
HAL Id: hal-00877036
https://hal.science/hal-00877036

Preprint submitted on 25 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The two-machine ow-shop serial-batching scheduling
problem with limited batch size

Mohamed Ali Aloulou, Afef Bouzaiene, Najoua Dridi, Daniel Vanderpooten

To cite this version:
Mohamed Ali Aloulou, Afef Bouzaiene, Najoua Dridi, Daniel Vanderpooten. The two-machine ow-
shop serial-batching scheduling problem with limited batch size. 2009. �hal-00877036�

https://hal.science/hal-00877036
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour

l'Aide à la Décision
CNRS UMR 7024

CAHIER DU LAMSADE

290

Decembre 2009

The two-machine flow-shop serial-batching
scheduling problem with limited batch size

M. A. ALOULOU, A. BOUZAIENE, N. DRIDI,
D. VANDERPOOTEN

The two-machine flow-shop serial-batching scheduling problem

with limited batch size

Mohamed Ali Aloulou1, Afef Bouzaiene1,2, Najoua Dridi2, and Daniel Vanderpooten1

1LAMSADE, Université Paris Dauphine, France
(aloulou,bouzaiene,vdp)@lamsade.dauphine.fr

2OASIS - Ecole Nationale d’Ingénieurs de Tunis, Tunisia
Najoua.Dridi@enit.rnu.tn

Abstract

We consider the the two-machine flow-shop serial-batching scheduling problem where the
batches have limited size. Two criteria are considered here. The first criterion is to minimize
the number of batches. This criterion reflects situations where processing of any batch
induces a fixed cost, which leads to a total cost proportional to the number of batches. The
second criterion is the makespan. We study the complexity of the problem and propose
polynomial-time algorithms for some particular cases and an approximation algorithm with
a guaranteed performance for the general case.

Keywords: two-machine flow-shop, serial batching, limited batch size, makespan, batch cost.

1 Problem formulation and motivation

The following two-machine flow-shop scheduling problem is considered. We have a set of n
jobs to be processed. Each job i, i = 1, . . . n, is made up of two operations. The first operation
is handled on machine M1 and its processing time is denoted by ai. The second operation is
handled on machine M2 and its processing time is denoted by bi. M1 and M2 are two serial-
batch (or sum-batch) machines with a limited capacity, denoted by c, in terms of the number
of jobs (each job i has a unit size si = 1). The following assumptions are made: (i) preemption
is not allowed, (ii) each batch in both machines does not contain more than c operations, (iii)
operations within a batch can be processed in any order, (iv) the total processing time of
a batch is equal to the sum of the processing times of the operations in the batch, (v) an
operation is assumed to be completed if all the operations in its batch are completed (batch
availability constraint). Two criteria are considered here. The first criterion is to minimize
the number of batches #batch. This criterion reflects situations where processing of any batch
induces a fixed cost, which leads to a total cost proportional to #batch. The second criterion
is the makespan Cmax, i.e. the completion time of the last job on machine M2. This bicriteria
scheduling problem is denoted by F2|sum-batch, c|(#batch, Cmax).

Our model can be seen as a generalization of the model proposed by [1], where the authors
studied the problem of finding group-schedules for problem F2||Cmax. A group-schedule is
a sequence of groups of permutable operations (or batches) defined on each machine. Two

1

conflicting criteria are of interest: flexibility of a solution and its makespan. The flexibility
is measured by the number of batches in the solution and the makespan is computed as for
serial-batch models. The only difference with our model is that the number of jobs in a batch
is not limited, i.e. c = n. Referring to previous results of [2] for F2|sum-batch|Cmax (with
setup times), they conclude that the constrained problems F2|sum-batch, Cmax ≤ α|#batch
and F2|sum-batch,#batch = k|Cmax are NP-hard in the strong sense. When k is fixed,
the second problem is NP-hard in the ordinary sense. They also provide polynomial-time
approximation algorithms for these problems. Unfortunately, these algorithms cannot be
extended to our model.

If the number of jobs n is a multiple of c, i.e. n = ch, then the solution with a minimum
number of batches contains exactly h full batches. Here, a batch is called full if it contains
exactly c jobs. The lexicographic bicriteria problem F2|sum-batch, c|Lex(#batch, Cmax) is
equivalent to problem F2|sum-batch, c-in-1|Cmax, where notation c-in-1 imposes to have ex-
actly c jobs in a batch insuring that the number of batches is minimum. This notation has
been first introduced by [3] for single-machine batch scheduling. The authors considered prob-
lem 1|sum-batch, c-in-1, wi = pi|

∑
wiCi and proved that it is NP-hard in the strong sense

when c ≥ 3 and polynomially solvable when c = 2. They also provide a polynomial time
algorithm when the jobs are inversely agreeable, i.e. pi < pj implies wi ≥ wj .

If the number of jobs is not multiple of c, we can add c× dnc e − n dummy jobs with zero
processing times in both machines and solve problem F2|sum-batch, c-in-1|Cmax to determine
the solution minimizing the makespan under the constraint that the number of batches is
minimum. By the same way, if we impose a number of batches #b ∈ {dnc e, . . . , n}, in order
to determine a solution with minimum makespan, we add c × #b − n dummy jobs with
zero processing time in both machines and solve problem F2|sum-batch, c-in-1|Cmax. Hence,
solving (n − d nB e + 1) times problem F2|sum-batch, c-in-1|Cmax allows us to solve problem
F2|sum-batch, c|(#batch, Cmax).

In this paper, we first study the complexity of problem F2|sum-batch, c-in-1|Cmax. Then
we propose polynomial-time algorithms for some particular cases and an approximation al-
gorithm with a guaranteed performance for the general case.

2 Complexity

Theorem 1 Problem F2|sum-batch, c-in-1|Cmax is NP-hard in the strong sense for c ≥ 3,
even if ai = bi for all i = 1, . . . , n.

Proof : First remark that in this case all batches have the same duration on both machines
and consequently if the batches are formed the makespan of any batch sequence is equal to
the sum of ai, i = 1, . . . , n plus the duration of the largest batch. Hence to solve problem
F2|sum-batch, c-in-1, ai = bi|Cmax, we only have to constitute the batches such that the
duration of the largest one is minimum.

We use a polynomial transformation from the 3-Partition problem: Given 3m+ 1 positive
integers c1, . . . , c3m and C such that C/4 < cj < C/2, j = 1, . . . , 3m, and

∑3m
j=1 cj = mC, is

there a partition of the set {1, . . . , 3m} into m subsets X1, . . . , Xm, for which
∑

j∈Xl
cj = C,

l = 1, . . . ,m? Given an instance of this problem, construct the following instance of our
problem. There are 3m jobs i such that ai = bi = ci. We show that 3-partition problem
has a solution if, and only if, there exists a solution to the constructed instance such that
#batch = m and Cmax ≤ y := (m+ 1)C.

2

Suppose that 3-partition problem has a solution X = {X1, . . . , Xm}. Constitute m batches
according to solution X. The makespan of any batch sequence is equal to

∑
j=1,...,mXj +

maxj=1,...,mXj = mC + C = (m+ 1)C.
Assume now that there exists a schedule such that #batch = m and Cmax ≤ (m+1)C. Let

X1, . . . , Xm be the duration of the corresponding batches. We have Cmax =
∑

j=1,...,mXj +
maxj=1,...,mXj = mC + maxj=1,...,mXj ≤ (m + 1)C. Then maxj=1,...,mXj = C and X1 =
. . . = Xm = C, which means that X = {X1, . . . , Xm} is solution to 3-partition problem.

However, problem F2|sum-batch, 2-in-1|Cmax is open.

3 Polynomial-time cases

Solving the batching problem for a given job sequence: Given a job sequence π,
we propose a polynomial-time dynamic-programming algorithm, named DP1(π), allowing
us to solve the bicriteria problem F2|sum-batch, c|(#batch, Cmax), i.e. determine the Pareto
optimal solutions set Eπ subject to the constraint that the jobs follow sequence π. We first
renumber the jobs according to sequence π. For each partial solution in which we have already
scheduled i jobs, we associate a state(i, k, q), where k is the total number of jobs in the last
batch and q is the number of batches. Let C(i, k, q) denote the minimum makespan among all
partial solutions corresponding to the same state state(i, k, q). Algorithm DP1(π) recursively
calculates values C(.). The initialization is given by :

C(i, k, q) =∞ (i = 0, ..., n; k = 0, ..., n, q = 0, ..., n.) and C(0, 0, 0) = 0.
The recursion for i = 1, ..., n, k = 1, ..., i and q = 1, ..., i is given by:

C(i, k, q) =

∞, if k > c,

max(C(i− 1, k − 1, q)−
∑k−1

j=1 bi−j ,
∑i

j=1 aj) +
∑k−1

j=0 bi−j , if 1 < k ≤ c,
minp=0,...,i−1{max(C(i− 1, p, q − 1),

∑i
j=1 aj)) + bi}, if k = 1.

In order to enumerate all Pareto optimal solutions following the given sequence, we
determine, for each value q ∈ {1, ..., n}, the optimal makespan, which is given by
mink=1,...,nC(n, k, q). The corresponding solutions are obtained by backtracking. The run-
ning time of algorithm DP1(π) can be evaluated as O(n3).

Equal processing times and batches of size two: We consider here the problem
F2|sum-batch, 2− in− 1, ai = bi|Cmax. First renumber the jobs such that a1 ≤ a2 ≤ ... ≤ an.
We have the following results.

Lemma 1 If n is even, then there exists an optimal solution for problem
F2|sum-batch, 2-in-1, ai = bi|Cmax in which jobs i and (n − i + 1), for i = 1, . . . , n/2,
are in the same batch.

Proof : Consider an optimal solution π characterized by batches B1, . . . , Bh (with h = n/2).
Suppose that jobs 1 and n are not in the same batch, i.e. job 1 is with some job j1 in a
batch Bk and job n is with another job j2 in a batch Bl. Construct a new solution π′ in
which jobs 1 and n are in the same batch B′k, jobs j1 and j2 are in the same batch B′l, and
the other batches are the same as in π. Denote by p(Br) =

∑
i∈Br

ai, r = 1, . . . , h. We have
p(B′k) = a1 + an ≤ aj2 + an = p(Bl) and p(B′l) = aj1 + aj2 ≤ an + aj2 = p(Bl). Consequently,

3

maxr=1,...,h p(B′r) ≤ maxr=1,...,h p(Br) and we have Cmax(π′) ≤ Cmax(π), which means that π′

is also optimal. By repeating the same procedure at most n/2 times, we obtain a solution
satisfying the property.

If the number of jobs is odd, we can easily prove that job n is alone on a batch and jobs
i and (n− i), for i = 1, . . . , bn/2c, are in the same batch. Hence, we get the following result.

Theorem 2 Problem F2|sum-batch, 2-in-1, ai = bi|Cmax can be solved in O(n log n) time.

As a consequence, problem F2|sum-batch, c = 2, ai = bi|(#batch, Cmax) can be solved
in O(n2) time by adding some dummy jobs and solve O(n) 2-in-1 problems. Remark that
imposing a number of batches #b, n/2 ≤ #b ≤ n, implies that there are (2×#b−n) batches
with one job each and (n −#b) batches containing each 2 jobs. In an optimal solution, the
latter batches will contain the jobs with largest processing time, i.e. jobs (2n−2#b+1), . . . , n,
and the former batches are constructed according to lemma 1. Consequently, we have the
following result.

Corollary 1 The bicriteria problem F2|sum-batch, c = 2, ai = bi|(#batch, Cmax) can be
solved in O(n2) time.

Constant processing time for the first or the second machine: We can prove the
following result by the job interchange argument.

Lemma 2 Any Pareto optimal solution of problem F2|sum-batch, c, ai = a|(#batch, Cmax)
can be transformed into a solution with the same performance measure values such that the
jobs are processed in LPT order with respect to their processing times on machine M2.

Using algorithm DP1(πLPT (M2)), we get the following result.

Theorem 3 F2|sum-batch, c, ai = a|(#batch, Cmax) can be solved in O(n3) time.

Similarly, we can prove that any Pareto optimal solution of problem F2|sum-batch, c, bi =
b|(#batch, Cmax) can be transformed into a solution with the same performance measure
values such that the jobs are processed in SPT order with respect to their processing times
on machine M1. Using algorithm DP1(πSPT (M1)) allows to solve the problem.

Theorem 4 F2|sum-batch, c, bi = b|(#batch, Cmax) can be solved in O(n3) time.

4 A polynomial-time approximation algorithm

We consider here that the number of jobs n is such that n = ch, h > 0. Otherwise, we
add (ch − bn/cc) dummy jobs with zero processing times in both machines. We propose
an approximation algorithm, named A(c), to solve problem F2|sum-batch, c-in-1|Cmax in
polynomial time when c is constant. In this algorithm, batches are formed according to
Johnson sequence. When the condition in instruction 6 is not verified, and when h ≥ 2c− 2,
jobs of batch Bk are separated and mixed with the jobs of the following (or previous) c − 1
batches when k ≤ c− 1 (or k ≥ c) (see instructions 10-17). We have the following result.

4

Algorithm 1: Algorithm A(c)

Number the jobs according to Johnson sequence πJ = (1, 2, . . . ch)1

Compute CJmax the optimal makespan of the F2||Cmax problem2

Group jobs into h batches of c jobs according to sequence πJ to form solution3

S = (B1, . . . , Bh)
Compute the makespan Cmax(S) of solution S4

Identify a batch Bk such that
∑ck

i=1 ai +
∑ch

i=c(k−1)+1 bi = Cmax(S)5

if min0≤t≤c−1{
∑ck

i=c(k−1)+2+t ai +
∑c(k−1)+t

i=c(k−1)+1 bi} ≤
CJ

max
2 then6

Return solution S7

else8

if h ≥ 2c− 2 then9

if 1 ≤ k ≤ c− 1 then10

for r ← 0 to c− 1 do11

Replace batch Bk+r by batch B′k+r = (c(k − 1) + 1 + r, i2r , . . . , i
c
r) where12

ilr = c(k + r)− r − 1 + l, l = 2, . . . , c
Return the resulting solution13

S′ = (B1, . . . , Bk−1, B
′
k, . . . , B

′
k+c−1, Bk+c, . . . , Bh)

else14

for r ← 0 to c− 1 do15

Replace batch Bk−c+1+r by batch16

B′′k−c+1+r = (c(k − 1) + 1 + r, j2r , . . . , j
c
r) where

jlr = c(k − c+ r)− r − 1 + l, l = 2, . . . , c
Return the resulting solution17

S′′ = (B1, . . . , Bk−c, B
′′
k−c+1, . . . , B

′′
k , Bk+1, . . . , Bh)

else18

Select and return a best solution among all possible solutions19

Theorem 5 Algorithm A(c) is a polynomial-time approximation algorithm for problem
F2|sum-batch, c-in-1|Cmax with tight approximation ratio ρ = 3

2 when c is constant.

Proof : Denote by C∗bmax the optimal makespan for problem F2|sum-batch, c-in-1|Cmax.
In algorithm A(c) batch Bk defines Cmax(S), then we have Cmax(S) =

∑ck
i=1 ai +∑ch

i=c(k−1)+1 bi that can be rewritten, for all t = 0, . . . , c− 1,

Cmax(S) =
c(k−1)+1+t∑

i=1

ai +
ch∑

i=c(k−1)+1+t

bi +
ck∑

i=c(k−1)+2+t

ai +
c(k−1)+t∑
i=c(k−1)+1

bi. (1)

Hence, we have

Cmax(S) ≤ CJmax + min
t=0,...,c−1

{
ck∑

i=c(k−1)+2+t

ai +
c(k−1)+t∑
i=c(k−1)+1

bi}. (2)

5

Consequently, if

min
t=0,...,c−1

{
ck∑

i=c(k−1)+2+t

ai +
c(k−1)+t∑
i=c(k−1)+1

bi} ≤
1
2
CJmax,

then Cmax(S) ≤ 3
2C

J
max ≤ 3

2C
∗b
max. (instructions 6 and 7 in the algorithm).

Otherwise, since CJmax ≥
∑l

i=1 ai +
∑ch

i=l bi, l = 1, . . . , ch, we get

∀l = 1, . . . , c(k − 1) + 1, ck, . . . , ch,
l∑

i=1
i 6∈Bk\{c(k−1)+1}

ai +
ch∑
i=l

i 6∈Bk\{ck}

bi <
1
2
CJmax. (3)

We distinguish two cases:

1. Case where 1 ≤ k ≤ c−1. Algorithm A(c) provides solution S′ (see instructions 11-13).
Let B′l be the batch determining the makespan of solution S′. Then:

• if l < k or l ≥ k + c then

Cmax(S′) =
cl∑
i=1

ai +
ch∑

i=c(l−1)+1

bi

=
cl∑
i=1

ai +
ch∑
i=cl

bi +
cl−1∑

i=c(l−1)+1

bi

According to equations (3), we have
∑cl−1

i=c(l−1)+1 bi < 1
2C

J
max. Then,

Cmax(S′) ≤ 3
2C

J
max ≤ 3

2C
∗b
max.

• if k ≤ l ≤ k + c− 1, let l = k + r, 0 ≤ r ≤ c− 1. We have

Cmax(S′) =
c(k−1)∑
i=1

ai + ac(k−1)+1 + ai20 + . . .+ aic0

+ . . .

+ ac(k−1)+1+r + ai2r + . . .+ aicr
+ bc(k−1)+1+r + bi2r + . . .+ bicr
+ . . .

+ bck + bi2c−1
+ . . .+ bicc−1

+
ch∑

i=c(k+c−1)+1

bi

Hence, we have the following

Cmax(S′) =
c(k−1)+1+r∑

i=1

ai +
icr∑
i=i20

ai +
ch∑

i=c(k−1)+1+r

bi −
icr−1∑
i=i20

bi. (4)

6

According to equations (3), we have
∑icr

i=i20
ai <

1
2C

J
max. Then, Cmax(S′) ≤

3
2C

J
max ≤ 3

2C
∗b
max.

2. Case where k ≥ c. Algorithm A(c) provides solution S′′ (see instructions 15-17) Let B′′l
be the batch determining the makespan of solution S′′. Then:

• if l ≤ k − c or l > k then

Cmax(S′′) =
cl∑
i=1

ai +
ch∑

i=c(l−1)+1

bi

=
cl∑
i=1

ai +
ch∑
i=cl

bi +
cl−1∑

i=c(l−1)+1

bi

According to equations (3), we have
∑cl−1

i=c(l−1)+1 bi < 1
2C

J
max. Then,

Cmax(S′′) ≤ 3
2C

J
max ≤ 3

2C
∗b
max.

• if k − c+ 1 ≤ l ≤ k, let l = k − c+ 1 + r, 0 ≤ r ≤ c− 1. We have

Cmax(S′′) =
c(k−c)∑
i=1

ai + ac(k−1)+1 + aj20 + . . .+ ajc
0

+ . . .

+ ac(k−1)+1+r + aj2r + . . .+ ajc
r

+ bc(k−1)+1+r + bj2r + . . .+ bjc
r

+ . . .

+ bck + bj2c−1
+ . . .+ bjc

c−1

+
ch∑

i=ck+1

bi

Hence, we have the following

Cmax(S′′) =
c(k−1)+1+r∑

i=1

ai +
ch∑

i=c(k−1)+1+r

bi +
jc
c−1∑
i=j2r

bi −
jc
c−1∑

i=j2r+1

ai. (5)

According to equations (3), we have
∑jc

c−1

i=j2r
bi <

1
2C

J
max. Then, Cmax(S′′) ≤

3
2C

J
max ≤ 3

2C
∗b
max.

If h < 2c − 2, then we select a best solution, with makespan equal to C∗bmax among all
possible solutions (instruction 19 in the algorithm). The number of all possible solutions is
less than (2c(c− 1))! that is polynomial since c is constant.

To summarize, in all cases algorithm A(c) provides a solution with a makespan less or
equal to 3

2C
∗b
max.

7

Table 1: An example with a ratio equal to 3/2

i ai bi

ai ≤ bi
1 1 4M

i = 2, . . . , c− 1 i i+ 1

ai > bi

c 2M c+ 1
c+ 1 2M c

i = c+ 2, . . . , 2c 2c− i+ 2 2c− i+ 1

In order to prove that the approximation ratio is tight, consider the following instance
composed of n = 2c jobs and described in table 1. Johnson order is πJ = (1, 2, . . . , 2c) and
CJmax = 4M + (c+ 1)2 − 2. Algorithm A(2) provides a solution S = (B1, B2) such that B1 =
(1, . . . , c) and B2 = (c+1, . . . , 2c). We have Cmax(S) = 6M+(c+1)2+ c(c−1)

2 −3. The optimal
solution S∗ = (B∗1 , B

∗
2) is such that batch B∗1 = (1, . . . , c−1, 2c) and B∗2 = (c, c+1, . . . , 2c−1).

We have C∗bmax = 4M + (c+ 1)2 + c(c−1)
2 − 1. Consequently, we get:

Cmax(S)
C∗bmax

=
6M + (c+ 1)2 + c(c−1)

2 − 3

4M + (c+ 1)2 + c(c−1)
2 − 1

−→ 3
2

when M tends to ∞

5 Future research

The following questions are yet to be answered: (1) What is the complexity of problem
F2|sum-batch, 2-in-1|Cmax ? (2) Can we extend algorithm A(c) when c is part of the problem
input ? (3) In practice, is it difficult to solve this strong NP-hard problem ?

References

[1] Esswein C., J.C. Billaut and V.A. Strusevich, 2005 “Two machine shop scheduling :
compromise between flexibility and makespan value”, European Journal of Operational
Research, Vol. 167(3), pp. 796-809.

[2] Glass C.A., C.N. Potts and V.A. Strusevich, 2001 “Scheduling batches with sequential
job processing for two-machine flow and open shops”, INFORMS Journal on Computing,
Vol. 13(2), pp. 120-137.

[3] Yuan J.J., Y.X. Lin , T.C.E. Cheng and C.T. Ng , 2007 “Single machine serial-batching
scheduling problem with a common batch size to minimize total weighted completion
time”, International Journal of Production Economics, Vol. 105(2), pp. 402-406.

8

	cah290.pdf
	abdv09a

