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Abstract: In an upstream supply chain (USC) dedicated to the mass production of customized products, decentralized 
management is possible and performing in the steady state, if all the links that precede the final assembly line use 
periodic replenishment policies. These policies require appropriate safety stocks of alternative or optional components. 
To achieve such performance in the real world, the supply chain must identify the source of any changes. Unexpected 
fluctuations in the production of USC plants suggest a bullwhip effect, yet most studies of the bullwhip effect fail to 
consider build-to-order supply chains. A double transformation of available information, derived from bill of materials 
explosions and time lags, is required to restore steady-state performance. It then remains to detect and quantify 
changes and, if a build-to-order strategy of alternative components is possible, use decision rules that are robust to 
such changes. 
Keywords: Global supply chain management, bullwhip effect, information value, safety stock, upstream supply chain. 
 
 
1. Introduction 
 
For the mass production of customized products 
(Anderson & Pine, 1997) using a build-to-order supply 
chain (BOSC, Gunasekarana & Ngaib, 2005, 2009), as 
exemplified by the automotive industry, differentiation 
results from the combination of n optional components 
(e.g., sunroofs) or alternative components (e.g., 
gearboxes). These components are taken from n 
different sets and assembled on n different 
workstations in an assembly line. The upstream supply 
chain (USC) then consists of units that contribute to 
the production of the vehicles assembled by the 
company. The various links of the chain are connected 
by flows of products and information. Eventually, the 
production decisions made by the last production link 
(i.e., the assembly line) pull production from the USC. 
Two obstacles prevent centralized control of the USC 
by assembly lines: Many units belong to independent 
companies, and a link might belong to several supply 
chains (e.g., the supply chains monitored by PSA and 
Renault have many common links). The behavior of 
the chain, and thus its global performance, depends on 
the information and product exchanges that take place 
among the links, as well as the control rules used to 
make provisioning and production decisions. 
The pernicious effects of decisions based on local 
information are well-known in the downstream supply 
chain, especially for low-cost, standardized, mass 
products (e.g., beer). They propagate oscillations of 
increasing amplitude along the supply chain, as 
highlighted by Forrester (1958) and later identified by 
name as the bullwhip effect. 

Oscillations of production occur in USCs dedicated to 
the mass production of customized products too, but 
their causes and mechanisms are relatively unknown. 
For example, a car is assembled at the request of final 
customers or car dealers committed by commercial 
objectives. Because of the high price, each car is 
subject to individual tracking, which means the 
amplification effects observed in the distribution 
networks of low-cost, mass products are unlikely to 
occur. Upstream, production is organized to meet the 
demands of a single customer, the final assembly line. 
However, studies of the bullwhip effect generally 
ignore this type of situation, even though 
understanding the mechanisms that promote 
oscillations along the USC is a prerequisite for 
improving supply chain performance in terms of 
efficiency and effectiveness. We assume here that 
every link uses a periodic provisioning policy in its 
customer-supplier relationship. 
An appropriate analysis of the steady state of periodic 
provisioning policies in the supply chain also must 
exist before we can understand why the steady state 
evolves or is disturbed. In another article (Camisullis 
et al., 2010) we perform a formal analysis of the 
steady state of such a USC. In the type of USCs 
studied herein, the costs induced by a stock-out are so 
high that the use of an analytical model based on some 
expected cost function is useless; a periodic 
replenishment policy relies on a stock-out probability 
that is necessarily low. Whatever the stochastic 
sources of oscillation in the USC (e.g., random 
demand, quality problems, random lead times, 
packaging constraints, and restricted transport 
capacity), an exploitation of demand characteristics is 
possible. Therefore, the appropriate local application 
of the principles of periodic replenishment policies, 



 

 

based on a judicious exploitation of the known and 
stochastic characteristics of demand, keeps stock-outs 
under control for each link of the USC. Thus, 
appropriate safety stocks divide the supply chain into 
independent subsystems, and each entity retains its 
managerial autonomy, which prevents the propagation 
of disturbances. In this contribution, we demonstrate 
how to run each link of the supply chain, according to 
properties found in the steady state, with appropriate 
periodical changes of the information and control 
rules.  
We start (section 2) with a survey of literature that 
deals with the bullwhip effect. Few articles consider a 
complex supply chain though, and those that do 
mainly focus on the downstream part.  
In section 3, we start by assuming that the supply 
chain runs in a steady state environment. We also 
assume that every link uses a periodic provisioning 
policy in its customer–supplier relationship. Then we 
identify precisely which information is needed by a 
link from downstream partners to run its production 
and provisioning with sufficient risk protection. This 
information is much more complex than that suggested 
by prior bullwhip literature. The transmitted 
information cannot be the same for each link; rather, it 
must undergo a double transformation, using bill of 
materials (BOM) explosion and time lags. Yet 
environment stability never lasts very long. Thus, we 
also analyze the mechanisms of time lags that can 
account for detected changes. In turn, the firm can 
adapt steady state policies to preserve its performance. 
Currently, information that comes from BOM 
explosion and time lags is not propagated along the 
USC, which means USC performance cannot rely on 
decentralized decisions. A lack of cooperation and 
reports of poor effectiveness or efficiency may 
encourage managers to modify their provisioning 
policies through trial and error, which can trigger new 
problems along the supply chain. Finally, we examine 
the problem of detecting changes. Some changes may 
be induced by company decisions, such as pricing 
actions, limited series, or the introduction or 
withdrawal of products. Usually companies anticipate 
the impacts of those decisions, before they come into 
effect, though these forecasts tend to be less than 
reliable for distant periods. Another type of change 
results from shifts in customers’ demands for 
alternative components. We propose a means to detect 
this form of change and automatically adapt the 
parameters of replenishment policies accordingly. To 
complete this analysis, we note that such changes may 
alter the effectiveness of monitoring rules used in the 
BOSC system, such as the synchronous production of 
alternative components and the definition of sufficient 
safety stock, especially if the ordered quantity must be 
a multiple of the transport container size.  

2. The Bullwhip Effect in the USC 

We provide a short review of the bullwhip effect that 
reveals USC-oriented investigations are very rare and 
usually pertain to first-tier suppliers. We then analyze 
the causes of disturbances in an upstream BOSC. 

2.1. The Bullwhip Effect 

The bullwhip effect is a well-known phenomenon in 
industrial dynamics (Forrester 1958); it was regarded 
as inevitable in historical systems of production. The 
dynamics among firms in supply chains caused 
volatility that kept increasing for operations farther 
upstream. In the effect described by Forrester (1958), 
real demand information from the end of the chain got 
distorted by various interpretations, processing, and 
movement up the supply chain.  
Extensive research attempts to identify the major 
causes, and demonstrate the huge costs, of the 
bullwhip effect. It usually centers on a downstream 
supply chain, with the goal of (1) analytically 
demonstrating the existence of a bullwhip effect for 
the mass production of standard products, (2) 
encouraging the use of forecasting and production 
mechanisms among members of a distribution network 
based on information from point-of-sales data, or (3) 
sharing valuable information about independent, 
identically distributed demand in a downstream supply 
chain. 
The bullwhip effect also has been recognized in many 
diverse markets (Lee et al. 2004) associated with mass 
or standard production and volatile markets. For 
example, in an inventory management context, 
Sterman (1989) reports evidence of a bullwhip effect 
for a standard product: beer. The experiment involved 
four players who made independent inventory 
decisions, without consultation, and revealed 
systematic, irrational behavior. Using data about the 
consumption of high-tech and durable goods, 
Hanssens (1998) also quantifies the impact of the 
bullwhip effect and demonstrates that the use of retail 
sales information can improve the precision of 
upstream forecasts. In modeling the possible distortion 
of demand, most prior research considers standard 
products with high potential volatility, such that the 
pricing actions assume an eventual economy of scale 
due to mass production, which is very specific to a 
distribution supply chain. 
The distribution supply chain is situated downstream 
of the manufacturing center, and its simple 
configuration supports analyses of the bullwhip effect. 
Chen et al. (2000) attempt to quantify the impact of 
demand forecasting on the bullwhip effect for a 
simple, two-stage supply chain that consists of a single 
retailer and a single manufacturer. The retailer does 
not know the true distribution of demand and therefore 
uses a simple moving average forecast to estimate its 
mean and variance. The retailer uses these estimates to 
form a simple order-up-to level. These results 



 

 

generalize to multistage supply chains, in the case of 
both centralized and decentralized customer demand 
information. However, the question remains whether 
they generalize to an upstream chain, especially in the 
case of BOSC.  
Coordination mechanisms in the supply chain rely on 
the flow of information among its members. We note 
that in assessing the value of information sharing, most 
studies assume the supplier has full knowledge of the 
underlying demand. Information flows can have direct 
impacts on the inventory, control flow, and delivery 
plans of individual members of a supply chain. Yet 
most studies of the distortion of demand information 
only model a retail store’s sales of one product, such 
that the retailer issues orders to manufacturers (Lee et 
al. 1997). In these studies, the bullwhip effect is an 
outcome of strategic interactions among rational 
supply chain members. Cachon and Fisher (2000) also 
investigate the value of information in capacitated 
supply chains with one supplier, N identical retailers, 
and independent and identically distributed demands. 
With a moving average demand forecast, Chen et al. 
(2000) reduce the bullwhip effect by centralizing 
demand information. These studies consistently 
assume that the supplier has full knowledge of the 
underlying demand model and the order policy used 
by the retailer, though in reality, this assumption is 
unrealistic for the downstream supply chain. 
Often because of constraints due to scheduling or scale 
economies, the size of the batch also plays an essential 
part in explaining the bullwhip effect. Large batch 
sizes, moving from the downstream partners upstream 
in chains, result in a difference between the volume 
requested and production (Lee et al. 2004). Cachon 
(1999) studies the optimal balance in order policies in 
a supply chain model with several retailers. The 
bullwhip effect depends partly on the periodicity of 
the order and the size on batch. Therefore, to minimize 
this effect, Cachon recommends reducing the size of 
the batch and increasing the intervals between orders 
to reduce the variability of the requests to the 
supplier.  
Moreover, variation in prices, including the effects of 
promotions at the end of the chain, can cause 
anticipation of future sales. Price promotions do not 
create significant new consumption though and 
therefore generate overproduction cascades along the 
supply chain. Similarly, the anticipation of rising 
prices can generate overproduction that gets 
accentuated moving upstream. Another price effect 
stems from the generalization of promotional 
agreements in transactions with customers and 
suppliers. Companies order goods in great quantities 
to profit from substantial price reductions, but the 
levels of these orders are not representative of patterns 
of spending, and the variation in the bought quantities 
is much greater than the variation of consumption. In 
batch-based orders, variation in prices generates 

artificial peaks, followed by drastic valleys (Lee et al. 
2004). 

2.2. Causes of Disturbances in Upstream BOSC 

The causes of upstream disturbances are somewhat 
different. Fluctuations mainly are triggered by 
decisions made by the company, which lead to a 
BOSC strategy. Pricing actions aim to boost demand, 
such that they modify not only sales and production 
volumes but also the requirements for optional or 
alternative components, depending on the product 
segments affected by the price changes. Limited series 
of homogenous products provide another tactic to 
maintain or boost demand and have similar effects on 
demand levels and requirements for optional or 
alternative components. We also cannot ignore the 
impact of the introduction or withdrawal of products. 
Therefore, the causes of disturbances in an upstream 
BOSC cannot be the same as those cited in prior 
bullwhip literature, mainly because the BOSC is 
pulled by each unique customer, such as an 
automotive assembly line. This customer reacts to 
changes in final demand, though its immediate 
production level and detailed production schedule 
already have been defined. Changes in final demand 
may trigger commercial actions, such as pricing tactics 
or limited series, to boost that demand. The 
introduction or withdrawal of car models also should 
have effects. That is, these decisions likely have an 
impact on the level of daily production and the 
structure of the demand for alternative components, 
which the members of the supply chain should study in 
advance. Because a limited series offers no variety, the 
impact on demand for alternative components should 
depend only on the fraction of daily production 
dedicated to the limited series and the degree of 
cannibalization of other model configurations. 
From a practical point of view though, this 
information rarely gets propagated along the USC; on 
the contrary, we show it is quite useless. Thus USC 
plants react or overreact to “weak signals” from the 
BOSC leader, which induces stock-outs and excessive 
stocks and triggers massive disturbances along the 
USC. 

3. Restoring Steady-State Performance in a 
Changing Environment 

If managers of upstream USC links can adapt their 
decision rules quickly using information transmitted 
from the final assembly line, steady-state performance 
can be restored even if the environment changes. We 
explain why the information necessarily is the result of 
a double transformation that relies on mechanisms 
associated with the bill of materials (BOM) explosion 
and time lags. The latter relate to the growing delay of 
moving upstream in the supply chain, that is, between 
the date of production of a component by one link and 
its integration into the end product in the final 
assembly line. Without this double transformation, the 



 

 

information transmitted lacks any value. In the steady 
state, the time lag mechanism does not play an 
important role, because when the decision rules have 
been defined using appropriate information, there is no 
reason to change them. If every link receives 
appropriate information and uses it to control stock-
outs, disturbances in the supply chain should be rare, 
and the managerial independence of each link of the 
USC can be guaranteed. We therefore move on to 
check various implementation problems.  

3.1. Double Transformation of Information  

We begin by determining the information required by 
each link of the USC, according to the steady-state 
assumption, to establish production and replenishment 
rules that will allow for both management 
independence and smooth USC functioning. Such 
rules also indicate the initial calibration of the steady 
state of the USC. We then show that knowledge of 
current or previous changes can support an adaptation 
of the monitoring rules and make steady-state 
performance possible. This point leads to our extended 
conceptualization of the order penetration point. 

3.1.1 Mandatory use of planning BOM to define 
information to send upstream  

Different forms of information sharing are useful for 
decreasing costs and risks in short-term decision 
making (Chandra et al. 2007). Firms can share raw 
information, such as sales histories, orders, inventory 
positions, and deliveries, or they might share 
processed information that deals with planned or 
forecast demand (Ryu et al. 2009). The latter form of 
information might be the output of a collaborative 
process that represents a first step toward centralized 
management of the supply chain. 
The value of shared information depends on not only 
its possible but also its effective uses, which aim to 
share cost savings across the supply chain. Even in the 
steady state, transmitting detailed information about 
daily production or end-user demand to upstream 
echelons is useless: Products exchanged between links 
in the USC are different than those that represent the 
focus of the downstream supply chain, due to the 
classic mechanism of BOM explosion. For example, 
demand for a component gets pulled by the one of the 
alternative parts mounted in a workstation used in the 
final assembly line, such that the same piston might be 
found in various motors on the car assembly line. 
The planning bill of materials (PBOM) describes 
related options or modules that constitute an average 
end item. Applied to a set of R alternative components 
r that might be mounted in a given station of the 
assembly line (e. g. motors) the PBOM coefficients pr

10 << rp
 

( ; 1=∑r rp ) represent the steady-state 
probabilities of a multinomial distribution, in which 
the number of trials n equals daily production of cars. 
These alternative components belong to the level 1 of 
the BOM. The daily demand X1r of the alternative 

component r follows the binomial distribution B (n, 
pr

0>rsa

), because in each n trials, the event “alternative 
component r is mounted” is tested against the event 
“component r is not mounted”. Component r may 
include  units of the component s (e. g. piston 
set) in the level 2. The daily demand X2rs of that 
component s, as induced by the daily requirement X1r

rrs Xa 1⋅
, 

is . If that component s can be used by 
several alternative components sRr ∈′ , the total 
demand X2s ∑ ∈′ ′sRr srX 2 is  = ∑ ∈′ ′′ ⋅sRr rsr Xa 1 . 

The knowledge of the distribution of X2s

In turn, that component s of level 2 (e. g. a given 
piston set) uses 

 is necessary 
to define the appropriate order-up-to level of that 
component s, associated with the preferred stock-out 
risk and thus its safety stock. The distribution of that 
sum of weighted binomial variables can be easily 
defined by using a Monte Carlo simulation. Those 
Gross Requirements are random variables and not 
fixed values as in the MPR computation of planned 
orders.  

( 0)sub > components u of level 3 (e. 
g. a given piston head) but it may be not the only one 
( )uSs ∈′→ . The previous reasoning applies again, 
after linking component u to component r: as 
previously, the demand X3u

∑ ∈′ ′′ ⋅=
uSs susu XbX 23

 is a weighted sum of a 
subset of demands of components of level 1: 

 

 =∑ ∑∈′ ∈′ ′′′′ ′
⋅

u sSs Rr rsrus Xab 1  

Again, its distribution can only be defined by using a 
Monte Carlo simulation.  
Let’s illustrate this mechanism with an example. For a 
given set of 6 alternative motors (r = 1…6) that can be 
mounted in a given workstation of a car assembly line. 
The motors PBOM is {M1, 54%; M2, 13%; M3, 4%; 
M4, 22%; M5, 5%; M6

962=→ n
, 2%}. The line production is a 

962 cars per day ( ). The daily requirement 
X1r of the alternative component r follows the 
binomial distribution B  (962; pr), that is to say X1,1 ∼ 
B  (962; 54%), for the motor 1, and X1,5 ∼ B   (962; 
5%), for the motor 5. Thus, in the steady state with a 
risk of 0.1%, the safety stocks of motors 1 and 5 are 
47 and 23. If, according to the BOM, only motors M1 
and M5 include the piston set P1 (s = 1) and if M1 
needs 4 piston sets while M5 needs 6 piston sets (a1,1 = 
4; a1,5 = 6), the daily requirement of that piston set P1

5,11,11,2 64 XXX +=
 

is , which is an even discrete 
variable, starting from 4 for the positive values 
( =1,2X 0, 4, 6, 8, … as 1,1X  and 1,1X are discrete 
non-negative values). Using the Monte Carlo 
simulation, one finds a reorder point of 2622 (for a 
risk of 0.1%,) and a demand average of 2392; then the 
safety stock of piston sets is 230. If only piston sets P1 
and P3 include the piston head H1, component (u = 1) 
of level 3. If only piston sets P1 and P3 include the 
piston head H1 and if P3 is mounted only in motors 
M2 and M6, the daily requirement of that piston set P3 



 

 

is 6,12,13,2 44 XXX += . With b1,1 = b1,3 = 1, the daily 
requirement of H1

3,1 1,1 1,5 1,2 1,61 (4 6 ) 1 (4 4 )X X X X X= ⋅ + + ⋅ +
 is a sum of weighted binomial 

variables  

1,1 1,2 1,5 1,64 4 6 4X X X X= + + + , with X1,1 ∼ B  (962; 
54%), X1,5 ∼ B   (962; 5%), X1,2 ∼B  (962; 13%) and 
X1,6 ∼ B  (962; 2%), Using again the Monte Carlo 
simulation, it is easy to show that, in the steady state, 
the average demand of piston heads H1 

3.1.2. Mandatory use of time-lag mechanisms for a 
non persistent steady state 

is 2944 and the 
safety stock, 470.  

The steady state never lasts more than few weeks, but 
environmental changes often are slow enough to 
suggest that the “real world” is defined by a 
succession of slightly different steady states. From one 
state to the next, changes involve the level of 
production and the structure of demand for each set of 
alternative components. Consider a component 
launched in production at time t in a USC echelon, and 
integrated in a vehicle at time t + δ.  
To make good decisions at time t, the echelon needs 
appropriate information for time t + δ, such that δ 
represents the information lag. This lag plays a similar 
role to the lead-time one in the MRP but within the 
wider perimeter of the USC. Another difference with 
the MRP system is that we assume here we are beyond 
the Order Penetration Point (δ > OPP), defined 
hereafter, and then beyond the MRP frozen horizon. 
The mechanism described in the previous section 
therefore must be adapted. To simplify the mechanism 
description, we assume that components productions 
are launched every day for all the components 
produced in the USC; the replacement of that 
assumption is easy but yields a more complex 
formulation. The demand X1rt

rr trtr pn δδ ++ ,1,1 ;

 of the alternative 
component r of level 1 for the day t, to launch in 
production on that day, follows the binomial 
distribution B ( ), as those 
components will be integrated in a vehicle at time t + 
δr. The demand X2st

sRr ∈′

 of the alternative component s of 
level 2 for the day t, and used by several alternative 
components  is a weighted sum of a subset of 
daily productions of components of level 1: 
∑ ∈′ +′′ ′

⋅
s rRr trsr Xa δ,1 . That component s of level 2 

uses component u of level 3, as some other ones 
( )uSs ∈′→ . After linking component u to 
component r: as previously, the demand X3ut

∑ ∑∈′ ∈′ +′′′′ ′
⋅=

u s uSs Rr trsrusut XabX δ,13

 is again a 
weighted sum of a subset of daily productions of 
components of level 1: 

 

Again, all those distributions can easily be defined by 
using a Monte Carlo simulation. 
Let’s adapt our previous example. The current day t is 
1. The motors 1 and 5 are respectively characterized 
by a time-lag of 2 and 3 days (→ motors 1 and 5 
produced on day t will be mounted in the assembly 

line respectively on days t+2 and t+3). The 
Multinomial distribution and production level don’t 
change the first two days. On the following ones, the 
daily production decrease from 962 to 605 and the 
motors PBOM becomes {M1, 49%; M2, 10%; M3, 
3%; M4, 25%; M5, 11%; M6

2,1,1 +tX

, 2%}. With this 
information, the production of motors 1 and 5 to 
launch on day t are the requirement of the assembly 
line for days t+2 and t+3:  ∼ B  (962; 54%) 
and 1,5, 3tX + ∼ B  (605; 11%).With a risk of 0.1%, the 
safety stock is still 47 for motors 1 and 24 for motor 5. 
If, for the production of piston sets H1, the delay 
between planned order and delivery is 2 days, the part 
of the production of day t, sent for producing motor 
M1, will be set in a car using motor M1 4 days later 
(information lag); the other part is sent for producing 
motor M5, 5 days later. Then, the demand of that 
piston set P1

5,5,14,1,1,1,2 64 ++ += ttt XXX
 for day t is 

, where 1,1, 4tX +  ∼ 
B  (605; 49%) and 1,5, 5tX + ∼ B  (605; 11%). Using 
the Monte Carlo simulation, the safety stock of piston 
sets is 184 for that production day (with an average 
demand of 1488). 
If the information lags for the motors M2 and M6 that 
include piston P3 are respectively 2 days and 1 day, 
the demand of piston P3

2,3, 1,2, 2 1,6, 14 4t t tX X X+ += +
 for day t 

is . Using the same delay 
between planned order of H1 and its delivery (2 days), 
the demand of the piston heads H1 used by P3 to be 
mounted in motors M2 and M6

2,3, 1,2, 4 1,6, 31 4 1 4t t tX X X+ += ⋅ + ⋅
 is 

. Then the daily 
requirement of that piston head H1

3,1, 1,1, 4 1,5, 5 1,2, 4 1,6, 31(4 6 ) 1(4 4 )t t t t tX X X X X+ + + += + + +
 is 

1,1, 4 1,2, 4 1,5, 5 1,6, 34 4 6 4t t t tX X X X+ + + += + + + . Using 
again the Monte Carlo simulation, it is easy to show 
that, in the steady state, the average demand of piston 
heads H1 

In turn, we must emphasize three important 
operational consequences. First, the final assembly 
line, which is the BOSC leader, drives information 
sharing, because the relevance of the information 
depends on the reliability of the volume and structure 
forecasts, as well as the anticipated impacts of pricing 
actions and launches of limited series. Beyond a 
certain horizon, information reliability weakens and 
decreases interest in information sharing among units 
that are farther away in the USC. To counter this 
effect, the unit should increase the probabilities of 
demand for alternative components and the production 
level. The loss of efficiency is the price to pay to 
achieve a certain effectiveness, knowing that the 
stock-out risk is not really under control. 

is 1876 and the safety stock, 235.  

Second, information sharing involves minimal 
cooperation between the enterprises of the USC, 
because the lag δ between the production of a 
component and its inclusion in the car in the final 
assembly line equals the sum of the intermediate lags 



 

 

observed between each pair of echelons in the path 
that links the final assembly line to the echelon that 
produces the component. The reliability of the 
intermediate lags transmitted to the BOSC leader also 
influences the relevance of the information sharing and 
thus the decentralization of decisions. Furthermore, 
because the value of shared information depends on its 
effective use, all members of the USC must “play the 
game”; if not, uncontrollable disturbances cannot be 
avoided. 
Third, it is desirable that information lags are weak to 
improve the chances of controlling the whole USC. 
Savings from a distant provision process may be 
balanced by a loss of global coordination of the USC. 

3.1.3 Extended conceptualization of the order 
penetration point  

The displacement of the order penetration point (OPP) 
suggests the possibility of increasing the proportion of 
production, which in turn may improve effectiveness 
and efficiency in certain demand conditions. The OPP 
has been used since 1920 but was formalized on in the 
1950s (Alderson, 1950). Olhager and Östlung (1990) 
discuss the use of push and pull systems relative to the 
position of the OPP, arguing that pull systems 
necessarily apply upstream of the OPP, whereas push 
systems involve downstream operations. This 
approach could differ in the supply chain, depending 
on the vision, whether global or local (Giard and 
Mendy, 2008).  
Orders sent upstream to the OPP cannot be produced 
to order if the time between order arrival and the 
delivery shipment is insufficient. The production units 
must produce to stock, which they can do without any 
information. However, if they lack information, no 
scientific basis supports the rules, and stock-out risk 
cannot be controlled. In a supply chain, it leads to 
major disturbances and poor efficiency. To achieve 
scientific-based monitoring, plants need information 
about demand levels and stochastic structures. As we 
showed for the USC, such information results from the 
double mechanism of the BOM explosion and time 
lags. These mechanisms require that the planning 
horizon of the final assembly line exceeds the lag δ 
that separates the production of a component from its 
inclusion in the final product. Therefore, we define an 
extended order penetration point (EOPP), beyond the 
“ordinary” OPP, and divide USC units into plants that 
can use information to mitigate stock-out risk and 
others. These others, which are outside the EOPP, 
must make decisions with unreliable information, 
which can lead to stock-outs that may be propagated 
downstream in the USC. 

3.2. Implementation  

To achieve the wanted performance, firms must be 
able to detect changes before making adaptations. 
3.2.1 Detection of changes 

The necessary changes to consider include commercial 
actions (e.g., pricing, limited series) and production or 
logistic actions (e.g., delivery frequencies, container 
sizes). Such actions should be communicated to 
managers in charge of supply chain monitoring. Other 
changes require detection devices. 
–Commercial actions. Commercial actions, such as 
discounts or limited series offers, can affect the level 
and structure of demand. Therefore, it becomes 
necessary to conduct preliminary studies of these 
actions to gather information about the volume spread 
over operations and assumptions about the level of 
cannibalization. The changes are observable in the 
structure of requests for alternative components (i.e., 
weighted average of structures for series of sold 
products).  
–Production and logistics actions. In this category, 
three actions are pertinent. First, actions could relate 
to necessary adjustments of the production capacity to 
face evolutions of demand. For example, adding or 
reducing shifts may have a direct impact on the 
structure of demand. Forecasting these changes is 
beyond the scope of this study, but these adjustment 
decisions should be made weeks in advance to enable 
appropriate staff management. Second, some actions 
relate to transportation. For example, changes in the 
periodicity and duration of transports among links 
should be taken into consideration because they 
modify the probability distributions used to define the 
order-up-to levels. Third, in relation to transport 
containers, any modification in the size of specific 
containers must be known in advance, because it likely 
affects safety stocks. 
–Detection of changes in the demand structure. In the 
preceding discussion, we based the solution on an 
implicit assumption of a steady state. Challenging this 
assumption does not pose a problem if the change 
relates to the global production level: Order-up-to 
levels adapt to the new steady-state characteristics and 
cause an increase or reduction of the safety stock, 
varying in the same direction as the level of 
production. 
The change of demand structure also can be taken into 
account through single exponential smoothing. 
Assume the time series is locally stationary, and let 

jtp̂  and jtp  denote the estimated probability of 
including the alternative component j in a car at time t 
and the associated observed percentage, respectively. 
The estimated jtp̂  can be calculated 
as 1ˆ)1(ˆ −−+⋅= jtjtjt ppp γγ . If the same smoothing 
technique is used for all alternative references, then: 

=−+⋅= ∑∑∑ −j jtj jtj jt ppp 1ˆ)1(ˆ γγ  
11)1(1ˆ)1( 1 =⋅−+⋅=−+ ∑∑ − γγγγ j jtj jt pp . 

The choice of the smoothing parameter γ implies a 
choice between high values (which allow faster 
adaptation to possible modifications of the structure of 
demand but imply overreactions to random variations) 
and low values (which mitigate the impact of random 
variations but take more time to detect changes). The 



 

 

slow evolution of the demand structure favors a low 
coefficient, though it can also be determined by 
minimizing previous forecast errors (min 

2
1, )ˆˆ( +′<′ ′ −∑ tjtt tj pp ) or some adaptive control of 

the smoothing parameter. Similar to all weighted 
moving averages, exponential smoothing suffers the 
disadvantage of generating oscillations due to the 
auto-correlation phenomenon (i.e., Slutsky-Yule 
effect). Such oscillations generate positive biases in 
the case of an excessive estimate of pi

)1/()ˆˆ(
2

2 1, −−∑ =′ +′′ tppt
t tjtj

 and negative 
biases otherwise. A negative bias increases the risk of 
stock-outs and thereby leads to an increase in the 
current estimate, according to the known variance of 
the Slutsky-Yule error. In the case of positive bias, it 
means acceptance of overprotection. The analysis of 
the confidence interval of the daily requirements for 
part i may lead to the rejection of a hypothesis of 
oscillations generated only by the Slustky-Yule effect. 
For example, the impact of the production of a limited 
series may require that the time series be corrected 
before forecasting. Most of the time though, it is 
induced by schedule constraints that introduce 
deviations between the daily demand structure and 
daily consumption by the assembly line, in which case 
it is preferable to use the forecast error deviation 

 to define a upper limit 

of itp̂  estimates. 

3.2.2 Adaptation to changes  

After the changes are detected, some adaptation of the 
monitoring rules must be implemented. Modifying the 
parameters of replenishment policies does not demand 
any particular comments. However, some changes 
influence other monitoring rules, including the 
production to order of alternative components with 
batch constraints and the safety stock involved when 
the transportation of an alternative component 
demands containers that contain only one type of part. 
In the first case, possible need to change some 
monitoring rules used in the production to order. If the 
production capacity between two shipments is superior 
to ordered quantity, and the diversity demanded by 
batch size constraints cannot be met; therefore, 
inventories of alternative components should be 
implemented to avoid stock-out. Different rules can 
apply in this case (e.g., kanban system, order-up-to 
level periodic policy), but their parameters should be 
modified when the environment changes. A 
synchronous production method has been proposed 
(Giard and Mendy 2008) and benchmarked in the 
automotive industry; it helped avoid stock-outs and 
decreased safety stocks, even in the face of quality 
problems during the production process. Moreover, 
this new approach triggers the immediate adaptation of 
parameters to any variation in the demand structure, 
which is unlike most other approaches. Regardless of 
the rule used, a change in daily production provokes 
an adaptation of the parameters for those rules. 

In the second case, transportation-related constraints 
may determine the amount of alternative components. 
We are interested in particular in a rule that demands 
the ordered quantity must be a multiple of the 
container size. This constraint is easy to take into 
account; it requires that the accepted stock-out risk be 
modified such that it can be managed automatically 
(see Camisullis et al. 2010). With a production-to-
order system, this constraint implies that the sequence 
of alternative components preferred by the car 
assembly line will differ from the one that results from 
orders that must respect container constraints. Thus, 
the importance of an alternative component differs 
from its entrance rank in stock (i.e., shift of rank in the 
orders sent to the supplier). This rank change leads 
inevitably to stock-outs if the consumption rank occurs 
before the entrance rank. To avoid a situation in which 
the assembly line needs a component before it is 
available, safety stocks must support every alternative 
component, and their levels can be defined by 
simulation (Camisullis and Giard, 2008). Changes in 
the level of production and structure of demand thus 
imply a recalibration of safety stocks. 

4. Conclusion 

We have shown that the disturbance mechanisms in 
upstream BOSC differ from those identified in prior 
bullwhip effect literature. The centralization of 
decisions in the BOSC is not probable, considering the 
multiplicity of unit owners and because one unit may 
support several supply chains. Thus, we require new 
coordination mechanisms that can guarantee the 
performance of a BOSC. In the steady state, decision 
autonomy is feasible if the stock-out risk is negligible, 
perhaps due to appropriate safety stocks, and if the 
right information is available to define the order-up-to 
levels. This information should result from a double 
transformation that relies on the BOM explosion and 
time lags associated with the interval between the 
production of a component and its effective inclusion 
in the final product. If all units in the USC use the 
information to adapt their decision rules, the USC is 
under control and efficient. The BOSC leader 
coordinates the upstream echelons by sending 
appropriate information; this leader also takes 
responsibility for detecting changes. The changes may 
demand shifts in monitoring the production to order of 
alternative components, as well as the adaptation of 
safety stocks to address the rank changes induced by 
constraints. 
Although these mechanisms may be difficult to 
implement, alternative ones that achieve the same 
performance remain to be found. 
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