by
(1.1) and implement the estimator on simulated data. However, the choice of the optimal
bandwidths b1,n, b2,n, c1,n and c2,n as far as the choice of the optimal discretization step
hn, and the optimal choice of the kernel K, although interesting, is not the purpose of
this section nor this paper. This is a separate study to be addressed in future work.

To simulate sample paths, we use an approximate discrete sampling generated by an
explicit or implicit Euler scheme. We consider three specific examples. The first one has
been proposed in Pokern et al. (2009). It corresponds to a linear oscillator subject to
noise and damping. The second example is one example of generalized Duffing oscillators
described in Wu (2001) subsection 5.2. The last example is the Van der Pol oscillator
whose damping force depends on both position and velocity coordinates. These three
models are of type (1.1) and satisfy assumptions needed to apply our estimation results.
Simulations are run with the Epanechnikov kernel.

6.1. Model I: harmonic oscillator. We consider an harmonic oscillator that is driven
by a white noise forcing:

dXt = Ytdt

dYt = σ dWt − (κYt +DXt)dt. (6.1)

with κ > 0 and D > 0. In the following we choose D = 2, κ = 2 and σ = 1. For
this model we know that the stationary distribution is gaussian, with mean zero and an
explicit variance matrix given in Gardiner (1985), e.g. With our choice of parameters, the
gaussian invariant density is

ps(x, y) =
2
√

2

π
exp

(
−4x2 − 2y2

)
.

And the drift is defined by g(x, y) = −2(y+x). In the following we make use of the explicit

Euler scheme to simulate an approximated discrete sampling (X̃i, Ỹi)i∈N of (Xt, Yt)t∈R+ .
For a given step δ > 0, the scheme is defined as

X̃i+1 − X̃i = Ỹiδ

Ỹ(i+1) − Ỹi = σ (W(i+1)δ −Wiδ)− (κỸi +DX̃i)δ (6.2)

(X̃0, Ỹ0) = (0, 0). We take n = 5000, h = 0.28, b1,n = b2,n = 0.18, and the step for the
explicit Euler scheme δ = 1

10
h/3.

The drift at some fixed point x0, g(x0, ·), is estimated on a grid (zl)l=1,...,L = (x0, yl)l=1,...,L.
The drift at some fixed point y0, g(·, y0), is estimated on a grid (zl)l=1,...,L = (xl, y0)l=1,...,L.
On Figure 1 below we chose L = 40 and y0 = 0.0597.
On Figure 2 below we chose L = 40 and x0 = −0.0183.
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6.2. Model II: generalized Duffing oscillator. We consider the noisy Duffing oscil-
lator known as Kramers oscillator. The system (1.1) writes now

dXt = Ytdt

dYt = σ dWt − (κYt + αX3
t − βXt)dt (6.3)

with σ, κ, α and β > 0. The potential is then V (x) = αx
4

4
− β x2

2
. The invariant density

is in that case

ps(x, y) =

√
κ√

πσC
exp

(
−2κ

σ2
(
αx4

4
− β x2

2
+
y2

2
)

)
,

with C the normalizing constant.
And the drift is defined by g(x, y) = −(κy + αx3 − βx).
We make use of the implicit Euler scheme to simulate an approximated discrete sam-

pling. The explicit Euler scheme is indeed known to be unstable for that case (see ?).
The choice for the parameters is σ = 1, κ = α = β = 1.

We take n = 104, hn = 0.30, b1,n = b2,n = 0.30, and the step for the explicit Euler
scheme δ = 1

10
h/3.

The drift is estimated at some fixed point y0, g(·, y0), on a grid (zl)l=1,...,L = (xl, y0)l=1,...,L.
It is also estimated at some fixed point x0, g(x0, ·), on a grid (zl)l=1,...,L = (x0, yl)l=1,...,L.

On Figure 3 below we chose L = 40 and y0 = 0.0533. On Figure 4 below we chose
L = 40 and x0 = −0.0498.

6.3. Model III: Van der Pol oscillator. We consider the Van der Pol oscillator defined
by

dXt = Ytdt

dYt = σ dWt − ((c1X
2
t − c2)Yt + ω2

0Xt)dt (6.4)

with σ, c1, c2 and ω2
0 > 0. In the following we choose σ = c1 = c2 = ω0 = 1. The drift

is then defined by g(x, y) = −((x2 − 1)y + 4x). The invariant density is unknown in that
case. However, we know that it is solution of the following corresponding Fokker-Planck
equation

1

2

∂2ps(x, y)

∂y2
− y∂ps(x, y)

∂x
+ c(x, y)ps(x, y) + (c(x, y)y + V ′(x))

∂ps(x, y)

∂y
= 0 . (6.5)

Thus the invariant density ps(x, y) may be approximated by solving Equation (6.5)
above, e.g. using a finite difference scheme. Doing so we remark that this density, although
positive, is very small in many points. Therefore we plotted g(x, y) ps(x, y) to avoid
numerical instabilities.

We made use of the explicit Euler scheme to simulate an approximated discrete sam-
pling. We also implemented an implicit scheme, but it slowed too much the simulations,
and the results were not better.

On Figures 5 and 6 below we took n = 105, hn = 0.18, b1,n = b2,n = 0.10, and the step
for the explicit Euler scheme δ = 1

10
h/3.
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The drift at some fixed point y0, g(·, y0), is estimated on a grid (zl)l=1,...,L = (xl, y0)l=1,...,L.
On Figure 5 below we chose y0 = 0.0597 and plotted g(·, y0) ∗ ps(·, y0).
The drift at some fixed point x0, g(x0, ·) is estimated on a grid (zl)l=1,...,L = (x0, yl)l=1,...,L.
L was chosen equal to 40.
On Figure 6 below we chose x0 = −0.0183 and plotted g(x0, ·) ∗ ps(x0, ·).
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Figure 1. Drift’s estimation for the harmonic oscillator: theoretical
g(·, y0) in plain line, estimated in dashed line for y0 = 0.0597



24 P. CATTIAUX, J. LEÓN, AND C. PRIEUR
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Figure 2. Drift’s estimation for the harmonic oscillator: theoretical
g(x0, ·) in plain line, estimated in dashed line for x0 = −0.0183
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Figure 3. Drift’s estimation for the Duffing oscillator: theoretical g(·, y0)
in plain line, estimated in dashed line for y0 = 0.0533
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Figure 4. Drift’s estimation for the Duffing oscillator: theoretical g(x0, ·)
in plain line, estimated in dashed line for x0 = −0.0498
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Figure 5. Drift’s estimation for the Van der Pol oscillator: theoretical
g(·, y0) ∗ ps(·, y0) in plain line, estimated in dashed line for y0 = 0.0597



28 P. CATTIAUX, J. LEÓN, AND C. PRIEUR
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Figure 6. Drift’s estimation for the Van der Pol oscillator: theoretical
g(x0, ·) ∗ ps(x0, ·) in plain line, estimated in dashed line for x0 = −0.0183
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