Mohamed Ali Aloulou

Afef Bouzaiene

Najoua Dridi
email: najoua.dridi@enit.rnu.tn

Daniel Vanderpooten

The two-machine flow-shop serial-batching scheduling problem with limited batch size

Keywords: two-machine flow-shop, serial batching, limited batch size, makespan, batch cost

We consider the the two-machine flow-shop serial-batching scheduling problem where the batches have limited size. Two criteria are considered here. The first criterion is to minimize the number of batches. This criterion reflects situations where processing of any batch induces a fixed cost, which leads to a total cost proportional to the number of batches. The second criterion is the makespan. We study the complexity of the problem and propose polynomial-time algorithms for some particular cases and an approximation algorithm with a guaranteed performance for the general case.

Problem formulation and motivation

The following two-machine flow-shop scheduling problem is considered. We have a set of n jobs to be processed. Each job i, i = 1, . . . n, is made up of two operations. The first operation is handled on machine M 1 and its processing time is denoted by a i . The second operation is handled on machine M 2 and its processing time is denoted by b i . M 1 and M 2 are two serialbatch (or sum-batch) machines with a limited capacity, denoted by c, in terms of the number of jobs (each job i has a unit size s i = 1). The following assumptions are made: (i) preemption is not allowed, (ii) each batch in both machines does not contain more than c operations, (iii) operations within a batch can be processed in any order, (iv) the total processing time of a batch is equal to the sum of the processing times of the operations in the batch, (v) an operation is assumed to be completed if all the operations in its batch are completed (batch availability constraint). Two criteria are considered here. The first criterion is to minimize the number of batches #batch. This criterion reflects situations where processing of any batch induces a fixed cost, which leads to a total cost proportional to #batch. The second criterion is the makespan C max , i.e. the completion time of the last job on machine M 2 . This bicriteria scheduling problem is denoted by F 2|sum-batch, c|(#batch, C max).

Our model can be seen as a generalization of the model proposed by [START_REF] Esswein | Two machine shop scheduling : compromise between flexibility and makespan value[END_REF], where the authors studied the problem of finding group-schedules for problem F 2||C max . A group-schedule is a sequence of groups of permutable operations (or batches) defined on each machine. Two conflicting criteria are of interest: flexibility of a solution and its makespan. The flexibility is measured by the number of batches in the solution and the makespan is computed as for serial-batch models. The only difference with our model is that the number of jobs in a batch is not limited, i.e. c = n. Referring to previous results of [START_REF] Glass | Scheduling batches with sequential job processing for two-machine flow and open shops[END_REF] for F 2|sum-batch|C max (with setup times), they conclude that the constrained problems F 2|sum-batch, C max ≤ α|#batch and F 2|sum-batch, #batch = k|C max are NP-hard in the strong sense. When k is fixed, the second problem is NP-hard in the ordinary sense. They also provide polynomial-time approximation algorithms for these problems. Unfortunately, these algorithms cannot be extended to our model.

If the number of jobs n is a multiple of c, i.e. n = ch, then the solution with a minimum number of batches contains exactly h full batches. Here, a batch is called full if it contains exactly c jobs. The lexicographic bicriteria problem F 2|sum-batch, c|Lex(#batch, C max) is equivalent to problem F 2|sum-batch, c-in-1|C max , where notation c-in-1 imposes to have exactly c jobs in a batch insuring that the number of batches is minimum. This notation has been first introduced by [START_REF] Yuan | Single machine serial-batching scheduling problem with a common batch size to minimize total weighted completion time[END_REF] for single-machine batch scheduling. The authors considered problem 1|sum-batch, c-in-1, w i = p i | w i C i and proved that it is NP-hard in the strong sense when c ≥ 3 and polynomially solvable when c = 2. They also provide a polynomial time algorithm when the jobs are inversely agreeable, i.e. p i < p j implies w i ≥ w j .

If the number of jobs is not multiple of c, we can add c × n c -n dummy jobs with zero processing times in both machines and solve problem F 2|sum-batch, c-in-1|C max to determine the solution minimizing the makespan under the constraint that the number of batches is minimum. By the same way, if we impose a number of batches #b ∈ { n c , . . . , n}, in order to determine a solution with minimum makespan, we add c × #b -n dummy jobs with zero processing time in both machines and solve problem F 2|sum-batch, c-in-1|C max . Hence, solving (n -n B + 1) times problem F 2|sum-batch, c-in-1|C max allows us to solve problem F 2|sum-batch, c|(#batch, C max).

In this paper, we first study the complexity of problem F 2|sum-batch, c-in-1|C max . Then we propose polynomial-time algorithms for some particular cases and an approximation algorithm with a guaranteed performance for the general case.

Complexity

Theorem 1 Problem F 2|sum-batch, c-in-1|C max is NP-hard in the strong sense for c ≥ 3, even if a i = b i for all i = 1, . . . , n.

Proof : First remark that in this case all batches have the same duration on both machines and consequently if the batches are formed the makespan of any batch sequence is equal to the sum of a i , i = 1, . . . , n plus the duration of the largest batch. Hence to solve problem F 2|sum-batch, c-in-1, a i = b i |C max , we only have to constitute the batches such that the duration of the largest one is minimum.

We use a polynomial transformation from the 3-Partition problem: Given 3m + 1 positive integers c 1 , . . . , c 3m and C such that C/4 < c j < C/2, j = 1, . . . , 3m, and 3m j=1 c j = mC, is there a partition of the set {1, . . . , 3m} into m subsets X 1 , . . . , X m , for which j∈X l c j = C, l = 1, . . . , m? Given an instance of this problem, construct the following instance of our problem. There are 3m jobs i such that a i = b i = c i . We show that 3-partition problem has a solution if, and only if, there exists a solution to the constructed instance such that #batch = m and C max ≤ y := (m + 1)C. Suppose that 3-partition problem has a solution X = {X 1 , . . . , X m }. Constitute m batches according to solution X. The makespan of any batch sequence is equal to j=1,...,m X j + max j=1,...,m X j = mC + C = (m + 1)C.

Assume now that there exists a schedule such that #batch = m and C max ≤ (m+1)C. Let X 1 , . . . , X m be the duration of the corresponding batches. We have C max = j=1,...,m X j + max j=1,...,m X j = mC + max j=1,...,m X j ≤ (m + 1)C. Then max j=1,...,m X j = C and X 1 = . . . = X m = C, which means that X = {X 1 , . . . , X m } is solution to 3-partition problem.

However, problem F 2|sum-batch, 2-in-1|C max is open.

Polynomial-time cases

Solving the batching problem for a given job sequence:

Given a job sequence π, we propose a polynomial-time dynamic-programming algorithm, named DP 1(π), allowing us to solve the bicriteria problem F 2|sum-batch, c|(#batch, C max), i.e. determine the Pareto optimal solutions set E π subject to the constraint that the jobs follow sequence π. We first renumber the jobs according to sequence π. For each partial solution in which we have already scheduled i jobs, we associate a state(i, k, q), where k is the total number of jobs in the last batch and q is the number of batches. Let C(i, k, q) denote the minimum makespan among all partial solutions corresponding to the same state state(i, k, q). Algorithm DP 1(π) recursively calculates values C(.). The initialization is given by : C(i, k, q) = ∞ (i = 0, ..., n; k = 0, ..., n, q = 0, ..., n.) and C(0, 0, 0) = 0. The recursion for i = 1, ..., n, k = 1, ..., i and q = 1, ..., i is given by:

C(i, k, q) =      ∞, if k > c, max(C(i -1, k -1, q) -k-1 j=1 b i-j , i j=1 a j) + k-1 j=0 b i-j , if 1 < k ≤ c, min p=0,...,i-1 {max(C(i -1, p, q -1), i j=1 a j)) + b i }, if k = 1.
In order to enumerate all Pareto optimal solutions following the given sequence, we determine, for each value q ∈ {1, ..., n}, the optimal makespan, which is given by min k=1,...,n C(n, k, q). The corresponding solutions are obtained by backtracking. The running time of algorithm DP 1(π) can be evaluated as O(n 3).

Equal processing times and batches of size two:

We consider here the problem F 2|sum-batch, 2 -in -1, a i = b i |C max . First renumber the jobs such that a 1 ≤ a 2 ≤ ... ≤ a n . We have the following results.

Lemma 1 If n is even, then there exists an optimal solution for problem F 2|sum-batch, 2-in-1, a i = b i |C max in which jobs i and (n -i + 1), for i = 1, . . . , n/2, are in the same batch.

Proof : Consider an optimal solution π characterized by batches B 1 , . . . , B h (with h = n/2).

Suppose that jobs 1 and n are not in the same batch, i.e. job 1 is with some job j 1 in a batch B k and job n is with another job j 2 in a batch B l . Construct a new solution π in which jobs 1 and n are in the same batch B k , jobs j 1 and j 2 are in the same batch B l , and the other batches are the same as in π. Denote by p(B r) = i∈Br a i , r = 1, . . . , h. We have p(B k) = a 1 + a n ≤ a j 2 + a n = p(B l) and p(B l) = a j 1 + a j 2 ≤ a n + a j 2 = p(B l). Consequently, Proof : Denote by C * b max the optimal makespan for problem

a i + ch i=c(k-1)+1 b i = C max (S) 5 if min 0≤t≤c-1 { ck i=c(k-1)+2+t a i + c(k-1)+t i=c(k-1)+1 b i } ≤ C J max 2 then 6 Return solution S 7 else 8 if h ≥ 2c -2 then 9 if 1 ≤ k ≤ c -1 then
F 2|sum-batch, c-in-1|C max . In algorithm A(c) batch B k defines C max (S), then we have C max (S) = ck i=1 a i + ch i=c(k-1)+1 b i that can be rewritten, for all t = 0, . . . , c -1, C max (S) = c(k-1)+1+t i=1 a i + ch i=c(k-1)+1+t b i + ck i=c(k-1)+2+t a i + c(k-1)+t i=c(k-1)+1 b i . (1)
Hence, we have

C max (S) ≤ C J max + min t=0,...,c-1 { ck i=c(k-1)+2+t a i + c(k-1)+t i=c(k-1)+1 b i }. (2)
Consequently, if min t=0,...,c-1

{ ck i=c(k-1)+2+t a i + c(k-1)+t i=c(k-1)+1 b i } ≤ 1 2 C J max , then C max (S) ≤ 3 2 C J max ≤ 3 2 C * b max .
(instructions 6 and 7 in the algorithm). Otherwise, since C J max ≥ l i=1 a i + ch i=l b i , l = 1, . . . , ch, we get ∀l = 1, . . . , c(k -1) + 1, ck, . . . , ch,

l i=1 i ∈B k \{c(k-1)+1} a i + ch i=l i ∈B k \{ck} b i < 1 2 C J max . (3)
We distinguish two cases:

1. Case where 1 ≤ k ≤ c -1. Algorithm A(c) provides solution S (see instructions 11-13). Let B l be the batch determining the makespan of solution S . Then:

• if l < k or l ≥ k + c then C max (S) = cl i=1 a i + ch i=c(l-1)+1 b i = cl i=1 a i + ch i=cl b i + cl-1 i=c(l-1)+1 b i
According to equations (3), we have

cl-1 i=c(l-1)+1 b i < 1 2 C J max . Then, C max (S) ≤ 3 2 C J max ≤ 3 2 C * b max . • if k ≤ l ≤ k + c -1, let l = k + r, 0 ≤ r ≤ c -1. We have C max (S) = c(k-1) i=1 a i + a c(k-1)+1 + a i 2 0 + . . . + a i c 0 + . . . + a c(k-1)+1+r + a i 2 r + . . . + a i c r + b c(k-1)+1+r + b i 2 r + . . . + b i c r + . . . + b ck + b i 2 c-1 + . . . + b i c c-1 + ch i=c(k+c-1)+1 b i
Hence, we have the following

C max (S) = c(k-1)+1+r i=1 a i + i c r i=i 2 0 a i + ch i=c(k-1)+1+r b i - i c r-1 i=i 2 0 b i . (4)
According to equations (3), we have

i c r i=i 2 0 a i < 1 2 C J max . Then, C max (S) ≤ 3 2 C J max ≤ 3 2 C * b max .
2. Case where k ≥ c. Algorithm A(c) provides solution S (see instructions 15-17) Let B l be the batch determining the makespan of solution S . Then:

• if l ≤ k -c or l > k then C max (S) = cl i=1 a i + ch i=c(l-1)+1 b i = cl i=1 a i + ch i=cl b i + cl-1 i=c(l-1)+1 b i
According to equations (3), we have Hence, we have the following

cl-1 i=c(l-1)+1 b i < 1 2 C J max . Then, C max (S) ≤ 3 2 C J max ≤ 3 2 C * b max . • if k -c + 1 ≤ l ≤ k, let l = k -c + 1 + r, 0 ≤ r ≤ c -1. We have C max (S) = c(k-c) i=1 a i + a c(k-1)+1 + a j 2 0 + . . . + a j c 0 + . . .
C max (S) = c(k-1)+1+r i=1 a i + ch i=c(k-1)+1+r b i + j c c-1 i=j 2 r b i - j c c-1 i=j 2 r+1 a i . (5)
According to equations (3), we have

j c c-1 i=j 2 r b i < 1 2 C J max . Then, C max (S) ≤ 3 2 C J max ≤ 3 2 C * b max .
If h < 2c -2, then we select a best solution, with makespan equal to C * b max among all possible solutions (instruction 19 in the algorithm). The number of all possible solutions is less than (2c(c -1))! that is polynomial since c is constant.

To summarize, in all cases algorithm A(c) provides a solution with a makespan less or equal to 3 2 C * b max . Table 1: An example with a ratio equal to 3/2

i a i b i a i ≤ b i 1 1 4M i = 2, . . . , c -1 i i + 1 a i > b i c 2M c + 1 c + 1 2M c i = c + 2, . . . , 2c 2c -i + 2 2c -i + 1
In order to prove that the approximation ratio is tight, consider the following instance composed of n = 2c jobs and described in table 1. Johnson order is π J = (1, 2, . . . , 2c) and

Algorithm 1 : 3 S4

 13 Algorithm A(c) Number the jobs according to Johnson sequence π J = (1, 2, . . . ch) 1 Compute C J max the optimal makespan of the F 2||C max problem 2 Group jobs into h batches of c jobs according to sequence π J to form solution = (B 1 , . . . , B h) Compute the makespan C max (S) of solution S Identify a batch B k such that ck i=1

 10 for r ← 0 to c -1 do 11 Replace batch B k+r by batch B k+r = (c(k -1) + 1 + r, i 2 r , . . . , i c r) where 12 i l r = c(k + r) -r -1 + l, l = 2, . . . , c Return the resulting solution 13 S = (B 1 , . . . , B k-1 , B k , . . . , B k+c-1 , B k+c , . . . , B h) else 14 for r ← 0 to c -1 do 15 Replace batch B k-c+1+r by batch 16 B k-c+1+r = (c(k -1) + 1 + r, j 2 r , . . . , j c r) where j l r = c(k -c + r) -r -1 + l, l = 2, . . . , c Return the resulting solution 17 S = (B 1 , . . . , B k-c , B k-c+1 , . . . , B k , B k+1 , . . . , B h) else 18 Select and return a best solution among all possible solutions 19 Theorem 5 Algorithm A(c) is a polynomial-time approximation algorithm for problem F 2|sum-batch, c-in-1|C max with tight approximation ratio ρ = 3 2 when c is constant.

+

 a c(k-1)+1+r + a j 2 r + . . . + a j c r + b c(k-1)+1+r + b j 2 r + . . . + b j c r + . . . + b ck + b j 2 c-1 + . . . + b j c

2 - 3 . 2 - 1 .

 2321 C J max = 4M + (c + 1) 2 -2. Algorithm A(2) provides a solution S = (B 1 , B 2) such that B 1 = (1, . . . , c) and B 2 = (c+1, . . . , 2c). We have C max (S) = 6M +(c+1) 2 + c(c-1) The optimal solution S * = (B * 1 , B * 2) is such that batch B * 1 = (1, . . . , c-1, 2c) and B * 2 = (c, c+1, . . . , 2c-1). We have C * b max = 4M + (c + 1) 2 + c(c-1)Consequently, we get:The following questions are yet to be answered: (1) What is the complexity of problem F 2|sum-batch, 2-in-1|C max ? (2) Can we extend algorithm A(c) when c is part of the problem input ? (3) In practice, is it difficult to solve this strong NP-hard problem ?

max r=1,...,h p(B r) ≤ max r=1,...,h p(B r) and we have C max (π) ≤ C max (π), which means that π is also optimal. By repeating the same procedure at most n/2 times, we obtain a solution satisfying the property.

If the number of jobs is odd, we can easily prove that job n is alone on a batch and jobs i and (n -i), for i = 1, . . . , n/2 , are in the same batch. Hence, we get the following result.

) time by adding some dummy jobs and solve O(n) 2-in-1 problems. Remark that imposing a number of batches #b, n/2 ≤ #b ≤ n, implies that there are (2 × #b -n) batches with one job each and (n -#b) batches containing each 2 jobs. In an optimal solution, the latter batches will contain the jobs with largest processing time, i.e. jobs (2n-2#b+1), . . . , n, and the former batches are constructed according to lemma 1. Consequently, we have the following result.

Constant processing time for the first or the second machine:

We can prove the following result by the job interchange argument.

Lemma 2 Any Pareto optimal solution of problem F 2|sum-batch, c, a i = a|(#batch, C max) can be transformed into a solution with the same performance measure values such that the jobs are processed in LPT order with respect to their processing times on machine M 2 .

Using algorithm DP 1(π LP T (M 2)), we get the following result.

Theorem 3 F 2|sum-batch, c, a i = a|(#batch, C max) can be solved in O(n 3) time.

Similarly, we can prove that any Pareto optimal solution of problem F 2|sum-batch, c, b i = b|(#batch, C max) can be transformed into a solution with the same performance measure values such that the jobs are processed in SPT order with respect to their processing times on machine M 1 . Using algorithm DP 1(π SP T (M 1)) allows to solve the problem.

A polynomial-time approximation algorithm

We consider here that the number of jobs n is such that n = ch, h > 0. Otherwise, we add (ch -n/c) dummy jobs with zero processing times in both machines. We propose an approximation algorithm, named A(c), to solve problem F 2|sum-batch, c-in-1|C max in polynomial time when c is constant. In this algorithm, batches are formed according to Johnson sequence. When the condition in instruction 6 is not verified, and when h ≥ 2c -2, jobs of batch B k are separated and mixed with the jobs of the following (or previous) c -1 batches when k ≤ c -1 (or k ≥ c) (see instructions 10-17). We have the following result.