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Approximating the max edge-coloring problem✩

Nicolas Bourgeoisa, Giorgio Lucarellib,1, Ioannis Milisb, Vangelis Th. Paschosa

aLAMSADE, CNRS UMR 7024 and Université Paris-Dauphine, France
bDept. of Informatics, Athens University of Economics and Business, Greece

Abstract

The max edge-coloring problem is a natural weighted generalization of the clas-
sical edge-coloring problem arising in the domain of communication systems.
In this problem each color class is assigned the weight of the heaviest edge in
this class and the objective is to find a proper edge-coloring of the input graph
minimizing the sum of all color classes’ weights. We present new approximation
results, that improve substantially the known ones, for several variants of the
problem with respect to the class of the underlying graph. In particular, we
deal with variants which either are known to be NP-hard (general and bipar-
tite graphs) or are proven to be NP-hard in this paper (complete graphs with
bi-valued edge weights) or their complexity question still remains open (trees).

Key words: max edge-coloring, approximation algorithms, complexity

1. Introduction

We study a weighted generalization of the classical edge-coloring problem
which takes as input a graph G = (V, E) and a positive integer weight w(e),
for each edge e ∈ E. For a proper edge-coloring of G, M = {M1, M2, . . . , Mk},
each color class (matching) Mi ⊆ E is assigned the weight of the heaviest edge
in this class, i.e., wi = max{w(e)|e ∈ Mi}, 1 ≤ i ≤ k. The objective of the
problem is to find a proper edge-coloring of G, such that the sum of all color
classes’ weights, W =

∑k
i=1 wi, is minimized. Clearly, for unit edge weights

our problem reduces to the classical edge-coloring problem. We refer to this
problem as Max Edge-Coloring (MEC) problem, respectively to the analogous
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weighted generalization of the classical vertex-coloring problem which is known
as Max (Vertex-)Coloring (MVC) problem, [25, 24].

The MEC problem arises in switch based communication systems, like SS/TDMA
[15, 18], where messages are to be transmitted in a single hop from senders to
receivers through direct connections established by an underlying network. Any
node of such a system can participate in at most one transmission at a time,
while the transmission of messages between pairwise disjoint pairs of nodes can
take place simultaneously. The scheduler of such a system establishes succes-
sive configurations of the underlying network, each one routing a non-conflicting
subset of messages from senders to receivers. Given the transmission times of
messages, the transmission time of each configuration equals to the longest mes-
sage transmitted. The aim is to find a sequence of configurations minimizing the
transmission time of all messages. It is easy to see that the above situation cor-
responds directly to the MEC problem: senders and receivers correspond to the
vertices of the graph G, (transmission times of) messages correspond to (weights
of) edges of G and configurations correspond to color classes (matchings).

The MEC problem can be also viewed as a parallel batch scheduling prob-
lem with conflicts between jobs [10, 13]. According to the standard three
field notation for scheduling problems, our problem is denoted by 1 | p −
batch, E(G) | Cmax. In this problem, jobs correspond to the edges E(G) of
a weighted graph G and edge weights to processing times of jobs. The graph
G describes incompatibilities between jobs, i.e., jobs corresponding to adjacent
edges cannot be scheduled (resp., colored) in the same batch (resp., by the same
color).

In practical applications in this context there is, however, a non negligible
delay, say d, to set up each schedule phase (color class). The presence of such a
delay, in the instance of the MEC problem, can be easily handled: by adding d
to the weight of all edges of G, the weight of each color class will be also increased
by d, incorporating its set up delay. Furthermore, a standard idea to decrease
the completion time of a schedule is to allow preemption, i.e., interrupt the
service of a (set of) scheduled activity(ies) and complete it (them) latter. It is
obvious that allowing preemption in the MEC problem will result in increasing
the number of the phases in a schedule. In this case, the presence of a set up
delay d plays a crucial role in the hardness of the (preemptive) MEC problem
[15, 7, 1].

Related work. It is well known that for general graphs it is NP-hard to ap-
proximate the classical edge-coloring problem within a factor less than 4/3 [17];
for bipartite graphs the problem becomes polynomial [19]. The MEC problem
is known to be non approximable within a factor less than 7/6 even for cubic
planar bipartite graphs with edge weights w(e) ∈ {1, 2, 3}, unless P=NP [8]. On
the other hand, the MEC problem is known to be polynomial for a few special
cases including bipartite graphs with edge weights w(e) ∈ {1, t} [10], chains
[12, 16], stars of chains and bounded degree trees [22]. It is interesting that the
complexity of the MEC problem on trees remains open.
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Concerning the approximability of the MEC problem, a natural greedy 2-
approximation algorithm for general graphs has been proposed in [18]. For
bipartite graphs of maximum degree ∆ = 3, an algorithm that attains the 7/6
inapproximability bound has been presented in [8]. For bipartite graphs, algo-
rithms have been also presented improving the 2 approximation ratio for general
graphs. In fact, algorithms presented in [12] and [22] achieve better than 2 ratios
for bipartite graphs of ∆ ≤ 7, and ∆ ≤ 12, respectively. However, for bipar-
tite graphs of greater maximum degrees the ratios of both algorithms become
greater than 2 and they are dominated by the 2-approximation algorithm for
general graphs.

The MVC problem has been also studied extensively during last years. It
is known to be non approximable within a factor less than 8/7 even for planar
bipartite graphs, unless P=NP [10, 24]. This bound is tight for general bipartite
graphs as an 8/7-approximation algorithm is also known [8, 24]. For the MVC
problem on trees a PTAS has been presented in [24, 12]; however, the complexity
for this case is an open question, as for the MEC problem. Other results
for the MVC problem on several graph classes have been also presented in
[10, 8, 25, 24, 12, 11]. Notice that the MEC problem, on a general graph G, is
equivalent to the MVC problem on the line graph of G and thus any algorithm
for the MVC problem applies also to the MEC problem. However, this is true
only for graph classes that are closed under line graph transformation. This is
the case of general graphs or chains but not of bipartite graphs or trees.

Our results and organization of the paper. Although a 2-approximation
algorithm is known for the MEC problem on general graphs, no algorithm of
ratio 2 − δ, for any small constant δ > 0, is known for any special graph class.
Apart from their theoretical interest, special graph classes, like bipartite graphs
and trees, are also motivated by practical applications [18, 24]. Towards this
direction we present approximation algorithms for the MEC problem on general
and bipartite graphs, trees and graphs with bi-valued edge weights.

The next section starts with our notation and a remark on the known greedy
2-approximation algorithm [18]. By combining this remark with a simple idea,
we present a first approximation algorithm for general and bipartite graphs
which already beats the best known ratios for these classes. In Section 3,
we present a new approximation algorithm for the MEC problem on bipar-

tite graphs of ratio 2(∆+1)3

∆3+5∆2+5∆+3−2(−1/∆)∆ , which improves furthermore the

known ratios for graphs of maximum degree ∆ ≥ 7. In Section 4, we present a
polynomial 3/2-approximation algorithm for trees. This is the first algorithm,
for any special graph class, of a ratio strictly less than the known ratio of 2
for general graphs. In Section 5, we propose two moderately exponential ap-
proximation algorithms for trees that improve the 3/2 ratio with running time
much better than that needed for the computation of an optimal solution. In
Section 6, we prove that the MEC problem is NP-complete even for complete
graphs with bi-valued edge weights, and we give an asymptotic 4

3 -approximation
algorithm for general graphs with bi-valued edge weights and arbitrarily large
maximum degree ∆. Finally, we conclude in Section 7.
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2. Notation and Preliminaries

In the following, we consider the MEC problem on a graph G = (V, E),
where |V | = n, |E| = m and a positive integer weight w(e) is associated with
each edge e ∈ E. We denote by M = {M1, M2, . . . , Mk} a proper k-edge-

coloring of G of weight W =
∑k

i=1 wi, where wi = max{w(e)|e ∈ Mi}, 1 ≤ i ≤ k.
By M∗ = {M∗

1 , M∗
2 , . . . , M∗

k∗} we denote an optimal solution to the MEC

problem on the graph G of weight OPT =
∑k∗

i=1 w∗
i . As in the sequel we deal

only with edge-coloring of graphs, the terms k-coloring or k-colorable graph
always refer to edge-coloring. We also use the terms color class and matching
interchangeably.

By dG(u) (or simply d(u)) we denote the degree of vertex u ∈ V and by
∆(G) (or simply ∆) the maximum degree of the graph G. For a subset of edges
of G, E′ ⊆ E, |E′| = m′, we denote by G[E′] the subgraph of G induced by the
edges in E′ and by 〈E′〉 = 〈e1, e2, . . . , em′〉 an ordering of the edges in E′ such
that w(e1) ≥ w(e2) ≥ · · · ≥ w(em′).

We call a solution M = {M1, M2, . . . , Mk} to the MEC problem nice if: (i)
w1 ≥ w2 ≥ · · · ≥ wk, and (ii) each matching Mi is maximal in the subgraph

G[
⋃k

j=i Mj]. Due to the next straightforward proposition (see also [22]), w.l.o.g.,
we consider any, suboptimal or optimal, solution to the MEC problem to be a
nice one.

Proposition 1. Any solution to the MEC problem can be transformed into a
nice one, without increasing its total weight. For the number of matchings, k,
in such a solution it holds that ∆ ≤ k ≤ 2∆ − 1.

The most interesting and general result for the MEC problem is due to
Kesselman and Kogan [18] who proposed the following greedy algorithm:

Algorithm KK
1. Let 〈E〉 = 〈e1, e2, . . . , em〉;
2. For i=1,2,..., m do

3. Insert ei into the first matching not containing other edges

adjacent to ei;

In [18], it has been shown that Algorithm KK is a 2-approximation one and
an example has been presented yielding an approximation ratio of 2− 1

∆ . By a
slightly tighter analysis we prove here the next lemma.

Lemma 2. Algorithm KK achieves an approximation ratio of min{2 −
w∗

1

OPT ,
2 − 1

∆} for the MEC problem.

Proof. The solution, M = {M1, M2, . . . , Mk}, that Algorithm KK returns is,
by its construction, a nice one. Let e be the first edge that the algorithm
inserts into matching Mi; then it holds that wi = w(e). Let Ei be the set of
edges preceding e in 〈E〉 and edge e itself, and ∆i be the maximum degree of the
subgraph G[Ei]. The optimal solution for the MEC problem on the graph G[Ei]
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contains i∗ ≥ ∆i matchings each one of weight at least wi, that is wi ≤ w∗
i∗ . By

Proposition 1, the matchings constructed by Algorithm KK for the graph G[Ei]
are i ≤ 2∆i − 1 ≤ 2i∗ − 1, that is i∗ ≥ ⌈ i+1

2 ⌉. Hence, wi ≤ w∗
i∗ ≤ w∗

⌈ i+1
2 ⌉

.

Summing up the above bounds for all wi’s, 1 ≤ i ≤ k ≤ 2∆ − 1, we ob-

tain W ≤
2∆−1
∑

i=1

wi ≤ w∗
1 + 2(

∆
∑

i=2

w∗
i ) = 2(

∆
∑

i=1

w∗
i ) − w∗

1 . As k∗ ≥ ∆, it fol-

lows that
∆
∑

i=1

w∗
i ≤ OPT . Therefore,

W

OPT
≤ 2 −

w∗
1

OPT
and also

W

OPT
≤

2
∑∆

i=1 w∗
i − w∗

1
∑∆

i=1 w∗
i

≤ 2 −
w∗

1
∑∆

i=1 w∗
i

≤ 2 −
w∗

1

∆ · w∗
1

= 2 −
1

∆
.

It is well known that a general graph is (∆+1)-colorable [26] and a bipartite
one is ∆-colorable [19]. Such a coloring can be found in polynomial time and
yields a feasible, but in general not optimal, solution for the MEC problem.
Intuitively, a solution obtained this way will be close to an optimal one when
the edge weights are close to each other, while the Algorithm KK performs
better in the opposite case. Next theorem follows by selecting the best among
the two solutions found by Algorithm KK and a (∆ + 1)− or ∆-coloring of the
input graph.

Theorem 3. There is an approximation algorithm for the MEC problem of
ratio 2 − 2

∆+1 for bipartite graphs and 2 − 2
∆+2 for general graphs.

Proof. By Lemma 2, a solution found by Algorithm KK is of weight W ≤
2OPT −w∗

1 . Any ∆-coloring of a bipartite graph yields a solution for the MEC
problem of weight W ≤ ∆w∗

1 . Multiplying both sides of the second inequality
with 1/∆ and adding this to the first one we obtain: (1 + 1

∆ )W ≤ 2OPT , that
is W ≤ (2 − 2

∆+1 )OPT . For general graphs we simply consider a (∆ + 1)-
coloring.

For the tightness of our analysis for bipartite graphs, consider the instance
of the MEC problem shown in Figure 1(a); a similar example can be also con-
structed for general graphs. The weight of an optimal solution to this instance
is 2C+ǫ (Figure 1(b)), the weight of the solution of Algorithm KK is 3C (Figure
1(c)) and the weight of a solution found by a ∆-coloring (Figure 1(d)) is also
3C. By selecting either solution a ratio of 3C

2C+ǫ ≃ 3
2 = 2 − 2

∆+1 is attained.

C − ǫ C − ǫǫ

CC Cǫ C ǫ

(a) (b)

C

C

C − ǫ

M∗

1

C

C

C − ǫ

M∗

2
M∗

3

ǫ

ǫ

ǫ

(d)

C

C

C − ǫ

M1

C

M2 M3

ǫ

ǫ

C

ǫ

C − ǫ

(c)

C

C

M1

C

M2 M3

ǫ

ǫ

ǫ

C − ǫ

C

C − ǫ

M4

Figure 1: A tight example for the ratio of Theorem 3 for bipartite graphs (∆ = 3, C >> ǫ).
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Note that the ratios of Theorem 3 are better than 2− 1
∆ for any ∆ ≥ 3. More

interestingly, the ratio for bipartite graphs is better than those of algorithms in
[12], for ∆ ≥ 4, and in [22], for ∆ ≥ 9.

3. Bipartite graphs

All known approximation algorithms [8, 12, 22] of ratios less than 2 for the
MEC problem on a bipartite graph G = (V, E) are based on the following
general idea: Consider an ordering 〈E〉 = 〈e1, e2, . . . , em〉 of the edges of G, and
let Ep,q = {ep, ep+1, . . . , eq}. Repeatedly, partition the graph G into three edge
induced subgraphs G[E1,p], G[Ep+1,q ] and G[Eq+1,m], find a solution for the
whole graph G by considering the MEC problem on these three subgraphs and
return the best among the solutions found. Depending on how the problem is
handled for each subgraph and the analysis followed, this general idea leads to
different algorithms and approximation ratios. Notice that the same approach
is employed by the 8/7-approximation algorithm for the MVC problem [8, 24].

In [21] we have also exploited this approach and we have proposed an al-

gorithm for bipartite graphs of ratio 2∆3

∆3+∆2+∆−1 . In this section we further
explore the limitations of this approach and we present a new algorithm for the
MEC problem on bipartite graphs, which improves all the previous ratios for
∆ ≥ 7.

Let us denote by (p, q), 0 ≤ p < q ≤ m, a partition of G into subgraphs
G[E1,p], G[Ep+1,q ] and G[Eq+1,m]; by convention, we define E1,0 = ∅ and E0,q =
E1,q. By ∆1,q we denote the maximum degree of the subgraph G[E1,q]. For a
partition (p, q) of G, we call critical matching a matching M ⊆ Ep+1,q which
saturates all the vertices of G[E1,q] of degree ∆1,q. The proposed algorithm
relies on the existence of such a critical matching M : a solution for the subgraph
G[E1,q] is found by concatenating a (∆1,q−1)-coloring solution for the subgraph
G[E1,q\M ] and the matching M , if exists, and by a ∆1,q-coloring of the subgraph
G[E1,q], otherwise. For each partition (p, q), the algorithm computes a solution
for the input graph G by concatenating a solution for G[E1,q] and a ∆-coloring
solution for G[Eq+1,m]. The algorithm computes also a ∆-coloring solution for
the input graph and returns the best among them.

Algorithm BIPARTITE
1. Find a ∆-coloring solution for G;

2. Let 〈E〉 = 〈e1, e2, . . . , em〉
3. For p = 0, 1, 2, . . . , m − 1 do

4. For q = p + 1 to m do

5. Find, if any, a critical matching M in G[Ep+1,q];
6. If M exists

then find a (∆1,q − 1)-coloring solution for G[E1,q \ M ]
else find a ∆1,q-coloring solution for G[E1,q];

7. Find a ∆-coloring solution for G[Eq+1,m];
8. Find a solution for G by concatenating the solutions

found in Lines 6 and 7 and matching M, if exists;

9. Return the best among the solutions found in Lines 1 and 8;
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The next proposition deals with finding, if any, a critical matching M in
Line 5 of the algorithm.

Proposition 4. For a partition (p, q) of a graph G = (V, E), a critical matching
M , if any, can be found in O(n2.5) time.

Proof. Let U be the set of vertices of G[E1,q] of degree ∆1,q to be saturated by
a critical matching M ⊆ Ep+1,q. Consider the graph G′ = (V ′, E′) where V ′

consists of V and an additional vertex, if |V | is odd, and E′ consists of Ep+1,q

and all the edges between the vertices V ′ \ U (i.e., the vertices V ′ \ U induce a
clique in G′). If there exists a perfect matching in G′, then there exists a critical
matching M , since no edges adjacent to U have been added in G′. Conversely,
if there exists a critical matching M , then there exists a perfect matching in
G′, consisting of the edges of M plus the edges of a perfect matching in the
complete subgraph of G′ induced by its vertices not saturated by M . Therefore,
a critical matching M , if any, can be found by looking for a perfect matching,
if any, in G′. It is well known that this can be done in O(n2.5) time [23].

Theorem 5. Algorithm BIPARTITE achieves an approximation ratio of
2(∆ + 1)3

∆3 + 5∆2 + 5∆ + 3 − 2(−1/∆)∆
for the MEC problem on bipartite graphs.

Proof. The solution obtained by a ∆-coloring of the input graph computed in
Line 1 of the algorithm is of weight W1 ≤ ∆ · w∗

1 .
Consider the partition (p, q) of G where w(ep+1) = w∗

i−1 and w(eq+1) = w∗
i ,

for 2 ≤ i ≤ ∆ (recall that w∗
1 ≥ w∗

2 ≥ · · · ≥ w∗
k∗ and k∗ ≥ ∆). In such an

iteration, all the edges in E1,q belong to i − 1 ≥ ∆1,q matchings of an optimal
solution M∗.

If ∆1,q < i− 1, then an (i− 2)-coloring of G[E1,q ] yields a solution of weight
at most (i − 2) · w∗

1 for this subgraph.
If ∆1,q = i − 1 then a critical matching M exists. Indeed, in this case

the (i − 1)-th matching of M∗ always contains some edges from Ep+1,q, for
otherwise all the edges in E1,q belong to i−2 matchings of M∗, a contradiction;
these edges of Ep+1,q could be a critical matching M for the partition (p, q).
Thus, a (i− 2)-coloring solution of G[E1,q \M ] and critical matching M yield a
solution for the subgraph G[E1,q] of weight at most (i− 2) ·w∗

1 + w∗
i−1. Finally,

a ∆-coloring solution for G[Eq+1,m] is of cost at most ∆ · w∗
i .

Hence, for such a partition (p, q) the algorithm finds a solution for the whole
input graph of weight

Wi ≤ (i − 2) · w∗
1 + w∗

i−1 + ∆ · w∗
i , 2 ≤ i ≤ ∆.

As the algorithm returns the best among the solutions found, we have ∆
bounds on the weight W of this best solution, i.e.,

W ≤ ∆ · w∗
1 , if i = 1, and

W ≤ (i − 2) · w∗
1 + w∗

i−1 + ∆ · w∗
i , if 2 ≤ i ≤ ∆.
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To derive our ratio we denote by cji, 1 ≤ i, j ≤ ∆, the coefficient of the
weight w∗

j in the i-th bound on W and we find the solution of the system of

linear equations C · xT = 1T , that is

xi =



































1

∆
, if i = ∆

1

∆ + 1

(

1 −

(

−1

∆

)∆−i+1
)

, if ∆ − 1 ≥ i ≥ 2

1

∆
−

∆−3
∑

j=0

(

∆ − (j + 2)

∆
x∆−j

)

−
1

∆
x2, if i = 1.

By multiplying both sides of the i-th bound on W by xi and adding all of

them we have

∆
∑

i=1

xi · W ≤ w∗
1 + w∗

2 + · · · + w∗
∆ ≤ OPT .

Hence,
W

OPT
≤

1
∑∆

i=1 xi

, which after some algebra becomes

W

OPT
≤

(∆ + 1)

∆3+3∆2+∆−3
2(∆2−1) −

(∆2+(∆ mod 2)+(−1)∆(∆−1))
(∆2−1)∆∆ − (∆ − 1)

∑⌊∆/2⌋
i=1

2i
∆2i

.

By differentiating both sides of the formula

⌊∆/2⌋
∑

i=0

(

1

x2

)i

=
1 − (x−2)⌊∆/2⌋+1

1 − x−2

for the sum of geometric series we get

−
1

x

⌊∆/2⌋
∑

i=1

(

2i

x2i

)

=
−2x + 2x−2⌊∆/2⌋+1 + 2⌊∆/2⌋(x2 − 1)x−2⌊∆/2⌋−1

(x2 − 1)2

and by using this last expression for x = ∆ we finally get

W

OPT
≤

2(∆ + 1)3

∆3 + 5∆2 + 5∆ + 3 − 2(−1/∆)∆
.

Lines 5-8 of the algorithm are repeated O(m2) times. Finding a critical
matching in Line 5, takes, by Proposition 4, O(n2.5) time, while finding the col-
orings of the bipartite subgraphs of G in Lines 6 and 7, takes O(m log ∆) time [6].

In Table 1 we compare the approximation ratios achieved by Algorithm
BIPARTITE, as ∆ increases, with the best known ones. Note that our algorithm
is of the same complexity with that in [8], while the complexity of the algorithm
in [22] is greater by a factor of O(m2).

8



∆ Best known Our ratio
3 1.17 [8] 1.42
4 1.32 [22] 1.50
5 1.45 [22] 1.55
6 1.56 [22] 1.60
7 1.65 [22] 1.64
8 1.74 [22] 1.67
9 1.81 [22] 1.69
10 1.87 [22] 1.71
11 1.93 [22] 1.73
12 1.98 [22] 1.75
13 2 [18] 1.76
20 2 [18] 1.83
50 2 [18] 1.93

Table 1: Approximation ratios for bipartite graphs

4. A 3/2 approximation algorithm for trees

In this section, we first present an (1+
w∗

1−w∗

∆

OPT )-approximation algorithm for
the MEC problem on trees. Then, combining this algorithm with Algorithm
KK we derive a 3/2 approximation ratio.

For our first algorithm we consider the tree rooted in an arbitrary vertex and
we denote by Eu the edges of the tree adjacent to a vertex u. The algorithm
traverses the vertices of the tree in pre-order and for each vertex u assigns the
edges in Eu to matchings as follows.

Algorithm TREES
1. Root the tree in an arbitrary vertex r;
2. For each vertex u in a pre-order traversal of the tree do

3. Let 〈Eu〉 = 〈eu
1 , eu

2 , . . . , eu
d(u)〉, and eu

j , 1 ≤ j ≤ d(u), be the edge

between u, u 6= r, and its parent;

4. For i = 1, 2, . . . , d(u), i 6= j, do

5. Insert edge eu
i into the first matching not containing

other edge in Eu;

To analyze our algorithm we define yi, 1 ≤ i ≤ ∆, to be the weight of
the heaviest edge between those ranked i in each ordering 〈Eu〉, u ∈ V , i.e.,
yi = max

u∈V
{w(eu

i )}. It is clear that y1 ≥ y2 ≥ · · · ≥ y∆. Next two propositions

use these values for bounding the weights of the matchings of both an optimal
solution and a solution found by Algorithm TREES. Recall that an optimal
solution to the MEC problem consists of at least ∆ matchings.

Proposition 6. For all 1 ≤ i ≤ ∆, it holds that w∗
i ≥ yi.

Proof. Let e = (u, v) be the heaviest edge with rank equal to i, i.e., yi = w(e).
W.l.o.g., assume that e is ranked i in Eu. Then, there exist i edges in Eu of
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weight at least yi and as they belong into i different matchings in an optimal
solution, it follows that w∗

i ≥ yi.

Proposition 7. Algorithm TREES constructs a solution of exactly ∆ match-
ings. For the weight, wi, of the i-th, 2 ≤ i ≤ ∆, matching it holds that wi ≤ yi−1.

Proof. For a vertex u 6= r of the tree let e be the edge between u and its parent
and j be its rank in Eu, i.e., e = eu

j . In the iteration processing the vertex u
the edge e has already been inserted by the algorithm into a matching, say Mp.

The algorithm inserts the edges in Er into d(r) ≤ ∆ matchings. For any
other vertex u, the algorithm inserts the edges in Eu \ {e} into d(u)−1 ≤ ∆−1
matchings different than Mp. Therefore, the algorithm finds a solution M =
{M1, M2, . . . , M∆} of exactly ∆ matchings.

We prove the bounds on the matching’s weights by induction on the vertices
in the order they are processed by the algorithm. We consider all matchings in
M of an initial weight wi = 0, 1 ≤ i ≤ ∆.

For the root vertex r, the algorithm inserts each edge er
i into matching Mi,

1 ≤ i ≤ d(r). Clearly, wi = w(er
i ) ≤ yi ≤ yi−1, 2 ≤ i ≤ ∆.

Assume that before the iteration processing a vertex u 6= r, it holds that
wi ≤ yi−1, 2 ≤ i ≤ ∆, and let w′

i be the weight of the matching Mi, 2 ≤ i ≤
∆, after processing the vertex u. We prove that w′

i ≤ yi−1, 2 ≤ i ≤ ∆, by
distinguishing among three cases depending on the values of p and j:

(i) p = j: Each edge eu
i belongs to matching Mi, 1 ≤ i ≤ d(u). Since

wi ≤ yi−1 and w(eu
i ) ≤ yi, it follows that w′

i = max{wi, w(eu
i )} ≤

max{yi−1, yi} = yi−1, 2 ≤ i ≤ ∆.

(ii) p > j: For 1 ≤ i ≤ j − 1 and p + 1 ≤ i ≤ d(u) each edge eu
i belongs

to matching Mi and we conclude as in Case (i). For j + 1 ≤ i ≤ p
each edge eu

i belongs to matching Mi−1, that is w′
i = max{wi, w(eu

i+1)} ≤
max{yi−1, yi+1} = yi−1.

(iii) p < j: For 1 ≤ i ≤ p − 1 and j + 1 ≤ i ≤ d(u) each edge eu
i belongs

to matching Mi and we conclude as in Case (i). For p ≤ i ≤ j − 1
each edge ev

i belongs to matching Mi+1, that is w′
i = max{wi, w(eu

i−1)} ≤
max{yi−1, yi−1} = yi−1.

Using the bounds established in Propositions 6 and 7 we obtain the next
lemma.

Lemma 8. Algorithm TREES achieves an approximation ratio of 1+
w∗

1−w∗

∆

OPT <
2 for the MEC problem on trees.

Proof. For the weight of the first matching obtained by Algorithm TREES it
holds that w1 ≤ y1 = w∗

1 , since both y1 and w∗
1 are equal to the weight of the

heaviest edge of the tree. By Proposition 7 it holds that wi ≤ yi−1, 2 ≤ i ≤ ∆
and by Proposition 6 it holds that yi ≤ w∗

i , 1 ≤ i ≤ ∆. Therefore, the weight of

10



the solution obtained by Algorithm TREES is W =

∆
∑

i=1

wi ≤ y1+

∆
∑

i=2

yi−1 = y1+

∆−1
∑

i=1

yi ≤ w∗
1 +

∆−1
∑

i=1

w∗
i ≤ w∗

1 +OPT −w∗
∆, that is

W

OPT
≤ 1+

w∗
1 − w∗

∆

OPT
< 2.

The example illustrated in Figure 2(a) shows that the ratio of our algorithm
can be arbitrarily close to 2. For this instance OPT = C + 2ǫ (Figure 2(b)),
the weight of the solution found by Algorithm TREES is W = 2C + ǫ (Figure
2(c)) and the approximation ratio becomes 2C+ǫ

C+2ǫ .

ǫ ǫ ǫ

ǫ ǫ ǫC C ǫ

(a)

C

C

M
∗

1

ǫ

ǫ

ǫ

M
∗

2

ǫ

ǫ

M
∗

3

ǫ

(b)

M1

ǫ

C

ǫ

M2

ǫ

ǫ

M3

(c)

ǫ

C

ǫ

ǫ

ǫ

Figure 2: A tight example for the 2 approximation ratio of Algorithm TREES.

To derive the 3/2 approximation ratio we simply select the best among the
solutions found by Algorithm KK and Algorithm TREES.

Theorem 9. There is a 3
2 -approximation algorithm for the MEC problem on

trees.

Proof. Let W be the weight of the best among the solutions found by Algorithm

KK and Algorithm TREES. By Lemma 2 it holds that
W

OPT
≤ 2 −

w∗
1

OPT
and

by Lemma 8 that
W

OPT
≤ 1+

w∗
1 − w∗

∆

OPT
. As the first bound is increasing and the

second one is decreasing with respect to OPT , it follows that the ratio
W

OPT

is maximized when 2 −
w∗

1

OPT
= 1 +

w∗
1 − w∗

∆

OPT
, that is OPT = 2 · w∗

1 − w∗
∆.

Therefore,
W

OPT
≤ 2 −

w∗
1

OPT
= 2 −

w∗
1

2 · w∗
1 − w∗

∆

≤ 2 −
w∗

1

2 · w∗
1

=
3

2
.

For the tightness of the analysis in Theorem 9 consider the instance given
in Figure 3(a). For this instance OPT = 2C + 2ǫ (Figure 3(b)) and the weights
of the solutions found by Algorithm TREES and Algorithm KK are 3C (Figure
3(c)) and 3C − ǫ (Figure 3(d)), respectively. Our algorithm selects the solution
found by Algorithm KK and the approximation ratio becomes 3C−ǫ

2C+2ǫ .
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Figure 3: A tight example for the 3/2-approximation algorithm for trees.

5. Moderately exponential approximation algorithms for trees

In this section, we present two approximation algorithms for trees that im-
prove the 3/2 ratio of Theorem 9 within exponential running time much better
than that needed for the computation of an optimal solution.

The idea employed by the algorithms is to find an approximate solution to
the MEC problem on a tree T = (V, E) by searching exhaustively for the weights
of a number of matchings of an optimal solution M∗. A parameter z, given as
input to the algorithms, determines the (maximum) number of matchings of M∗

that we search exhaustively and, hence, the complexity and the approximation
ratio of the algorithms.

In such an exhaustive search, each step of the proposed algorithms has to
answer to the following decision problem:

Feasible-MEC (F-MEC)
Instance: A weighted graph G = (V, E) and a sequence of k weights, w1 ≥
w2 ≥ · · · ≥ wk.
Question: Is there a feasible solution M = {M1, M2, . . . , Mk} to the MEC
problem on G such that maxe∈Mi

w(e) ≤ wi, 1 ≤ i ≤ k?

The F-MEC problem is equivalent to the next well known variant of the
edge-coloring problem:

List Edge-Coloring (LEC)
Instance: A graph G = (V, E), a set of colors C = {C1, C2, . . . , Ck} and a list
of colors φ(e) ⊆ C for each e ∈ E.
Question: Is there a k-coloring of G such that each edge e is assigned a color
in its list φ(e)?

Indeed, an instance of the F-MEC problem on a graph G, and given weights
w1 ≥ w2 ≥ · · · ≥ wk, can be easily transformed to the next equivalent instance
of the LEC problem: is there a k-coloring of G where each edge e ∈ E is
assigned a color in φ(e) = {Ci : wi ≥ w(e), 1 ≤ i ≤ k}? A “yes” answer to this
instance of the LEC problem corresponds to the existence of a feasible solution
M = {M1, M2, . . . , Mk} for the MEC problem of weight W =

∑k
i=1 wi.

It is known that the LEC problem can be answered in O(m ·∆3.5) time for
trees [9], but it becomes NP-complete for bipartite graphs [20]. Therefore, this
approach can be used for trees but cannot be extended to bipartite graphs.
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The first algorithm proposed in Section 5.1 is exponential to the maximum
degree, ∆, of the input tree and achieves a ρ approximation ratio in O∗(mf(ρ)·∆)

time, where f(ρ) =
9 − ρ

4ρ
. The second algorithm presented in Section 5.2 is

exponential to the number of edges, m, of the input tree and achieves a ratio of

ρ in O∗(g(ρ)m) time, where g(ρ) =
(2ρ − 1)2 + 1

(2ρ − 1)2(2ρ−1)2/((2ρ−1)2+1)
. Some values of

ρ ≤ 3/2, f(ρ) and g(ρ) are summarized in Table 2.

Complexity ρ OPT 1.1 1.2 1.3 1.4 1.5

O∗(mf(ρ)·∆) f(ρ) 2 1.795 1.625 1.481 1.357 1.250
O∗(g(ρ)m) g(ρ) 2 1.968 1.896 1.811 1.727 1.649

Table 2: Approximation ratios vs. complexities for trees

5.1. An exponential to ∆ algorithm

This algorithm depends on a parameter z taking integer values in [1, 2∆−1]
and iterates z times, for j = 1, 2, . . . z. In each iteration the algorithm considers
all the combinations of j edge weights as the weights of the j heaviest matchings
of an optimal solution. For each combination of weights, w1 ≥ w2 ≥ · · · ≥ wj ,
the algorithm has to answer to an instance of the F-MEC problem on the input
tree T . In order a “yes” answer to this F-MEC problem to be probable for all
values of j we extend the combination of weights w1 ≥ w2 ≥ · · · ≥ wj to a
sequence w1 ≥ w2 ≥ · · · ≥ wj = wj+1 = wj+2 = · · · = wk by adding k − j new
weights all equal to wj . In fact, this extended sequence consists of k = j−1+∆
weights, if j ≤ ∆ (this way the T ’s edges of weights w(e) ≤ wj can be assigned
into the ∆ matchings of weight wj) and k = 2∆−1, otherwise (since by Proposi-
tion 1 any solution to the MEC problem consists of at most 2∆−1 matchings).
Hence, k = min{j − 1 + ∆, 2∆ − 1}. This instance of the F-MEC problem has
answer “yes” if and only if the edges of weight w(e) > wj can be assigned to
(matchings of) weights greater than wj (see the proof of Theorem 10). In this
case the algorithm finds a feasible solution for the MEC problem and it returns
the best among all feasible solutions found.

Algorithm TREES-∆(z)
1. For j = 1, 2, . . . , z do

2. For each combination of j edge weights, w1 ≥ w2 ≥ · · · ≥ wj, do

3. Answer to the F-MEC problem with input T and

k = min{j − 1 + ∆, 2∆ − 1} weights:

w1 ≥ w2 ≥ · · · ≥ wj = wj+1 = wj+2 = · · · = wk;

4. If the answer is "yes"

then a feasible solution to the MEC problem is found;

5. Return the best among the feasible solutions found;
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Theorem 10. For any ρ ≥ 1, Algorithm TREES-∆(z) achieves a ρ approxi-
mation ratio for the MEC problem on trees, in polynomial space and running
time O∗(mf(ρ)∆), where f(ρ) = 9−ρ

4ρ .

Proof. Consider the j-th iteration of the algorithm and in this iteration the
combination of j edge weights which coincide with the weights, w∗

1 ≥ w∗
2 ≥

· · · ≥ w∗
j , of the j heaviest matchings of an optimal solution M∗. In this step

the algorithm answers to the instance of the F-MEC problem with input T and
weights wi ≥ w∗

i , 1 ≤ i ≤ k. We claim that this F-MEC problem has always a
“yes” answer. Indeed, if k = 2∆ + 1, then the claim follows since k∗ ≤ 2∆ − 1
and wi ≥ w∗

i , 1 ≤ i ≤ k∗. If k = j − 1 + ∆ < 2∆ − 1, then the edges of weights
w(e) > w∗

j can be assigned (belong) to the j − 1 heaviest weights (matchings
of M∗). Moreover, there are ∆ weights equal to w∗

j and the edges of weights
w(e) ≤ w∗

j can be assigned to them. Hence, a feasible solution for the MEC
problem on T is found of weight

Wj = w∗
1 + w∗

2 + · · · + w∗
j−1 + (k − j + 1) · w∗

j .

The algorithm finds such a feasible solution in each iteration j and as it
returns the best among them we obtain ∆ bounds on the weight of this best
solution, that is W ≤ w∗

1 + w∗
2 + · · · + w∗

j−1 + (k − j + 1) · w∗
j , 1 ≤ j ≤ z.

Proceeding as in the proof of Theorem 5 we find z multipliers

xj =















2∆ − 1 − z

∆2

(

∆ − 1

∆

)∆−1−j

, if 1 ≤ j ≤ ∆

2∆ − 1 − z

(2∆ − j)(2∆ − 1 − j)
, if ∆ + 1 ≤ j ≤ z

such that
W

OPT
≤

1
∑z

i=1 xi
=

1

1 − 2∆−1−z
∆ · (∆−1

∆ )∆−1
.

The MEC problem is polynomial for graphs of ∆ = 2 and as for ∆ ≥ 3 it

holds that (∆−1
∆ )∆−1 > 4

9 we get
W

OPT
≤

1

1 − 4
9 · 2∆−1−z

∆

= ρ. Hence, an ap-

proximation ratio ρ is derived for z = 9−ρ
4ρ ∆−1 = f(ρ)∆−1, where f(ρ) = 9−ρ

4ρ .

The complexity of Algorithm TREES-∆(z) is exponential in z. In Line 2
the algorithm examines

(

m
j

)

combinations of weights. Thus, for all iterations
∑z

j=1

(

m
j

)

= O(z · mz) combinations of weights are examined. For each one

of these combinations, it takes O(m · ∆3.5) time to answer to the instance of
the F-MEC in Line 3. Since z and ∆ are O(m), the complexity of Algorithm
TREES-∆(z) is O∗(mz), that is O∗(mf(ρ)∆). Moreover, the algorithm needs
polynomial space, since Line 3 is executed independently for each combination
of weights.

Notice that for z = 2∆ − 1 the Algorithm TREES-∆(z) finds an optimal
solution within O∗(m2∆) time.
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5.2. An exponential to m algorithm

This algorithm depends on a parameter z taking integer values in [1, ⌊m
2 ⌋]

and iterates 2z times, for k = 1, 2, . . . , z, m − z, . . . , m. In each iteration, the
algorithm exhaustively considers k edge weights, w1, w2, . . . , wk, as the weights
of the k heaviest matchings of an optimal solution M∗, and answers to the
instance of the F-MEC problem, with input T and w1 ≥ w2 ≥ · · · ≥ wk.
This way an optimal solution is found when k∗ ≤ z or k∗ ≥ m − z. In order
to derive an approximate solution when z < k∗ < m − z, the algorithm, in
the iteration where k = z, answers also to instances of the F-MEC problem
with input T and weights w1 ≥ w2 ≥ · · · ≥ wz = wz+1 = · · · = wk′ , for
k′ = z + 1, z + 2, . . . , m − z − 1. The algorithm returns the best among the
feasible solutions found.

Algorithm TREES-E(z)
1. For k = 1, 2, . . . , z, m− z, . . . , m do

2. For each combination of k edge weights, w1 ≥ w2 ≥ · · · ≥ wk, do

3. Answer to the F-MEC with input T and w1 ≥ w2 ≥ · · · ≥ wk;

4. If the answer is "yes"

then a feasible solution to the MEC problem is found;

5. If k = z then

6. For k′ = z + 1, z + 2, . . . , m − z − 1 do

7. Answer to the F-MEC with input T and k′ weights:

w1 ≥ w2 ≥ · · · ≥ wz = wz+1 = wz+2 = · · · = wk′;

8. If the answer is "yes"

then a feasible solution to the MEC problem is found;

9. Return the best among the feasible solutions found;

Theorem 11. For any ρ ≥ 1, Algorithm TREES-E(z) achieves a ρ approxi-
mation ratio for the MEC problem on trees, in polynomial space and running

time O∗(g(ρ)m), where g(ρ) =
(2ρ − 1)2 + 1

(2ρ − 1)2(2ρ−1)2/((2ρ−1)2+1)
.

Proof. If k∗ ≤ z or k∗ ≥ m − z then the algorithm in an iteration of Lines 2-4
finds an optimal solution.

If z < k∗ < m− z then we consider the following two solutions found by the
algorithm:

(i) In the iteration where k = m − z, for a combination w1 ≥ w2 ≥ · · · ≥ wk

of weights, it holds that wi = w∗
i , 1 ≤ i ≤ k∗. Hence, for this combination

there is a feasible solution of weight at most w∗
1 + w∗

2 + · · · + w∗
k∗ + (m −

z − k∗)w∗
k∗ = OPT + (m − z − k∗)w∗

k∗ .

(ii) In the iteration where k = z and k′ = k∗, for a combination w1 ≥ w2 ≥
· · · ≥ wk of weights, it holds that wi = w∗

i , 1 ≤ i ≤ z. Hence, for this
combination there is a feasible solution of weight at most w∗

1 + w∗
2 + · · ·+

w∗
z + (k∗ − z)w∗

z = OPT −
∑k∗

i=z+1 w∗
i + (k∗ − z)w∗

z .
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Thus, it holds that

W

OPT
≤ min

{

OPT + (m − z − k∗)w∗
k∗

OPT
,
OPT −

∑k∗

i=z+1 w∗
i + (k∗ − z)w∗

z

OPT

}

≤ min

{

1 +
(m − z − k∗)w∗

k∗

zw∗
z + (k∗ − z)w∗

k∗

, 1 +
(k∗ − z)(w∗

z − w∗
k∗)

zw∗
z + (k∗ − z)w∗

k∗

}

.

As the first value is increasing with w∗
k∗ and the second one is decreasing, this

quantity is maximized when (k∗ − z)w∗
z = (m − 2z)w∗

k∗ . Therefore, we have

W

OPT
≤ 1 +

(m − z − k∗)w∗
k∗

z(m−2z)
k∗−z w∗

k∗ + (k∗ − z)w∗
k∗

=
k∗(m − 2z)

z(m− 2z) + (k∗ − z)2
,

which is maximized for k∗ =
√

z(m − z). Hence,

W

OPT
≤

√

z(m − z)(m − 2z)

z(m − 2z) + (
√

z(m − z) − z)2
=

m − 2z

2
√

z(m − z) − 2z
.

By setting z = λm, where 0 < λ ≤ 1
2 , we get

W

OPT
≤

m − 2λm

2
√

λm(m − λm) − 2λm
=

1 − 2λ

2
√

λ(1 − λ) − 2λ
= ρ.

Therefore, in order to achieve a ρ approximation ratio we choose λ =
1

(2ρ−1)2+1 , that is z = m
(2ρ−1)2+1 .

The algorithm needs polynomial space, since Lines 3-8 are executed inde-
pendently for each combination of weights. As the F-MEC problem is polyno-
mial for trees, the complexity of the algorithm is, within a polynomial factor,
O(T (m)), where T (m) is the number of combinations generated. For this num-
ber it holds that

T (m) ≤
z
∑

i=1

(

m

i

)

+
m
∑

i=m−z

(

m

i

)

= 2
z
∑

i=1

(

m

i

)

≤ 2z

(

m

z

)

≤ m

(

m

λm

)

≤ m

(

(

1

λ

)λ (
1

1 − λ

)1−λ
)m

= m

(

(2ρ − 1)2 + 1

(2ρ − 1)2(2ρ−1)2/((2ρ−1)2+1)

)m

= m·g(ρ)m.

Hence, the complexity of Algorithm TREES-E(z) becomes O∗(g(ρ)m), where

g(ρ) =
(2ρ − 1)2 + 1

(2ρ − 1)2(2ρ−1)2/((2ρ−1)2+1)
.

Note that for z = ⌊m
2 ⌋ Algorithm TREES-E(z) computes an optimal solu-

tion for the MEC problem on trees in O∗(2m) time and polynomial space.
In [2], an algorithm has been presented with running time and space O∗(2n),

which, for any k, computes the number of all proper k-vertex-colorings of a
graph, and moreover enumerates these colorings. This algorithm can be used to
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find an optimal solution for the MVC problem on a general graph, by running
it for 1 ≤ k ≤ n. Considering the line graph L(G) of the input graph G of
the MEC problem, we derive that the MEC problem on general graphs can be
optimally solved with running time and space O∗(2m).

Next proposition shows that if ∆ = o(m) then the running time of Algorithm
TREES-E(z) for computing an optimal solution is improved.

Proposition 12. If ∆ = o(m), then Algorithm TREES-E(z) requires subexpo-
nential running time 2o(m) in order to compute an exact solution for trees.

Proof. By Proposition 1, the number k∗ of matchings in any optimal solution
to the MEC problem is at most 2∆ − 1. Thus, the number of combinations of
weights needed to be generated by the algorithm becomes

T (m) ≤

(

m

2∆

)

≤
mm

(2∆)2∆(m − 2∆)m−2∆

≤ 2m log m−2∆ log(2∆)−(m−2∆) log(m−2∆)

≤ 2m log (1+2∆/(m−2∆))+2∆ log(m/2∆−1)

Notice first that 2∆/(m − 2∆) tends to 0 for m → ∞, since ∆ = o(m),

and thus m log

(

1 +
2∆

(m − 2∆)

)

→ 0. Moreover, note that 2∆ log
( m

2∆
− 1
)

=

o(m), since
2∆ log

(

m
2∆ − 1

)

m
tends to 0 as m increases. Combining the two

observations above, we get that T (m) = 2o(m) and, hence, the running time of
Algorithm TREES-E(m

2 ) is O∗(2o(m)).

Notice that Algorithm TREES-E(⌊m
2 ⌋) and Algorithm TREES-∆(2∆ − 1)

coincide and both return an optimal solution to the MEC problem on trees.
Thus the last proposition holds for both algorithms.

6. Bi-valued graphs

In this section we show first that the MEC problem is NP-complete for
complete graphs with bi-valued edge weights. Recall that the MEC problem
is polynomial for bi-valued bipartite graphs [10], while for general bi-valued
graphs it generalizes the classical edge-coloring problem, which is known to be
NP-complete even for cubic graphs [17]. In the next theorem we give a reduction
from this latter problem.

Theorem 13. The MEC problem is NP-complete for complete graphs even
with edge weights w(e) ∈ {1, 2}.

Proof. The edge-coloring problem for cubic graphs takes as input a graph G =
(V, E), |V | = n, with d(u) = 3, for each u ∈ V , and asks for the existence of a
proper 3-coloring of G. Notice that any cubic graph has an even number, n, of
vertices.
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From such an instance we construct a complete weighted graph Kn with
edge weights w(e) = 2, for each e ∈ E, and w(e) = 1, otherwise, and we show
that there is a 3-coloring of G iff there is a solution M for the MEC problem
on Kn of weight at most n + 2.

Assume, first, that there is a 3-coloring of G. Then, there are three matchings
of Kn each one of weight equal to 2, which include all the edges of Kn of weight
2. Let Kn − G be the graph induced by the remaining edges of Kn (those of
weight 1). The graph Kn − G is (n− 4)-colorable as a (n − 4)-regular graph of
even order [5]. Therefore, there is a solution M for the MEC problem on Kn

of weight at most 3 · 2 + (n − 4) · 1 = n + 2.
Conversely, consider that there is a solution M to the MEC problem on

Kn of weight at most n + 2. This solution contains k ≥ n − 1 matchings, since
a complete graph of even order can be colored with at least n − 1 colors [14].
Moreover, M contains at least three matchings of weight equal to 2, since, by
its construction, Kn has exactly three edges of weight 2 adjacent to each vertex.
Assume that there is a fourth matching in M of weight equal to 2. Then, M
will be of weight at least 4 · 2 + (k − 4) · 1 ≥ n + 3, a contradiction. Therefore,
M contains exactly 3 matchings of weight equal to 2, which imply a 3-coloring
for G.

Theorem 13 implies that the MEC problem is NP-complete in all super-
classes of complete graphs, including split and interval graphs. Note also that
the complexity of the classical edge-coloring problem on interval graphs of even
maximum degree remains an open question [3].

In what follows, we present an approximation algorithm for general graphs
with two different edge weights. Assume that the edges of the graph G = (V, E)
have weights either 1 or t ≥ 2. Let G[E1], of maximum degree ∆1, and G[Et],
of maximum degree ∆t, be the subgraphs of G induced by its edges of weights
1 and t, respectively.

Algorithm BI-VALUED
1. Find a (∆ + 1)-coloring solution for G;

2. Find a (∆1 + 1)-coloring solution for G1,

a (∆t + 1)-coloring solution for Gt and concatenate them;

3. Return the best among the two solutions found;

Theorem 14. Algorithm BI-VALUED achieves a 4
3 -approximation ratio for

the MEC problem on general graphs of arbitrarily large ∆ and edge weights
w(e) ∈ {1, t}.

Proof. An optimal solution contains at least ∆ matchings and at least ∆t of
them are of weight equal to t. Therefore, a lower bound to the weight of an
optimal solution is OPT ≥ ∆t · t + (∆ − ∆t).

A (∆ + 1)-coloring of G in Line 1 of the algorithm yields a solution for the
MEC problem of weight W ≤ (∆ + 1) · t, while a (∆1 + 1)-coloring of G[E1]
and a (∆t + 1)-coloring of G[Et] in Line 2 yield another solution of weight

18



W ≤ (∆t + 1) · t + (∆1 + 1) · 1 ≤ (∆t + 1) · t + (∆ + 1). By multiplying both

sides of the first inequality with
∆2

t
+2∆t−∆
(∆+1)2 , both sides of the second one with

∆−∆t

∆+1 and adding them, we get
∆2+∆2

t
−∆·∆t+∆t

(∆+1)2 ·W ≤ ∆t · t+(∆−∆t) ≤ OPT ,

that is W
OPT ≤ (∆+1)2

(∆−∆t)2+∆t(∆+1) . This ratio is maximized when ∆t = ∆−1
2 , and

therefore W
OPT ≤ 4(∆+1)

(∆+1)+2(∆−1) = 4∆+4
3∆−1 = 4

3 + 16
9∆−3 .

7. Concluding remarks

We presented approximation algorithms for the MEC problem on several
classes of the underlying graph including general and bipartite graphs, trees
and bi-valued graphs. Recall that the MEC problem is known to be approx-
imable within a factor of 2 (for any class of graphs) and inapproximable within
a factor less than 7/6 (even for bipartite graphs), while its complexity for trees
remains open. The ratios achieved by our algorithms narrow the gaps in the
approximability of the problem.

For bipartite graphs we derived an approximation ratio less than 2 which,
however, tends asymptotically to 2 as the maximum degree of the graph in-
creases. In recompense, this ratio increases much slower compared to ratios
achieved by former algorithms. For trees we presented a 3/2-polynomial ap-
proximation algorithm that is the first below-to-ratio 2 algorithm for the MEC
problem for a natural class of graphs. Moreover, we have devised moderately ex-
ponential algorithms for trees that further improve ratio 3/2. Finally, for general
bi-valued graphs, we presented an asymptotic 4/3-approximation algorithm.

However, the gaps in the approximability of the MEC problem remain still
wide and their further narrowing is a subject of further research.
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