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In an upstream supply chain dedicated to the mass production of customized products, many sources create production instability: the level and structure of production in the final assembly line, variability of lead times, quality issues, packaging and loading constraints on transportation, demand anticipation, and the synchronization of the flows of components sent, received, and produced. For periodic replenishment systems, each member of the supply chain must have two different safety stocks to prevent some sources of fluctuations: a safety stock of produced components to meet the demand of downstream links and a safety stock of supplied components to ensure its own production. Procedures must take the organizational framework of information and products exchanges into account. The relevance of supply and production rules depends on the relevance of structural information broadcast along the supply chain.

Introduction

For the mass production of customized products (Anderson & Pine, 1997) using a build-to-order supply chain (BTO-SC, [START_REF] Gunasekarana | Build-to-order supply chain management: a literature review and framework for development[END_REF][START_REF] Camisullis | Analyse des déterminants à court terme de la capacité d'une unité de production[END_REF], as exemplified by the automotive industry, differentiation results from the combination of n optional components (e.g., sunroofs) or alternative components (e.g., gearboxes). These components are taken from n different sets and are assembled on n different workstations of an assembly line. The upstream supply chain (USC) then consists of units that contribute to the production of the vehicles assembled by the company. The various links of the chain are connected by flows of products and information. Eventually, the production decisions made by the last production link (i.e., the assembly line) pull production from the USC. Two obstacles prevent centralized control of the USC by assembly lines: Many units belong to independent companies, and a link might belong to several supply chains (e.g., the supply chains monitored by PSA and Renault have many common links). The behavior of the chain, and thus its global performance, depends on the information and product exchanges that take place among the links, as well as the control rules used to make provisioning and production decisions.

The pernicious effects of decisions based on local information are well-known in the downstream supply chain, especially for low-cost, standardized, mass products (e.g., beer). They propagate oscillations of increasing amplitude along the supply chain, as highlighted by Forrester (1958) and later identified by name as the bullwhip effect. Oscillations of production occur in USCs dedicated to the mass production of customized products too, but their causes and mechanisms are relatively unknown. For example, a car is assembled at the request of final customers or car dealers committed by commercial objectives. Because of the high price, each car is subject to individual tracking, which means the amplification effects observed in the distribution networks of lowcost, mass products are unlikely to occur. Upstream, production is organized to meet the demands of a single customer, final assembly line. However, studies of the bullwhip effect generally ignore this type of situation, understanding the mechanisms that promote oscillations along the USC is a prerequisite for improving supply chain performance in terms of efficiency and effectiveness. Whatever the stochastic sources of oscillation in the USC (e.g., random demand, quality problems, random lead times, packaging constraints, restricted transport capacity), an exploitation of demand characteristics is possible. Therefore, the appropriate local application of the principles of periodic replenishment policies, based on a judicious exploitation of the known and stochastic characteristics of demand, keeps stock-outs under control for each link of the USC. Thus, appropriate safety stocks divide the supply chain into independent subsystems, and each entity retains its managerial autonomy, which prevents the propagation of disturbances. Depending on the position of an order penetration point (OPP), a link can produce to order. If it produces a set of alternative components, using a synchronous production approach [START_REF] Giard | Scheduling coordination in a supply chain using advance demand information[END_REF] can provide robust rules to face (even fast) modifications of the demand structure. It also offers better control over the problems caused by defective quality in production processes. This article contains a formal analysis of the exchange mechanisms for information and goods between two links of the USC. This exchange is similar to a customer-supplier relationship, such that each actor is autonomous in its decision making. The production of each link is random, which does not pose a problem if the links of the supply chain all have sufficient capacity [START_REF] Camisullis | Analyse des déterminants à court terme de la capacité d'une unité de production[END_REF]. In this article, we investigate the steady state of periodic provisioning policies in the supply chain. The second article presented at this conference, reveals the conditions in which it is possible to use pertinent information to adapt steady-state policies, preserve their performance, and detect the transformations of the demand structure. Because ignoring such rules may disturb the functioning of the USC, decentralized management in the supply chain rests on information sharing and the use of consistent management rules across its various links. In the type of USC studied herein, the costs induced by a stock-out are so high that the use of an analytical model based on some expected cost function is useless. This article examines the impact of parameters that arise from organizational decisions about provisioning policies. Specific factors distinguish the periodic replenishment policies of supplied components from those of produced components. However, they depend on the same general approach and common factors. We examine analytically how some parameters influence the appropriate probability distribution for determining the order-up-to level. The order-up-to level can be defined as the percentile associated to a stock-out risk This distribution should include, simultaneously, several random factors (e.g., demand, lead time, quality) and provision constraints (e.g., conditioning, transport capacity). A Monte Carlo simulation provides an answer to this complex issue, as we illustrate herein. After a brief survey of existing literature on safety stocks in supply chains, we outline the common characteristics of all safety stocks. Then we successively analyze the periodic replenishment policies of supplied and produced components, before we conclude with some operational implications.

Literature Review

Prior research offers several reasons to maintain safety stock in a supply chain. In general, safety stock mitigates stock-out risks due to random variations of the demand or production that occur between replenishments. Uncertainty due to production reflects various events that might occur, such as breakdowns and setup and repair times [START_REF] Ho | Uncertainty dampening methods for reducing MRP system nervousness[END_REF][START_REF] Vargas | Managing uncertainty in multilevel manufacturing systems[END_REF]. Provision uncertainly might relate to delivery lead times [START_REF] Chiu | A multi-echelon integrated JIT inventory model using the time buffer and emergency borrowing policies to deal with random delivery lead times[END_REF] or quality [START_REF] Koh | Uncertainty under MRP-planned manufacture: review and categorization[END_REF]. Uncertainty about demand relates to its random patterns [START_REF] Guide | A review of techniques for buffering against uncertainty with MRP systems[END_REF], potential forecast errors [START_REF] Lowerre | Protective scheduling smoothes jittery MRP plans: buffer forecast error the key[END_REF][START_REF] Krupp | Safety stock management[END_REF], and the occurrence of occasional peaks [START_REF] Miller | Hedging the Master Schedule: Disaggregation Problems in Manufacturing and Service Organisations[END_REF]. In addition, several approaches can determine the orderup-to level value of a periodic replenishment policy. Implicitly, the order-up-to level defines the safety stock. Analytical models rely on cost functions and provide as many optimal formulae as there are decision variables in the model. Most of these studies relate to downstream supply chains; for example, [START_REF] Axsater | A joint replenishment policy for multi-echelon inventory control[END_REF] deal with the relationship between the warehouse and distributors, and [START_REF] Diks | Optimal control of a divergent multi-echelon inventory system[END_REF] and [START_REF] Rau | Integrated inventory model for deteriorating items under a multi-echelon supply chain environment[END_REF] consider multistage systems. In an upstream supply chain study, [START_REF] So | Impact of supplier's lead-time and forecast demand updating on retailer's order quantity variability in a two-level supply chain[END_REF] consider two contributors to variability in ordered quantities: the supplier's delivery lead time, which is assumed to be variable and depend on the quantities ordered, and updates of the demand forecast. The simulation approach instead applies to systems that are too complex to derive an analytical solution. Some authors study supply chains that consist of more or fewer levels. For example, [START_REF] Liberopoulos | Tradeoffs between base stock levels, numbers of kanbans, and planned supply lead times in production/inventory systems with advance demand information[END_REF] simulate a two-level production supply chain with scheduled lead times, whereas [START_REF] Ng | Simulation workbench for analysing multi-echelon supply chains[END_REF] work with an n-stage system that contains random lead times. Finally, some studies mix analytical and simulation approaches to achieve resource pre-calibration and search for potential efficiency or effectiveness improvements in the same study. For example, [START_REF] Mohebbi | Versus dual sourcing in a continuous-review inventory system with lost sales[END_REF] use stochastic lead times to study customer-suppliers relations in an USC, and [START_REF] Moinzadeh | A multi-echelon inventory system with information exchange[END_REF] uses constant lead time. [START_REF] Tang | The detailed coordination problem in a two-level assembly system with stochastic lead times[END_REF] also analyze a two-stage assembly system, with stochastic lead times to minimize total carrying and stock-out costs. Traditionally, these studies distinguish three decision times: short, medium, and long run. Yet many articles assert demand is purely stochastic (e.g., [START_REF] Graves | A multiechelon inventory model with fixed replenishment intervals[END_REF][START_REF] Cachon | Supply chain inventory management and the value of shared information[END_REF], so they consider the long run from the point of view of structure stability but the short term for defining operational decision rules. In some cases, demand is partly known (firm orders) and partly stochastic. For example, in [START_REF] Bourland | Exploiting timely demand information to reduce inventories[END_REF] study, customers place their orders each week for the three next weeks and also forecast for the five or six following weeks. These two levels need safety stocks to offset the uncertainty that affects both orders and deliveries.

General Analysis of Safety Stock Needs

First, we introduce the reasons to create safety stocks by adopting a demand propagation perspective along the supply chain [START_REF] Camisullis | A new need for safety stocks in a supply chain dedicated to customized mass production[END_REF]. Second, we consider the characteristics of the distribution to calibrate the safety stock and specify the factors that influence it. Third, we reveal the relationship between safety stock and stock-out probability. Fourth, we study the analytical relationship between safety stock and expected stock prior to delivery.

Location of and justification for safety stocks

A replenishment policy includes safety stock to address unknown demand. The stock might include products ordered to meet the needs of a production (or distribution) unit, as well as those manufactured by a production unit when that unit cannot build to order completely because its customers' OPP does not go far enough into its productive process [START_REF] Giard | Production à flux tirés dans une chaîne logistique[END_REF]. A basic periodic replenishment policy places a periodic order equal to the difference between its order-up-to level R and the inventory position observed at the time of the order. The order interval is θ, and R depends on the target stock-out probability α prior to the delivery, which might be given by economic calculations. The α can lead to negative safety stock, which is meaningless from an operational point of view. Safety stock equals the difference between R and the average demand over the same period. Safety stock also appears in replenishment policies of the type "order quantity qreorder point r," in which r behaves like R. In periodic replenishment policies, the safety stock definition therefore depends on the order-up-to level R. Inventory models use cost functions to propose analytical optimal relations to determine R, which always corresponds to the percentile of the demand distribution associated with an optimal value of the stock-out probability α, which in turn depends on the cost structure in the cost function. Generally, for members of the USC, unsatisfied demand is delayed, and α is very low. Two observations emerge: 1. For the supplier, the ordered quantity, which corresponds to a sum of random demands, is a random variable. It reflects the demands that its customer must satisfy. 2. This property is not valid if some supplied parts are rejected for quality reasons. It is then necessary to add to the number of rejected components to the demand since the last order. With a relevant calibration of safety stock in the various stages, a supply chain can operate without significant fluctuations. The quality of the calibration mainly depends on the propagation of appropriate information from downstream to upstream. We analyze the safety stocks of stage B in the sub network A → B → C in a supply chain. Stage B might hold two kinds of safety stocks, because of its upstream and downstream relationships. First, production safety stocks include the components i produced by B to be sold to its customer (stage C) when the OPP of C in its production system does not allow B to entirely build-to-order. These safety stocks are held by the supplier. We assume customer C transmits an order of q it components i to its supplier B at the beginning of day t. The delivery occurs at the beginning of day i , and the lead time is λ i (

i i D t + D ≤ λ
). The next order is placed at the beginning of day t + θ, after which supplier B has

i i D λ - F >
days to fulfill the order. If this duration is lower than the manufacturing lead time F i of component i, the supplier fills the order by taking the needed quantities from its stocks. The process depends on the random characteristics of customer demand, as well as the accepted stock-out risk. In the opposite case (

i i i D -λ ), B can build to order. If the interv i i al D λ
is greater than the order interval θ, C uses the information from its production schedule. The anticipation of a requirement enables B to move from a build-to-stock to a build-to-order production system. Furthermore, it can allow supplier A, producing for B, to build to order. This propagation increases effectiveness (fewer stock-outs) and efficiency (less safety stock) at the same time. However, the assertion cannot hold if product quality is not guaranteed. Second, the provisioning safety stocks relate to component j acquired from a supplier (A) to be used in production by B. These stocks are held by the customer (here, stage B), in contrast with the preceding case. The order q jt of the component j sent by B to its supplier A at the beginning of day t is delivered at the beginning of day j with a delivery lead time λ j (

j j D t + D ≤ λ
). If A and B synchronize their orders, B gains more knowledge of the requirements but does not need it. When B sends A an order, B has already defined the production program for using component j up until the beginning of day j . If the scheduling time P j is higher than or equal to the provision time D j , the order corresponds exactly to the forecast consumption, and no safety stock should be held. However, if the order is based entirely on statistical knowledge of needs,

P t + θ > -j P j
, and if it relies partly on firm demand and partly on statistical knowledge of needs,

D θ < -j j P D .

Determination of the probability distribution

Several factors combine for the determination of the probability distribution of a demand for one period. It requires the use of a simulation approach to calculate the distribution empirically. An alternative component i always has the same probability p i of being included in one of the products. Demand for that component therefore is a random variable that comprises three sources of variation:

1. The size of the set to consider, or the product of a daily production n by a number L of production days. L can be certain or random. A priori, L can be random only for the components from a supplier. 2. In the steady state, the demand to satisfy X iL defined on L days. This demand follows a binomial distribution B (nL, p i ).

3. If a delivered product has a positive probability π i of being defective, X iL demand has little chance of being satisfied entirely. The demand to consider therefore includes the four elements in The demand for a component c to cover L production days may be the sum of independent demands. Two cases require the use of a Monte Carlo simulation to define the reference probability distribution: i a ′ units of component c appear in a part i′ belongs to a subset E of alternative parts that can be mounted in a station of the car assembly line. This presence is the result of the mechanism of the BOM explosion. , well-known in MRP. For example, gears provided to replenish stock get used in the production line of gearboxes that are mounted on the car assembly line. Demand 

i cL V ′ for component c of an alternative part i′ follows a binomial distribution B ( L n a i ⋅ ⋅ ′ ; i p ′ ); the probability distribution of the total demand ∑ ∈ ′ ′ E i i cL can be obtained by simulation. If i a a i ′ ∀ = ′ , , then cL V follows the binomial distribution B ( L n a ⋅ ⋅ , ∑ ′ p ). = cL V V ∈ ′ E i i -Demand
∑ = ∈ ′ ′ l i i cL cL l l l V V
If a problem of quality arises for component c, we use the distribution of Y cL = cL V + Z cL , where Z cL follows a negative binomial distribution BN ( , π c ). A simulation again is mandatory. cL V

Influences of stock-out probability and demand variability on safety stock

Generally, safety stock varies in the same direction as the coefficient of variation (ratio of the standard deviation of the demand distribution to its average) and in the opposite direction of accepted risk. Safety stock relations can be established when the order-up-to level is defined to meet the needs of an alternate or optional component in a BOSC, in the steady state. Then a binomial distribution B (nL, p i ) is used. In certain conditions (Giard 2003a), which exist when nLp i has a sufficiently high value, an approximation of this distribution can be given by the normal distribution N

( nL p p nLp i i i ) 1 ( , -
). The definition of the standard normal variable t α is associated with a stock-out probability α, so the percentile relates to t α according to the expected value of the demand distribution and its standard deviation by relation [1].

α iL R ) 1 ( i i i iL p nLp t nLp R - + = α α
.

[1]

The safety stock is then defined by

i iL iL nLp R SS - = α α ) 1 ( i i iL p nLp t SS - = α α .
[2]

In an industry, the concept of a safety coefficient is more common, that is, the constant to multiply with the demand average to calculate safety stock. We can express it as a function of the coefficient of variation, or

i i i nLp nL p p / ) 1 ( - = ) /( ) 1 ( i i nLp p - . The value of this safety coefficient is ) /( ) 1 ( i i nLp p t - α , which leads to relation [3]. ) 1 1 ( ) 1 ( i i i i i i iL nLp p t nLp p nLp t nLp R - + = - + = α α .[3]
The frequent use of a rule that fixes safety stocks according to an empirical coefficient imposed for a large set of references mechanically leads to variable stock-out probability for the same production. Table 2 illustrates the four cases numerically, with n = 962, p i = 54.46%, L fixed to 12 or random (discrete uniform DU (10, 14)), and 

α = 0.01%. With compound demand, V is the sum of V 1 and V 2 , where V 1 ~ B (962L, 0,

Safety stock and average residual stock prior to delivery

If the probability of stock-out prior to delivery is low, the expected value of the component shortage I r ( α iL ) also is low. The safety stock therefore approaches the expected value of residual stock prior to delivery. Generally speaking, the expectation I p ( α iL ) of residual stock at the end of a period with demand X is given by relation

[4] (Giard 2003b): R R ) ( I ) ( E ) ( I r p α α α iL L iL iL R X R R + - =
.

[4]

The order-up-to level α iL has to meet demand X, and Equation 4 is valid, regardless of the probability distribution of X L .

R

When stock-out probability is negligible, I r ( α iL ) is close to 0. The average residual stock prior to delivery I p ( α iL ) is close to safety stock iL . The average residual stock and average stock-out vary in opposite directions and generate, respectively, carrying costs and stock-out costs for the company.

R ) L X R ( E R - α
In the case of a normal distribution, the expectation I r ( α iL ) of a stock-out, without indices i, L, and α, is given by [START_REF] Giard | Gestion de la production et des flux[END_REF]):

R

[ ]

) ( P ) f( ) ( I R R R r t t t t R > - = σ , where σ / ) ( x R t R - =
, and

π 2 / ) f( 2 / 2 R t R e t - =
.

[5]

For example, with the data from case 1, we find that when α = 0.01%, R ILα = 6486, I R (R ILα ) = 0.001, and I P (R ILα ) = 199.14

Safety Stock of Supplied Components

The order q jt for component j sent by B to A at the beginning of day t gets delivered at the beginning of day j , because the "due date" is D j , and the lead time is λ j ( j j λ

). The stock level PS jt at the beginning of day t is the sum of the stock observed S jt and the k j expected delivery, as well as backorders. If the stock-out probability is low, we can ignore the impact of unsatisfied demand (backorders or lost sales). No k j expected deliveries exist if the periodic replenishment review period is longer than the due date time ( j), but this number is positive otherwise, such that

D t + θ > D ≤ j λ ) / max( arg = j j j
. The inventory position when ordering is defined by the relation [6].

D K K θ ≤ k ∑ = - + = j k h h t j j j q S PS 1 , θ , where ) / max( arg j j j D K K k θ ≤ =
.

[6]

If the planning time P j of B is less than or equal to the due date time D j negotiated with supplier A ( j j

), the order is based on statistical knowledge of anticipated demand. Customer B has no interest in negotiating a due date superior to the lead time, because doing so, even with a similar risk, increases safety stock.

D P ≤ When j j , if j j j D P > D P - > θ
, the sent order can be based partially on known demand. If

j j j D P - ≤ θ
, the order is determined by known requirements, and no safety stock is needed. If no batch constraint needs to be taken into account when determining the order to send, supply therefore is unit-based. Batch based supply is a little more complicated to define. In both case , transport capacity limitation may be to take into account.

In all cases, we suppose that the accepted stock-out risk α is predetermined and very low.

Unit-based supplies: Stochastic demand

The probability distribution is defined for the period θ + λ, so it follows the law B [

j j j p ), n( λ θ + ]. If the normal approximation is possible, we use the distribution N [ j j j p n ) ( λ θ + , ) 1 ( ) p p - λ ( + θ n j j j j
]. In this context, we can adapt Equations 1 and 2 to define the order-up-to level and safety stock:

( ) , j j j n t p R + + + + θ λ α λ θ ( , j n j = θ α ) 1 ( ) j j j p p - λ [7] ) 1 ( ) ( , , j j j j j p p n t SS - + = + λ θ α α λ θ
.

[8]

If the lead time is random or quality is not guaranteed, we need a distribution generated by the Monte Carlo method (from Section 3.1) to determine the order-up to level associated with risk α.

For example, suppose that θ = 2, λ = 10, n = 962, and p i = 54,46%. For α = 0.01%, R i = 6486. From a supply chain control perspective, two important observations emerge. First, if all alternative components assembled on the same workstation of end customer C are supplied by B, the total daily demand of alternative components is constant (n), due to its multinomial distribution. Therefore, the quantities ordered periodically equal θ.n. Plant B may need alternative components j for its production, but if they are all provided by the same supplier, the property of constant total requirement remains valid. A supply of alternative components shared across several suppliers instead induces a periodic random total demand for each. This periodic load fluctuation may make the capacity commitment difficult for the supplier and induce additional costs. Second, B might supply C with only a subset of what it needs, which creates a random amount of parts ordered from that supplier. But B can also supply other clients with the same parts, which increases the variability of the demand to be satisfied by B. We cannot determine the demand distribution of component j used by different customers of B analytically, but we can solve it using Monte Carlo methods. Simulation is essential for cases 2, 3, and 4. Moreover, with a quality problem, the generation of the random variable Z must be based on the sum of the demands generated for these customers.

Unit-based supplies: Stochastic and deterministic demands

We now consider the situation defined by a planning time P j for customer B, which exceeds the due date time D j negotiated with supplier A of less than θ j days ( 0 > -> j j j D P θ

). The due date time D j is constant and can be equal to lead time λ j . There is no quality problem. When an order is placed at the beginning of day t, to be delivered at the end of day , B knows with certainty its needs for periods j to , which are the needs of days.

j D t + + t j D 1 - D 1 - + j P t j P -
The order sent on day t is the sum of (1) a known quantity ∑ , equal to the demand of j j days, after delivery at the end of day j , and (2) a quantity equal to the difference between an order-up-to level determined to meet a random demand with risk α and the inventory position. This demand is defined for a period that covers j and increases by the period during which demand is not known,

- + = 1 P t h - + = 1 j j D t h jh x D D P - D t + (
)

) D (P - j j j - θ
. The fact that we have no firm information on the days prior to the delivery rather than after it, has no impact. The period to cover is . The order-up-to level is the percentile of a distribution of probabilities defined over

j j j P D - + 2 θ α θ , 2 , j j P D j R - + j j D - + 2 j P θ
, which leads to the distribution B ( )

j p j P ), j j D n 2 ( - + θ . If the normal approximation is possible, we can use N [ , j p j j j P D n ) 2 ( - + θ ) 1 ( ) j j p 2 ( n D + θ j j j D P + - j p - j P - ]
, and Equation 9. If we exclude the possibility of lost sales, difference equals the sum of observed demand on the last θ days prior to day t,

. In Equation 10, we summarize the determination of the order to send, in the steady state, with a mix of stochastic and deterministic demand:

∑ - = - + - = 1 t h D P t h jh j j j x θ ) 1 ( ) 2 ( ) 2 ( , , j j j j j j j j j P D j p p P D n t p P D n R j j - - + + - + = - + θ θ α α θ
, if a normal approximation is possible, and 0 > ->

j j D P θ .[9] ∑ ∑ - = - + - = - + = - + = + = 1 1 1 t h D P t h jh P t h D t h jh jt j j j j j x x q θ .
[10]

To take quality into account (case 3), we must use the simulation to obtain the probability distribution and thereby determine the percentile. To define variable j , we assume the quality problem exists for all orders and sum random demand with firm orders. In a steady state, these firm orders are random variables that follow a binomial law with the same probability used to deal with the random needs taken into account in the order. It is therefore necessary to use the distribution given by Equation 11 to determine the percentile :

Z α θ , 2 , j j j P D j R - + j j j Z X Y + = ,
where ~B j X ( ) 

j

SS

Next suppose that the lead time j λ is random and that the quality of the delivered items is guaranteed (case 2). The order sent at the beginning of day t still covers the needs for days to

t 1 - + j D t 1 - j + θ
. The demands for j j days are perfectly known. In a steady state, these demands correspond to a sum of daily demands, following the same distribution used for the other days (i.e., B (n,p j )). The random period of the distribution reveals the order-up-to level as the sum of the random lead time j D Pλ and the period during which demand is not known between two deliveries, ( )

) ( j j D P - - j θ .
For example, if j λ ~ U (4; 8), q j = 8, P j = 14, and D j = 12. The random period to cover is L j = j + 6 ~ U (10; 14). With n = 962, p i = 54.46%, and α = 0.01%, we find that R iL = 7525. If π 1 = 1%, then R iL = 7602. λ

Batch-based supplies

External supply often depends on batch constraints. Each order sent is a multiple of the number κ of units used in transport, as models of stock determination note. The analytic solution is characterized by a double inequality for the cumulative probability of two successive discrete values, multiples of κ. They enclose an optimal target probability, depending on the structure of the costs used in the objective function of the model. To supply an USC, we cannot exceed risk. The propositions we offer next are valid in the four cases in Table 1. First, if the order sent corresponds to the smallest multiple of κ, respecting the condition of a stock-out probability inferior to

α (i.e., ) / ) ( min( arg κ κ j j PS R K K - ≥ ⋅
), the protection against stock-out risk is excessive. Second, if the order sent corresponds to the greatest multiple κ, respecting the condition of a stock-out probability superior to α (i.e., ) / ) ( max( arg κ κ

j j PS R K K - ≤ ⋅
), the protection against stock-out risk is insufficient. The multiple to choose depends on a reasonable risk β, greater than α and sometimes due to batch limitations.

Based on case 1, we assume the transport container contains κ = 18 units. With α = 0.01%, we find R iL = 6486. Suppose we accept risk β = 0.015%. Then P(X

i > R i ) ≤ 0.015% is equivalent to R i = 6480. Although ) / ) min( arg . κ κ j j PS R K K q - ≥ - is less than 6, the choice of ) / ) ( min( arg κ κ j PS j R K K - ≥ ⋅
leads to risk not greater than β.

Incurred risk and transport capacity limitations

Means of transport usually have limited capacity, G. The ordered quantity cannot exceed this limit (⇒

). The incurred stock-out risk thus will be higher than desired, unless there is virtually no chance that demand exceeds this capacity. In this case, transport may be less efficient. To preserve the target risk level α, it is necessary to increase the orderup-to level, which we can do easily with a dichotomy method.

) G , ( Max j j PS R -Therefore, if n = 962, p i = 54.46%, θ = 2, λ = 10, and α = 0.01%, we find R i = 6486 (see Table 2). If G = 1060, a simulation of this periodic replenishment policy for 5 million iterations leads to a risk of 0.0774%. To keep α = 0.01%, it is necessary to fix R i to 6530. The safety stock then increases from 199 to 233.

This simulation widens the scope of the analysis from a local optimization to a more global one that includes transport, carrying, set-up, and stock-out costs. A batch limitation is more complicated to take into account; the transport capacity limitation is necessarily a multiple of packaging size.

Safety Stock of Produced Components

We focus on the production of a product i by unit B, in response to demand from customer C. In this context, the lead time i λ between the start of production and the component's appearance in stock is assumed to be constant. The lead time corresponds to cycle time or production time, as appropriate. Customer C sends B its orders for i at the beginning of the day, every i θ days. The order received at the beginning of day t must be sent at the end of day i . With a lead time

D t + i λ , B has i i D λ
days to produce and send the order ( i i D λ ≥ ). Component i gets integrated into the production cycle of H days. The production of component i finishes F i days after the beginning of the cycle. If this cycle includes only component i, it is obvious that H = F i , and there is no reason to synchronize deliveries (all i θ days) or launches in production (all H days). We first consider a make-to-stock production, then study a make-to-order production, and finally a combined production process.

Make-to-stock production

We assume the production cycle H is shorter than the replenishment cycle θ

) ( i H θ ≤ →
and that the order from customer C is immediately executable ( i i D λ -= 0) or else that the time remaining before delivery is less than the replenishment cycle θ (

i i i D θ λ ≤ - →
). The distribution to determine the order-up-to level is the binomial law B ( i nθ , p i ). In a steady state, the quantity that B launches into production is equal to the quantity sent to C; it is a random variable. However, if the supplier produces all alternative references assembled on the workstation of the customer assembly line at the same time (

θ θ = i →
), the sum of ordered quantities is constant ( θ n ), because demand for alternative components follows a multinomial distribution.

If H > i θ and the time remaining before delivery is less than the production cycle, we can distinguish two cases. 1. If product i is the only one to be manufactured in this production cycle, H = F i . When the order is sent at the beginning of day ).

For example, if B receives orders every 4 days from C and F i = 5 days, the distributions are B (962 x 2 x 4; 0.5446) and B (962 x 3 x 4; 0.5446). When α = 0.01%, the order-up-to level is 4373 (two deliveries) or 6486 (three deliveries).

A lack of synchronization between cycles H and θ leads to periodic variation in the production. The quantity to be launched in production by B equals the sum of quantities previously shipped to C only if the order-up-to level used for the production launch is the same as that used previously. The sum of the quantities launched varies strongly when the number of deliveries since the previous launch changes (due to the change in η). This sum equals ηθ n only if the order-up-to levels have not changed since the previous launch and B produces all alternative components. 2. If several components successively launch into production, an order sent at the beginning of day t increases the stock level PS it of component i by the quantity launched in production q it (= R it -PS it ), to be delivered at the beginning of day t + H. It should meet demand until the next delivery, at the beginning of day t + H + F i . The number of deliveries during H + F i days must be between In our example, the distributions are laws, B (962 x 2 x 4; 0.5446) and B (962 x 1 x 4; 0.5446), which lead to order-up-to levels for α = 0.01% of 4373 (two deliveries) or 2211 (one delivery).

Make-to-order production

We suppose the production cycle is shorter than the replenishment cycle

i ( H θ ≤ →
and the supplier anticipation is greater than the replenishment cycle (

i i i D θ λ > - →
). Then, production can be made to order, and a production launch involves no more than one delivery. The maximum number of canceled consecutive launches is

) / ) H λ (D i - < D max( arg K K i
For example, if H = 5, θ i = 12, and i i . λ -= 14, the maximum number of null consecutive launches is 2. If H > θ i and supplier anticipation is greater than twice the production cycle (

H D i i 2 > - → λ
), production also can be made to order. In this context, it is possible to launch a production quantity that should be delivered during the following production cycle, as well as one or more subsequent deliveries if anticipation is sufficient.

However, it is preferable to smooth the load and launch only the deliveries for the following production cycle. Again, the number of deliveries to consider can vary between two production cycles: at least 1 and no more than

) / ) ( max( arg θ λ H D K K i i - - > . If H = 5, θ I = 3, and i i D λ -
= 11, we would launch no more than the quantity of two successive deliveries.

The irregularity of the number of launches and the quantities launched leads to disorganization. However, it can be eliminated if the production cycle equals the periodic replenishment review period but remains less than suppliers' anticipation (

θ λ > - → i i D
). Quantities vary from order to order, because they correspond to quantities consumed, whose distribution is binomial. However, if the supplier produces all alternative components for the customer's assembly line, the sum of ordered quantities is constant (nθ). If this supplier has multiple customers for all or some produced components, the condition extends to each customer.

Mixed production

If ) i H ( θ ≤ i i , production is to made to stock if i D θ λ ≤ -
and made to order otherwise (

i i i D θ λ > - ). If i H θ > H , production is to made to order if D i -λ i > 2H. If i θ > and H D H i i 2 ≤ - < λ ,
production may be a combination. The analysis of these possible configurations is similar to that in Section 5.1, except that only μ deliveries to the customer on i i D λ days after the production launch of component i on day t are known. They can be covered by made-to-order production.

The number

μ is either ) / ) θ λ - (D < max( arg 1 μ K = i i or K ) / ) ( min( arg 2 i i .
The difference, possibly null, between η and μ therefore corresponds to deliveries that can be covered by a made-to-stock production. 

Suppose

, θ = 4, and H = 5. The inventory position updates with a decision to integrate known firm orders from the customer and deliveries for later orders. In this example, quantities launched in production at the beginning of the second production cycle are made to order. Quantities launched in production cycles 1 and 4 are made to stock and include one delivery only. The production of the third cycle is partly made to order and partly made to stock (two deliveries produced). As in Section 5.1, we again face a possible change in production across cycles, related to the variable number of orders from the customer. Safety stock decreases, or even disappears, when we can produce to order.

Conclusion

This study focuses on a supply chain dedicated to the mass production of customized products, controlled by periodic replenishment policies. The analysis of the relations between the successive units of the supply chain show that safety stocks of produced and supplied components are needed. The importance of these stocks depends simultaneously on the level and structure of the production of the final assembly unit, lead time variability, levels of quality control, lot sizing transportation rules, and transport capacity constraints. In addition, the variability of the periodically exchanged quantities between two successive units depends on the demand anticipation available for decision making. This variability in turn depends on the level of synchronization of delivered, produced, and replenished flows that can lead to or avoid the creation of production cycles. A plant has more variable total activity if it does not produce all the diversity demanded at its level by the alternative components it assembles. The relevance of periodic replenishment rules or production launch rules depends on the structural information propagated along the supply chain. To highlight the conditions for efficient control, we postulate a stable, steady state, which may be attained even if the characteristics of the steady state are periodically disrupted. However, a high level of performance requires the circulation of information in time, all along the supply chain. This goal in turn demands a proactive attitude from the owner of the final assembly plants. 

Appendix: Summary of Notations

  for component c might come from several assembly lines. If each line l that uses component c has a daily production n l , the generalization of the previous assertions is immediate: Demand

∑

  

  H = 5, the number of deliveries is either 1 or 2. If (H + F i ) is a multiple of θ, the number of deliveries over H + F i days is constant. The distribution for determining the order-up-to level is binomial B (

Table 1 ,

 1 which we illustrate in Table2.

	Quality of delivered products	L i constant L i random
	Always good (π i =0) → use of X iL	Case 1	Case 2
	Not always good (π i >0) → use of Y iL	Case 3	Case 4

Table 1 .

 1 Characterization of demand to take into account We retain the lowest value of R iLα , such that demand X iL has a probability lower than α of being exceeded. If the lead time L is random and quality is guaranteed (case 2), the demand X iL follows a binomial distribution B (nL, p i ). The number of trials is a random variable, so the determination of this probability distribution is analytically complex. It can be achieved empirically with the Monte Carlo method. These distributions present a multimodal pattern that becomes more accentuated as the probability p i increases. In cases 3 and 4, lead time is certain or random, but quality is not guaranteed, so a delivered component is defective with a probability π i . To meet X iL demand, it is necessary to attain an extra quantity z iL and make X iL + z iL components available. The number of defective parts in this case follows the binomial distribution B (X iL + z iL , π i ). The z iL quantity is an occurrence of the random variable Z iL , which follows the negative binomial distribution NB (X iL , π i ), whose cumulative probability P(Z iL ≤ z iL ) corresponds to the probability of a maximum of z iL defective parts in a batch of X iL + z iL parts. It is thus necessary to use the probability distribution of the number of parts available, Y iL = X iL + Z iL , to determine the value of the percentile that, with a probability α, cannot cover demand, taking into account the three sources of random factors.

	In addition, demand can be the sum of demands from
	several customers, each of which represents one of the
	four cases. The probability distribution of that
	compounded demand is more complex.

Consider case 1 (constant lead time, guaranteed quality). The binomial distribution is not continuous, nor is its cumulative distribution. The definition of a percentile R iLα implies a convention:

Table 2 .

 2 5446) and V 2 ~ B (962.4.L, 0,0513), L ~DU (10, 14), Numerical determinations of R i and SS i .

	and π = 1%.				
		Case 1 Case 2 Case 3 Case 4 Compoun
						d Demand
						V
	L	12	U	12	U	U
	π	0%	0%	1%	1%	1%
	iL Y	6287 6287 6350	6350	8743
	R i	6486 7525 6553	7602	10461
	SS i	199	1238	203	1252	1718

  Order-up-to level for component i, on L days, with risk α Order for produced component i or supplied j at the beginning of day t Order-up-to level for a component Safety stock for component i Lead time of component i, j Number of days of demand to cover Assembly probability of component i Defective probability of component i, j Demand to satisfy of component i on L days Components i held to cope with quality issues Components i available Inventory position of component i at the beginning of day t Observed stock of component j on day t Safety stock of component i Number of expected orders for component j

	Functions and operators
	I r (R iLα )	Expected stock-out
	E(X L )	Expected demand
	I P (R iLα )	Expected residual stock
		Constants
		θ, θ i , θ j	Replenishment cycle
		α	Target stock-out probability (stock-out
			risk)
		β	Stock-out maximum accepted risk
		D i , D j	"Due date" time of component i, j
		F i	Production time of component i
		P j	Planning horizon of component j
		n	Daily production
		t α	Standard normal variable value for risk α
		κ	Packaging unit used in transport
		G	Transport capacity
		H	Production cycle time
		Decision variables
		R iLα
		q it , q jt
		SS iLα
		Random variables
		λ i , λ j
		L
		p i
		π i , π j
		X iL
		Z iL
		Y iL
		PS jt
		S jt
		SS iLα
		k j