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Abstract

We handle in this paper three dominating clique problems, namely, the decision problem itself
when one asks if there exists a dominating clique in a graph G and two optimization versions where
one asks for a maximum- and a minimum-size dominating clique, if any. For the three problems
we propose optimal algorithms with provably worst-case upper bounds improving existing ones by
(D. Kratsch and M. Liedloff, An exact algorithm for the minimum dominating clique problem, The-
oretical Computer Science 385(1-3), pp. 226–240, 2007). We then settle all the three problems in
sparse and dense graphs also providing improved upper running time bounds.

1 Introduction

Given a graph G(V, E), a dominating clique is a clique which is also a dominating set for G. Determining
whether there exists a dominating clique or not is known to be NP-hard ([5]) and so are the two related
problems min dominating clique and max dominating clique, where we are asked for a dominating
clique of minimum and of maximum size, respectively. These problems can of course be solved by
enumerating all the subsets of V . So, an interesting problem is to devise algorithms able to optimally
solve the three problems existing dominating clique, min dominating clique and max dominating

clique within time O(2c|V |p(|V |)), where c is a constant lower than 1 and p some polynomial function.
Notice that, compared to the slightest improvement of c, p is non relevant. So, from now on, we use
notation O∗(2c|V |) in order to omit polynomial factors.

Regarding existing dominating clique, trivial O∗(2|V |) bound has been initially broken by [6] down
to O∗(3|V |/3) = O∗(1.443|V |) using a result by [8], namely that the number of maximal (for inclusion)
independent sets in a graph is at most 3|V |/3. Recently, [7] have proposed a branching algorithm that,
according to a measure and conquer analysis [2], solves min dominating clique with polynomial space
and running time O∗(1.3387|V |), and another one that requires O∗(1.3234|V |) time and space. Naturally,
these algorithms also solve existing dominating clique.

In this paper, we first devise simple branching algorithms improving [7] for existing dominating

clique (Section 2). The first one runs with tight running time O∗(22|V |/5) = O∗(1.3196|V |) using polyno-
mial space; we then further improve it to produce a second algorithm that solves existing dominating

clique in O∗(20.35|V |) = O∗(1.2740|V |) still using polynomial space. Finally, using memorization tech-
niques, we propose a third algorithm working within O∗(20.329|V |) = O∗(1.2556|V |) running time and
space. In Section 3 we settle max dominating clique and propose an algorithm with tight running
time O∗(22|V |/5) using polynomial space. Allowing exponential space, we then decrease running time
to O∗(20.372|V |) = O∗(1.2937|V |). In Section 4 we settle min dominating clique and propose an
algorithm with tight running time O∗(20.4058|V |) = O∗(1.3248|V |) using polynomial space. Allowing ex-
ponential space, we then decrease running time to O∗(20.3762|V |) = O∗(1.298|V |). Table 1 summarizes
our results in Sections 2, 3 and 4.

In Section 5, we restrict ourselves to sparse and dense graphs, and produce parameterized algorithms
depending on minimum, maximum and average degree. These results are summarized in Table 2 (some
of them being obvious), where D(G) = 2|E|/(|V |(|V | − 1)) is the density of the graph G. For instance,
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Former result Our result

existing dominating clique O∗(1.3387|V |) O∗(1.2740|V |)
- exponential space allowed O∗(1.3234|V |) O∗(1.2556|V |)
max dominating clique O∗(1.4423|V |) O∗(1.3196|V |)
- exponential space allowed O∗(1.2937|V |)
min dominating clique O∗(1.3387|V |) O∗(1.3248|V |)
- exponential space allowed O∗(1.3234|V |) O∗(1.298|V |)

Table 1: Results of Sections 2, 3 and 4.

min dominating clique max dominating clique

Max degree ∆ 2∆ 3∆/3

Min degree δ > |V |/2
( |V |
|V |−δ

)

1.22|V |( |V |
|V |−δ

)

D(G) > 3/4
( |V |√

1−D(G)|V |
)

1.22|V |( |V |√
1−D(G)|V |

)

D(G) 6 1/4
( |V |√

D(G)|V |
)

(1 + µ/
√

D(G))
√

D(G)

Table 2: Results of Section 5 where µ ∈ [0, 1] is an increasing function of D(G).

we show in Section 5 that if n− δ = o(n), or if D(G) = 1− o(1), min dominating clique can be solved
in subexponential time and max dominating clique within roughly the same running time as max

clique. On the other hand, if D(G) = o(1) both min and max dominating clique can be also solved
in subexponential time.

It is easy to see that no polynomial time approximation algorithm can exist for min dominating

clique and max dominating clique, since any such algorithm should first solve existing dominating

clique that is NP-complete. For this reason, in Section 6, we present some approximation results for
min dominating clique and max dominating clique by exponential time algorithms that run faster
than the corresponding exact algorithms for these problems. Recall that the approximation ratio of an
algorithm A supposed to solve an NP-hard problem Π is defined by max{m(I, S)/ opt(I), opt(I)/m(I, S)}
where, for any instance I of Π, m(I, S) is the value of the solution S computed by A in I and opt(I) is
the value of an optimal solution of I.

In what follows, given a graph G(V, E) and a vertex v ∈ V , the neighborhood N(v) of v is the set of
vertices that are adjacent to v and the set N [v] = N(v)∪ {v} is called the closed neighborhood of v. For
the degree of v, we use the notation d(v) = |N(v)|; the anti-degree of v is the quantity d̄(v) = |V \N [v]|.
For any set H ⊂ V , we write NH(v) = N(v) ∩ H , dH(v) = |NH(v)| and d̄H(v) = |H \ NH [v]|; G[H ] is
the subgraph induced by H in G. Finally, for v ∈ V , we set f(v) = 1 − |N(v)|/|V |.

For simplicity, we set n = |V | and m = |E|. For any function T , T (n) stands for the maximum
running time the algorithm requires to compute T on a graph containing at most n vertices.

Due to limits in paper’s length some of the results are given without proofs that can be found in [?].

2 existing dominating clique

We first make some very simple remarks, that have already been stated, for instance, in [7], but that one
should keep in mind in order to understand how our algorithms work.

Remark 1. If there exists some dominating clique K∗, then any clique that contains K∗ is a dominating
clique.

Remark 2. For any v ∈ V , any dominating clique containing v contains only vertices from N [v].

Remark 3. For any v ∈ V , if there exists some dominating clique K containing v, then there exists a
dominating clique K ′ ⊆ K with |K ′| 6 |V \ N(v)|.

Clique K ′ claimed by Remark 3 could be, for instance, obtained by simply taking one neighbor in V for
any vertex in V \ N(v).
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Based on these remarks, we can now describe a first simple algorithm whose running time is worse
than the one in [7], but which is very simple to analyse. It decides whether there exists or not a dominating
clique in G with running time O∗(1.3870n) and works as follows:

for any v ∈ V : if f(v) > 0.10686, then compute any maximal (for inclusion) clique in N(v)
and check if one of them is a dominating set in G, otherwise, compute any subset of N(v) of
size nf(v) or less and check if one of them is a dominating clique in G; stop at the time a
dominating clique is found, or return a negative answer.

Indeed, assume there exists a dominating clique K, and fix some v ∈ K. As pointed out in Remark 2,
K ⊆ N [v]. According to Remark 1, there exists a maximal dominating clique and according to Remark 3,
there exists a dominating clique of size nf(v) or less. Then, regardless of the value of f(v), the algorithm
above computes a dominating clique.

Let us now analyse the complexity of the algorithm. Consider first the case f(v) > 0.10686. From [8,
6], it is possible to compute any maximal independent set, thus any maximal clique, with running time:

O∗
(

3
|N(v)|

3

)

= O∗
(

3
1−f(v)

3 n
)

= O∗ (1.3870n)

On the other hand, if f(v) is small, then every subset of N(v) whose size is bounded above by nf(v) can
be computed with running time:

n ×
(

N(v)

nf(v)

)

= n ×
(

n(1 − f(v))

f(v)n

)

= O∗
(

(

(1 − f(v))1−f(v)

(1 − 2f(v))1−2f(v)f(v)f(v)

)n
)

= O∗ (1.3870n)

2.1 A tight O∗(22n/5) branching algorithm

We use the same notations as in [7]: S is the set of vertices we have added to the solution, D is the set of
vertices we have discarded, A = ∩s∈SN(s)\D is the set of vertices still available and F = V \(

⋃

s∈S N(s))
is the set of free vertices, i.e., the set of vertices that still remain to be dominated; T (S, D, A, F ) is a
boolean function that returns true if and only if there exists a dominating clique in G contained in A
and with no vertex from D. As pointed out in [7], for min dominating clique, it is equivalent to solve
existing dominating clique or to determine if there exists v ∈ V such that T ({v}, ∅, N(v), V \N [v]) =
true.

We devise in this section, an improved algorithm, called EDC that computes T ({v}, ∅, N(v), V \N [v])
(for each vertex v) as follows:

1. if F = ∅, then T (S, D, A, F ) = true;

2. if ∃u ∈ F , such that dA(u) = 0, then T (S, D, A, F ) = false;

3. if ∃u ∈ A, such that dF (u) = 0, then T (S, D, A, F ) = T (S, D ∪ {u}, A \ {u}, F )

4. otherwise, fix u ∈ A such that dA(u) is maximal and set:

T (S, D, A, F ) =
∨

w∈A\NA(u)

T (S ∪ {w}, D ∪ (A \ NA[w]) ∪ NF (w), NA(w), F \ NF (w))

Rules 1, 2 and 3 are straightforward, so we only need to prove correctness of the branching rule. If we
add some vertex u to S, we must discard from A any vertex that is not neighbor of u. On the other hand,
assume that every vertex in A \ N(u) have been discarded. Then, any vertex still available is in NA(u),
so we can safely add u to S. Hence, in any case we take one vertex from A \ NA(u), leading to the
recurrence of the branching rule. Notice that, because of this insertion of u in the last case, the clique
computed by Algorithm EDC may be not a minimum dominating clique.

Proposition 1. Algorithm EDC decides whether there exists a dominating clique, or not, with running
time O∗(22n/5) = O∗(1.3196n). This bound is tight.
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Proof. We simply count the number of vertices in the remaining graph having n = |A∪F | vertices. Fix
δ = mina∈A{|A \ NA(a)|} = |A \ NA(u)|. By definition of u we have:

T (n) 6
∑

w∈A\NA(u)

T (|NA(w)| + |F | − dF (w)) 6 δ × T (|A| − δ + |F | − 1) 6 δ × T (n− δ − 1)

Then, a simple recursion shows that T (n) 6 maxδ∈N{δn/(δ+1)} = 4n/5.
Tightness is shown in the following graph. Consider a collection Gp of p stars of size 5 (1 center plus 4

outer vertices). Set A is the set of the outer vertices, and set F is the set of the centers. Any outer
vertex u is adjacent to any other outer vertex in any other star; so, dA(v) = 4p− 4. When the algorithm
branches on any of these outer vertices, it has to solve existing dominating clique on four identical
copies of Gp−1 and, in this case T (n) = Ω(4n/5).

2.2 Improvement of EDC

We now refine algorithm EDC in such a way that when branching on a vertex u (of maximum degree dA(u)),
instead of removing for each of the δ branches δ + 1 vertices, we remove in the worst case δ + 2 vertices
in δ − 1 branches, and δ + 1 vertices only in one branch. To do this, we say that a vertex w is good if:

• either |A \ NA(w)| > δ + 1,

• or w is adjacent to at least two vertices in F ,

• or, finally, w is adjacent to only one vertex v ∈ F and this vertex v has another neighbor w′ in N(w).

Otherwise, we say that w is bad.
Suppose first that there exists a vertex u such that any vertex in A \NA[u] is good. We branch on u,

as in EDC. For each w ∈ A \ NA[u], in the branch we take w, we remove at least δ + 2 vertices. Indeed,
in the two first cases this is trivial. In the third one, if we take w we can safely discard w′ (and we also
remove δ + 2 vertices) since, otherwise, if we take w′ then w does not cover new elements so w is useless
(this case being handled in some other branch).

Assume now there exist at least two non adjacent bad vertices u and u′. Suppose first that u is
adjacent to v in F and u′ is adjacent to v′ 6= v. Let u1, u2, . . . , uδ the vertices in A\NA[u] (with uδ = u′).
When branching on u1, we consider the cases of taking u1 or not, u2 or not, . . . Then, in the branch where
all the other vertices in A \ NA[u] but u′ = uδ have been discarded, v has degree 1 and then we have to
take u in the solution (without branching on u′). In this way, we get δ − 1 branches where we remove
δ + 1 vertices.

Suppose now v′ = v. Then, in the branch where all the other vertices in A \ NA[u] but u′ have been
discarded, d(v) = 2 (since u is bad); so, we have to take either u or u′, but it is not interesting to take u′

(take u instead). So we can keep u in the solution (without branching on u′). In this way, we get also
δ − 1 branches where we remove δ + 1 vertices.

In all, we get either T (n) 6 (δ − 1)T (n − δ − 2) + T (n − δ − 1), or T (n) 6 (δ − 1)T (n − δ − 1).
The worst case of these recurrence relations is T (n) 6 3T (n − 6) + T (n − 5), leading to a running time
O∗(1.2740n) = O∗(20.35n). Denoting by EDC’ this improved version of EDC, we get the following.

Proposition 2. Algorithm EDC’ decides whether there exists a dominating clique, or not, with running
time O∗(20.35n) = O∗(1.2740n).

2.3 Memorization: trading space for time

The principle of memorization, as it has been explained for example in [3], is quite simple. Before running
the algorithm on the main graph, we run it on every induced subgraph of size at most αn and store the
results in a table1. Notice that, thanks to the recurrence defined above at the end of Section 2.2, we only
need to call a finite number of subproblems of size k − 1 or less in order to compute a given subproblem

1Note that, in the algorithms, available vertices never become free (or vice-versa), hence the number of subproblems of
size αn to consider is

`

n

αn

´

.
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of size k. Then, using a classical bottom up technique, the total computation time (and space) for all the
subproblems of size k, say S(k, G), is at most:

O∗





(

n

k

)

+
∑

i6k−1

S(i, G)





from what we get (for α 6 1/2):
∑

k6αn

S(k, G) ∈ O∗
((

n

αn

))

Now, we run the main algorithm until the remaining graph has size αn or less; then a polynomial-time
query in the storage table allows us to conclude. Thus, the total running time and space is:

O∗
(

max

{(

n

αn

)

, 1.2740(1−α)n

})

This value is minimal for an α solution of the equation 1.27401−α = 1/(αα(1 − α)1−α), leading to
T (n) = O∗(1.2556n).

3 max dominating clique

The function T (S, D, A, F ) is now an integer function that returns the cardinality of a maximum dominat-
ing clique in G contained in set A and with no vertex from set D, if any, and −∞ otherwise. Once again,
solving max dominating clique is equivalent to finding maxv∈V {T ({v}, ∅, N(v), V \N [v])}. Note that
now we cannot discard as in Algorithm EDC any vertex that has degree 0 in F , because we could be led
to a solution that is not a maximum one; however, we claim that we can compute a solution with the
same running time by the following algorithm called MDC1 that works as follows:

1. if A = F = ∅, then T (S, D, A, F ) = |S|;

2. if ∃u ∈ F , such that dA(u) = 0, then T (S, D, A, F ) = −∞;

3. fix w ∈ A such that dA(w) is maximum, and dF (w) is maximum among vertices of maximum dA.
If there u ∈ A \ N [w], such that dF (u) = 0, then

T (S, D, A, F ) = max
u′∈A\(NA(w)∪{u})

{T (S ∪ {u′} , D ∪ (A \ NA [u′]) ∪ NF (u′) , NA (u′) , F \ NF (u′))}

otherwise

T (S, D, A, F ) = max
u∈A\NA(w)

{T (S ∪ {u}, D ∪ (A \ NA[u]) ∪ NF (u), NA(u), F \ NF (u))}

To prove correctness, just consider the following three facts:

1. if we add some vertex to S, we must discard any vertices from A that are not its neighbors;

2. if every vertices in A \N(w) have been discarded, then any vertex still available is in NA(w), so we
can safely add w to S;

3. if every vertex in A \N(w) but u has been discarded, then only one among u and w may be added;
furthermore, if dF (u) = 0, we can safely discard u and add w to S.

Proposition 3 . Algorithm MDC computes a maximum-size dominating clique, if any, with running
time O∗(22n/5). This bound is tight.

Proof of Proposition 3 is a straightforward consequence of the following Lemma 1

Lemma 1. If d̄A(w) = α, for some α ∈ N, then:

T (n) 6 max {α × T (n− α − 1), (α + 1) × T (n − α − 2), T (n− α) + α × T (n − α − 3)}

5



Proof. Let (ui)i6α be the α neighbors of u. If dF (u1) = 0, then (u2, . . . , uδ ∈ D) ⇒ w ∈ S; so,
T (n) 6 δT (n− δ− 1). Otherwise, ∀i, dF (ui) > 1. In this case, if d̄A(u1) = δ then, by the fact that dF (w)
is maximum (Step 3 of Algorithm MDC1), dF (w) > 1, and T (n) 6 (α + 1)T (n − α − 2). Finally, in any
other case, for any i, d̄A(ui) + dF (ui) > α + 2. Thus, T (n) 6 T (n − α) + αT (n − α − 3).

To conclude the proof of Proposition 3, it suffices to observe that T (n) = 22n/5 verifies all recurrences
stated in Lemma 1. The tightness example is the same as for EDC.

Proposition 4. Using memorization, Algorithm MDC computes a maximum-size dominating clique, if
any, with running time and space O∗(1.2937n).

Proof. As previously, we run MDC on every subgraph of size at most βn and store the results in a table,
with time and space at most:

S(β, n) ∈ O∗
((

n

βn

))

Now, we run the main algorithm until the remaining graph has size βn or less; then a polynomial-time
query in the storage table allow us to conclude. Thus, total running time and space is:

O∗
(

max

{(

n

βn

)

, 22(1−β)n/5

})

This value is minimal for a β solution of the equation 22(1−β)/5 = 1/(ββ(1 − β)1−β), that leads to
T (n) 6 O∗(1.2937n).

4 min dominating clique

The function T (S, D, A, F ) is now an integer function that returns the cardinality of a minimum dom-
inating clique in G contained in set A and with no vertex from set D, if any, and ∞ otherwise. Once
again, solving min dominating clique is equivalent to finding minv∈V {T ({v}, ∅, N(v), V \ N [v])}. We
denote in this section by dA(v) the degree of v within the set A of available vertices and by d̄A(v) the
anti-degree of v always within set A. The following remarks hold.

Remark 4. Each vertex j ∈ A is adjacent to at least one vertex i ∈ F , or else j can be discarded as it
cannot be part of the dominating clique.

Remark 5. There exists at least one vertex j ∈ A such that d̄A(j) > 1, or else a pure set covering
problem where the set F corresponds to the universe U of elements and the set A corresponds to the
collection S of the (nonempty) subsets of U and the aim is to determine a minimum cardinality sub-
collection S′ ⊆ S which covers U . This set covering problem is known to be solvable to optimality in
O∗(1.2301|A|+|F |) time ([2]). But, as |A| + |F | 6 n this is not superior to O∗(1.2301n) time.

Remark 6. Each vertex i ∈ F is adjacent to at least three vertices j, k, l ∈ A, or else a low exponential
complexity immediately holds in the worst case. Indeed, if i ∈ F is adjacent only to the vertex j ∈ A,
then no branch occurs, j is included in S dominating i which is removed from F ; alternatively, i ∈ F is
adjacent to vertices j, k ∈ A and either j or k must be included in S to dominate i. Then: if dF (j) > 2,
either j is included in S and at least 3 vertices are removed, or j is discarded, k is included and i is
covered, i.e., 3 vertices are removed. If dF (k) = dF (k) = 1, d̄A(j) > 1 holds, or else k could be discarded
without branching. But then, in both cases at least three vertices are fixed leading to T (n) 6 2T (n− 3)
corresponding to O∗(1.2599) time.

We claim that we can solve min dominating clique with running time O∗(1.3248n) by the following
algorithm called MINDC1 that works as follows:

1. if A = F = ∅, then T (S, D, A, F ) = |S|;

2. else, if ∃i ∈ F , such that dA(i) = 0, then T (S, D, A, F ) = ∞;

3. else, if ∀j ∈ A d̄A(j) = 0, then solve the problem as a minimum set covering problem according to
Remark 5 with complexity not superior to O∗(1.2301n);
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4. else, if ∃i ∈ F , such that 2 > dA(i) > 1, then branch on the vertices adjacent to i according to
Remark 6 with complexity not superior to O∗(1.2599n);

5. else, if ∀i ∈ F dA(i) > 3, then select j ∈ A such that d̄A(j) is maximum and branch according to
the following exhaustive cases

(a) d̄A(j) > 1 with vertex j ∈ A adjacent to only one vertex i ∈ F with dA(i) = 3.

(b) d̄A(j) > 1 with vertex j ∈ A adjacent to only one vertex i ∈ F with dA(i) > 4.

(c) d̄A(j) = 1 with vertex j ∈ A non adjacent to vertex k ∈ A and adjacent to exactly two vertices
h, i ∈ F with dA(i) > dA(h) = 3.

(d) d̄A(j) = 1 with vertex j ∈ A non adjacent to vertex k ∈ A and adjacent to exactly two vertices
h, i ∈ F with dA(i) > dA(h) = 4.

(e) d̄A(j) = 1 with vertex j ∈ A non adjacent to vertex k ∈ A and adjacent to exactly two vertices
h, i ∈ F with dA(i) > dA(h) > 5.

(f) d̄A(j) = 1 with vertex j ∈ A non adjacent to vertex k ∈ A and adjacent to at least three
vertices g, h, i ∈ F .

(g) d̄A(j) > 2 with vertex j ∈ A non adjacent to vertices k, m ∈ A and adjacent to at least two
vertices h, i ∈ F .

Proposition 5. Algorithm MINDC computes a minimum-size dominating clique, if any, with running
time O∗(1.3248n).

Proof. The correctness of the algorithm is straightforward. For the complexity we consider all subcases
of case 5.

• If case 5a holds, let j, k, l the three vertices ∈ A adjacent to i. If j is selected, it must dominate i,
hence k, l must be discarded. Alternatively, j is discarded inducing dA(i) = 2 and the applicability
of Remark 6. Overall, we have T (n) 6 T (n − 4) + 2T (n − 4) = 3T (n − 4) inducing as complexity
O∗(1.3196n).

• If case 5b holds, there are at least 4 vertices j, k, l, m ∈ A adjacent to i. If j is selected, it must
dominate i, hence k, l, m must be discarded. Alternatively, j is discarded. Hence, either 1 vertex or
5 vertices are fixed, namely we have T (n) 6 T (n−1)+T (n−5) inducing as complexity O∗(1.3248n).

• If case 5c holds, then either j is selected, k ∈ A non adjacent to j is discarded and h, i are
dominated, or j is discarded inducing dA(h) = 2 and the applicability of Remark 6. Overall, we
have T (n) 6 T (n − 4) + 2T (n− 4) = 3T (n− 4) inducing as complexity O∗(1.3196n).

• If case 5d holds, then j is non adjacent to k ∈ A and is adjacent to h, i ∈ F with dA(i) > dA(h) = 4.
If ∃ l ∈ A with d̄A(l) = 0 which is adjacent to both h and i, then j is dominated by l and can
be discarded. Also, if l is adjacent to just one among h and i, namely, w.l.o.g., adjacent to h and
non adjacent to i, then all other vertices adjacent to i must be discarded when selecting j or else
j would again be dominated by l: but this, induces a recurrence T (n) 6 T (n − 1) + T (n − 6)
with complexity O∗(1.286n). Similar considerations hold for vertex k. If k is adjacent to both h
and i, then j is dominated by k and can be discarded. Else, if k is adjacent to just one among h
and i, namely, w.l.o.g., adjacent to h and non adjacent to i, then all other vertices adjacent to i
must be discarded when selecting j or else j would be dominated by k: once again, this, induces a
recurrence T (n) 6 T (n− 1)+ T (n− 6) with complexity O∗(1.286n). Alternatively both k and l are
non adjacent to h nor to i. Let α, β and γ ∈ A be the available vertices adjacent to h. Notice that
d̄A(α) = d̄A(β) = d̄A(γ) = 1 as d̄A(j) = 1 j being the vertex with maximum anti-degree within set
A and must have antidegree within set A strictly greater than 0 are they are adjacent to h. Then,
there are at least 2 edges between vertices α, β and γ, say wlog. edges (αβ) and (αγ). Consequently,
a branch on the vertices dominating h holds, where either j is selected or j is discarded and α is
selected or j, α are discarded and β is selected or j, β, γ are discarded and γ is selected inducing a
recurrence T (n) 6 T (n− 4) + T (n − 5) + T (n − 6) + T (n − 6) with complexity O∗(1.3086n).
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• If case 5e holds, then j is non adjacent to k ∈ A and is adjacent to h, i ∈ F with dA(i) > dA(h) > 5.
Similarly to subcase 5d, if ∃ l ∈ A with d̄A(l) = 0 which is adjacent to either h or i or both, or if k
is adjacent to either h or i or both, then a recurrence T (n) 6 T (n− 1)+ T (n− 7) would hold (now
dA(i) > dA(h) > 5) with complexity O∗(1.2555n). Alternatively, a branch on j holds where, if j is
selected, then k is discarded, h, i are dominated and either all other vertices ∈ A and adjacent to h
are discarded, or all other vertices ∈ A and adjacent to i are discarded. This induces a recurrence
T (n) 6 T (n− 1) + 2T (n− 8) with complexity O∗(1.307n).

• If case 5f holds, vertex j is non adjacent to vertex k ∈ A and is adjacent to at least 3 vertices g, h, i
∈ F . If j is selected, k is discarded and g, h, i are dominated. Alternatively, j is discarded. Hence,
either 1 vertex or 5 vertices are fixed, namely we have T (n) 6 T (n − 1) + T (n − 5) inducing as
complexity O∗(1.3248n).

• If case 5g holds, vertex j is non adjacent at least to vertices k, m ∈ A and is adjacent at least to
vertices h, i ∈ F . If j is selected, k, m are discarded and h, i are dominated. Alternatively, j is
discarded. Hence, either 1 vertex or 5 vertices are fixed, namely we have T (n) 6 T (n−1)+T (n−5)
inducing as complexity O∗(1.3248n).

The overall worst-case complexity is then O∗(1.3248n).

Proposition 6. Using memorization, Algorithm MINDC computes a minimum-size dominating clique, if
any, with running time and space O∗(1.2980n).

Proof. As previously, we run MINDC on every subgraph of size at most γn and store the results in a
table, with time and space at most:

S(γ, n) ∈ O∗
((

n

γn

))

Now, we run the main algorithm until the remaining graph has size γn or less; then a polynomial-time
query in the storage table allow us to conclude. Thus, total running time and space is:

O∗
(

max

{(

n

γn

)

, 1.3248(1−γ)n

})

This value is minimal for a γ solution of the equation 1.32481−γ = 1/(γγ(1 − γ)1−γ), that leads to
T (n) = O∗(1.2980n).

5 Dense and sparse graphs

5.1 Graphs of fixed maximal or minimal degree

Notice that if a graph has maximum degree ∆, all the maximal cliques can be computed with running
time O∗(3∆/3) and all the cliques with running time O∗(2∆). In particular, dominating clique problems
are polynomial if ∆ is finite and subexponential if ∆ = o(n).

In the case of high minimum degree δ, this does not remain true. Indeed, max clique easily reduces
to max dominating clique by adding to the graph instance G a new vertex adjacent to any vertex
in G, and max clique is well known to be NP-hard even in graphs of minimum degree n − 4 (max

independent set being NP-hard in graphs of maximum degree 3,[5]). Then, even in graphs with
minimum degree δ > n− δ for some constant δ max dominating clique is not polynomial (if P6= NP).
However, there are some interesting results.

By definition, for any v ∈ V , nf(v) 6 n− δ. Thanks to Remark 3, if there exists a dominating clique,
then there exists a dominating clique of size at most nf(v). Thus, existing, and min dominating

clique can be computed with running time O∗
(

(

n
n−δ

)

)

. In particular, existing, and min dominating

clique are polynomial if n − δ is finite and subexponential if n − δ = o(n).
We now exhibit Algorithm MDC2 that solves max dominating clique in any graph, but it is inter-

esting only for dense graphs:

1. for every v ∈ V , form the collection S(v) of every subset of N [v] of size at most nf(v) that is a
dominating clique;

8



2. for every S ∈ S(v), compute a maximum clique in G[
⋂

s∈S N [s]];

3. return the maximum-size clique among those computed in Step 2.

Proposition 7. Algorithm MDC2 solves max dominating clique.

Proof. Let K∗ be an optimal solution for max dominating clique. According to Remark 3, for any
v ∈ K∗, there exists K ⊂ K∗ such that K is a dominating clique and |K| 6 nf(v) 6 n − δ. Thus, K
belongs to S(u), for some u. Let K ′ the maximum clique in G[

⋂

s∈K N [s]]. According to Remark 1, K ′

is a dominating clique, while K∗ ⊆ ⋂s∈K N [s]. Then, by maximality, |K ′| = |K∗|. So, Algorithm MDC2

computes a maximum-size dominating clique.
For δ > n/2, the size of the collection computed at step 1 is at most n2

(

n
n−δ

)

; thus, Algorithm MDC2

has running time O∗
(

cn
(

n
n−δ

)

)

if the algorithm used to solve max clique has complexity O∗(cn). In

particular, max dominating clique can be computed with the same exponential bound on running
time as max clique in graphs such that n − δ = o(n); this bound cannot be improved (thanks to the
reduction from max clique mentioned above).

Note that the best worst-case complexity bound for max clique is, to our knowledge, the O∗(1.1889n)
bound claimed by [9] in his unpublished technical report, or the O∗(1.2210n) algorithm by [4], that is the
best published result.

5.2 Graphs of small average degree

More generally, the density of a graph can be defined as D(G) = 2m/(n(n − 1)) = d/(n − 1) where d is
the average degree of the graph. It can be easily seen that, if D(G) = o(1), the size of a maximum clique
is o(n) and then we can enumerate all cliques in subexponential time.

We now focus ourselves on the case where D(G) /∈ o(1) but is bounded above by some constant
λ ∈ [0, 1]. In this case, average degree is at most λ(n − 1), hence:

m 6
λn(n − 1)

2
6

λn2

2
(1)

By enumeration of subsets of size at most
√

D(G)n, we trivially find if there is a dominating clique (and
return the minimal and the maximal one) with running time O∗ (( n√

λn

))

. This is only interesting for

rather small values of λ; for example, if
√

λ = 1/20, running time is O∗(1.22n).
As far as existing dominating clique and max dominating clique are concerned (not min

dominating clique), we can greatly improve this result. Notice that, for any dominating clique K we
have the following inequality:

m >
|K|(|K| − 1)

2
+
∑

v∈K

dV \K(v)

Assume first that there exists a vertex v ∈ K such that dV \K(v) < µn + 1/2, for a given µ whose value
will be fixed later. Then n(1 − f(v)) < µn + 1/2 + |K|.

In [1] it is established that in a graph of size n, the cliques of size k or less (where n/k > 3) can
be enumerated within time O∗((n/k)k). Thus, we can enumerate all maximal cliques containing v with
running time:

T (n) = O∗
(

(

µn + 1
2 + |K|
|K|

)|K|)

= O∗
(

2|K| log2(1+µn/|K|)
)

Since this function is increasing with K and, according to (1), |K| 6
√

2m + 1 6
√

λn + 1, this leads to:

T (n) = O∗
(

2
√

λn log2(1+µ/
√

λ)
)

(2)

On the other hand, if for any v ∈ K, dV \K(v) > µn + 1/2, using also (1), we get:

m >
|K|(|K| − 1)

2
+ |K|

(

µn +
1

2

)

=
|K|2

2
+ |K|µn =⇒ |K| 6

(

√

λ + µ2 − µ
)

n
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In this case, running time for enumerating all small subsets containing v is bounded above by:

T (n) = O∗













n
(

√

λ + µ2 − µ
)

n





“√
λ+µ2−µ

”

n








= O∗
(

2

“√
λ+µ2−µ

”

n
˛

˛

˛
log2

“√
λ+µ2−µ

”
˛

˛

˛

)

(3)

The running time given by (2) is increasing with µ while the one given by (3) is decreasing. So, the best
value for µ is given when both are equal2, i.e. when:

(

√

λ + µ2 − µ
)

×
∣

∣

∣
log2

(

√

λ + µ2 − µ
)∣

∣

∣
=

√
λ log2

(

1 +
µ√
λ

)

In Table 3, bounds on running time of the above method vs. running time of exhaustive search (both
depending on parameter λ) are given.

√
λ 1/4 1/6 1/8 1/10 1/20 1/50

Optimal µ 0.326 0.248 0.200 0.169 0.097 0.045
Running time of our algorithm 1.233n 1.164n 1.127n 1.104n 1.056n 1.046n

Running time of exhaustive search 1.755n 1.570n 1.458n 1.385n 1.220n 1.104n

Table 3: Running time of our algorithm vs. running time of exhaustive search for some values of λ.

5.3 Graphs of high average degree

In this section, we deal with graphs of density D(G) > 3/4. As previously, it is easy to see that in such
graphs max dominating clique is harder than max clique.

Let us define Algorithms mDC1 and MDC3 for min dominating clique and max dominating clique,
respectively. The former, mDC1, works as follows:

fix ǫ =
√

1 − D(G), compute any subset of size at most ǫn and return a smallest one that is
a dominating clique if any.

On the other hand, Algorithm MDC3 for max dominating clique works as follows:

1. fix ǫ =
√

1 − D(G) and compute any subset of size at most ǫn; let K0 be a largest one that is a
dominating clique, if any;

2. for every v ∈ V such that nf(v) 6 ǫn, form the collection S(v) of every subset of size at most nf(v)
that is a dominating clique;

3. for every S ∈ S(v), compute a maximum clique in G[
⋂

s∈S N [s]];

4. let K1 be a clique of maximum size among those computed in Step 3; output max{K0, K1}.
Obviously, if there exists no dominating clique in the graph, both algorithms return nothing. We now
prove that, if some dominating clique exists, Algorithm mDC1 computes a minimum dominating clique,
while Algorithm MDC3 computes a maximum dominating clique.

Fix K∗ a maximum dominating clique. If |K∗| 6 ǫn, it is clear that both algorithms work correctly.
Assume |K∗| > ǫn and suppose that, for any v ∈ K∗, f(v) > ǫ. Then:

n(n − 1)

2
− m >

1

2

∑

v∈K∗

nf(v) >
ǫ2

2
n2 >

1 − D(G)

2
n(n − 1)

Plugging m = D(G)n(n − 1)/2 in the previous inequality leads to a contradiction.
Consequently, there exists a vertex v ∈ K∗ with nf(v) < ǫn. Since there exists a dominating

clique of size at most nf(v), according to Remark 3, Algorithm mDC1 returns a minimum dominating

2under the condition that n/k > 3, i.e.

p

λ + µ2
− µ 6 1/3, which is verified is the sequel.
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clique K0. Furthermore, K∗ has the same size as a maximum clique in G[
⋂

s∈K0
N [s]], which means that

Algorithm MDC3 returns a maximum dominating clique.
To conclude, notice that D(G) = 1 − o(1) implies ǫ = o(1), and then

(

n

ǫn

)

= O∗
((

1

ǫǫ(1 − ǫ)1−ǫ

)n)

= 2o(n)

Consequently, it is clear that in this case Algorithm mDC1 has subexponential running time, while the
complexity of MDC3 is the running time of the max clique-algorithm called in Step 3, with a subexpo-
nential multiplicative factor. Again, no improvement in the exponential basis of the running time seems
possible thanks to the reduction from max clique to max dominating clique mentioned above.

6 Moderately exponential approximation

Since any approximation algorithm for min dominating clique or max dominating clique solves
existing dominating clique that is NP-complete, it is impossible to devise any polynomial approxi-
mation algorithm for min- and max dominating clique. Thus, it seems interesting to see if it is possible
to compute solutions for the two optimization problems that guarantee a good approximation ratio with
moderately exponential running time; interesting running times of approximation algorithms lie between
the best known complexity for solving existing dominating clique (O∗(1.2740) with our algorithm)
and the best known complexity for solving the corresponding optimization problem. We propose in what
follows two algorithms mMOD and MMOD that do this for min dominating clique and max dominating

clique, respectively. Obviously, in what follows we assume that we handle graphs admitting dominating
cliques (otherwise our algorithm detects the .

Algorithm mMOD(ρ) (i.e., parameterized by the ratio ρ that one wishes to attain) for min dominating

clique works as follows:

• run algorithm EDC’ and let K0 be the dominating clique computed;

• compute all the subsets of V whose size is at most n/ρ; let K1 be a dominating clique of minimum
size among them; if none is found, then set K1 = V ;

• return argmin{|K0|, |K1|}.

Proposition 8. If G(V, E) has a dominating clique then, for any ρ, 2 6 ρ 6 15.24, it is possible to com-

pute a ρ-approximation to min dominating clique with polynomial space and running time O∗
(

(

n
n/ρ

)

)

.

This is faster than the exact (polynomial space) algorithm for ρ > 11.71.

Proof. Observe first that Algorithm mMOD has running time (for 2 6 ρ 6 15.24):

O∗
(

1.2740n +

(

n

n/ρ

))

= O∗
((

n

n/ρ

))

Now, let K∗
m be a minimum dominating clique of G. If |K∗

m| 6 n/ρ, then |K1| = |K∗
m| and mMOD is

optimal. Otherwise:
|K0|
|K∗

m| 6
n
n
ρ

= ρ

A simple algebra fixes ρ as claimed.
The same proof applied to an algorithm with memorization leads to the following result.

Proposition 9. If G(V, E) has a dominating clique, then, for any ρ, 2 6 ρ 6 16.60, it is possible to

compute a ρ-approximation to min dominating clique with running time and space O∗
(

(

n
n/ρ

)

)

. This

is faster than the exact (exponential space) algorithm for ρ > 12.40.

Unfortunately, this strategy does not work as far as max dominating clique is concerned. Indeed,
consider the following instance: K = (ki)i6n/3 is a clique and S(si)i6n/3, T (ti)i6n/3 are two independent
sets. Add an edge for each pair (ki, si), (ki, ti) and (si, ti). All the dominating cliques but K have size
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exactly 3. Thus, searching for all small and/or large cliques leads to an unbounded approximation ratio.
However, it is possible to get some approximation result if we observe that algorithm EDC’ is able not
only to find a dominating clique, but also, given a subset S, to find a dominating clique containing S.

Based upon this remark we devise Algorithm MMOD(ρ) for max dominating clique that works as
follows:

• compute all the subsets K of V whose size is at most n/ρ; if K is a clique, then find T (K, N [K] \
⋂

v∈K N [v],
⋂

v∈K N(v), V \ N [K]), according to algorithm EDC’ (where N [K] = ∪v∈KN [v]);

• return the largest dominating clique found, denoted by K.

Proposition 10. If G(V, E) has a dominating clique, then, for any ρ > 2 it is possible to compute a
ρ-approximation to max dominating clique with polynomial space and running time:

O∗
((

n

n/ρ

)

1.2740n(1−1/ρ)

)

This is faster than the exact (polynomial space) algorithm for ρ > 168.

Proof. Observe first that Algorithm MMOD has running time:

O∗
(

1.2740|V \N [K]|
(

n

|K|

))

= O∗
(

1.2740n(1−1/ρ)

(

n

n/ρ

))

Now, let K∗
M be a maximum dominating clique of G. If |K∗

M | 6 n/ρ, then MMOD computes an optimal
solution. Otherwise, it computes at least a dominating clique containing a subclique of size n/ρ thus
guaranteeing |K∗

M |/|K| 6 n/(n/ρ) = ρ, as claimed.
Once again, the same proof applies to the algorithm with memorization and leads to the following.

Proposition 11. If G(V, E) has a dominating clique, then, for any ρ > 2 it is possible to compute a
ρ-approximation to max dominating clique with running time and space:

O∗
((

n

n/ρ

)

1.2556n(1−1/ρ)

)

This is faster than the exact (exponential space) algorithm for ρ > 204.
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