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Détermination des stocks de sécurité dans une chaîne logistique-amont dédiée à une production de masse de produits fortement diversifiés

Introduction

On s'intéresse ici à l'analyse, en régime de croisière, d'une chaîne logistique orientée vers la production de masse de produits fortement diversifiés. La différenciation est obtenue par l'assemblage de n ensembles de composants alternatifs ou optionnels assemblés sur n postes d'une ligne d'assemblage, contribuant à la diversité recherchée [START_REF] Anderson | Agile Product Development for Mass Customization[END_REF]. Ce type de chaîne est maintenant repéré dans la littérature spécialisée sous l'acronyme BOSC, pour Buildto-Order Supply Chain [START_REF] Gunasekarana | Build-to-order supply chain management: a literature review and framework for development[END_REF]. Le pilotage des maillons de la chaîne logistique amont (CLA), c'est-à-dire celle qui a pour vocation de produire et non de distribuer, s'appuie généralement sur des politiques calendaires d'approvisionnement. L'indépendance de gestion des maillons de la chaîne est conditionnée par une absence de propagation d'incidents le long de la chaîne et l'existence d'une capacité suffisante pour répondre aux commandes reçues dans un délai acceptable. Ces conditions d'indépendance en régime de croisière sont décrites dans [START_REF] Camisullis | Analyse des déterminants à court terme de la capacité d'une unité de production[END_REF] et supposées respectées ici.

Les règles de pilotages retenues doivent contenir la possibilité d'une rupture de stock à un niveau jugé acceptable. Elles conduisent à une détention de stocks de sécurité à chaque maillon de la chaîne logistique. Plusieurs facteurs ont une influence sur leurs niveaux. L'incertitude pesant sur la demande prévisionnelle, les délais de livraison et la qualité des produits mais aussi les contraintes de lotissement et de capacité de transport jouent un rôle identifié depuis longtemps mais, d'un point de vue opérationnel, l'implication de leur prise en compte simultanée est rarement envisagée ; nous essayons ici de combler cette lacune. Les règles de pilotage des maillons de la chaîne et la qualité des informations transmises jouent un rôle sousestimé sur l'importance des stocks de sécurité et, dans certains cas, sur la génération de cycles dans la production avec des conséquences potentielles en cascade vers l'amont de la chaîne logistique ; on analysera en détail l'impact de ces facteurs. Des exemples numériques seront proposés pour illustrer l'impact de ces facteurs et montrer que la complexité des problèmes ne constitue pas un obstacle à l'usage d'une démarche rigoureuse garantissant la performance désirée.

On commencera par un examen rapide des travaux antérieurs relatifs à la détermination des stocks de sécurité dans les chaînes logistiques (section 2). On mettra en évidence quelques caractéristiques fondamentales communes à tous les stocks de sécurité (section 3). La vision « chaîne logistique » conduit à distinguer les stocks de sécurité de composants approvisionnés (section 4), des stocks de sécurité de composants produits (section 5) qui ne se posent pas exactement dans les mêmes termes. On terminera (section 6) par les implications managériales de ces analyses sur les conditions de performance du pilotage de la chaîne logistique.

Travaux antérieurs

Les chercheurs s'intéressent aux stocks de sécurité depuis une bonne cinquantaine d'années. Initialement lié au caractère aléatoire de la demande et à la maîtrise des risques, d'autres sources d'aléa motivant leur existence ont rapidement été prises en compte. Quelques écrits récents illustrent la diversité des justifications avancées expliquant comment les stocks de sécurité permettent de contrer différentes sources d'incertitude (au sens large). Par exemple, l'incertitude en production est traitée par [START_REF] Ho | Uncertainty dampening methods for reducing MRP system nervousness[END_REF] qui s'intéressent à l'incertitude affectant les processus de production (pannes, délais d'exécution variables…) ou par [START_REF] Vargas | Managing uncertainty in multi-level manufacturing systems[END_REF] qui se penchent sur les effets de l'incertitude concernant les temps de lancement et de production, les pannes des machines et les temps de réparation nécessaires. L'incertitude sur les approvisionnements est traitée, par exemple, par [START_REF] Chiu | A multi-echelon integrated JIT inventory model using the time buffer and emergency borrowing policies to deal with random delivery lead times[END_REF] pour l'incertitude portant sur les délais de livraison et par [START_REF] Koh | Uncertainty under MRP-planned manufacture: review and categorization[END_REF] pour l'incertitude sur les composants (qualité, problèmes liés au fournisseur). L'incertitude affectant la demande apparaît par exemple dans les articles de [START_REF] Guide | A review of techniques for buffering against uncertainty with MRP systems[END_REF] pour l'incertitude sur les quantités demandées, dans les modèles de [START_REF] Lowerre | Protective scheduling smoothes jittery MRP plans: buffer forecast error the key[END_REF], [START_REF] Wemmerlov | A time-phased order-point system in environments with and without demand uncertainty: a comparative analysis of non-monetary performance variables[END_REF] ou plus récemment [START_REF] Krupp | Safety stock management[END_REF] pour qui les stocks de sécurité servent à contrer les erreurs de prévision. Si les stocks de sécurité permettent de limiter les risques, d'autres solutions alternatives ont été étudiées : appel à des capacités excédentaires, internes ou externes (sous-traitance), négociation de délais de livraison additionnels ; ces différentes solutions, qui ont des différences en termes d'efficacité et d'efficience, ne sont pas exclusives.

Pour déterminer le niveau et la composition des stocks de sécurité à détenir pour faire face à ces différentes sources d'incertitude, deux approches non exclusives ont été utilisées : la modélisation mathématique et la simulation.

La modélisation mathématique décrit un problème d'approvisionnement, défini en univers aléatoire ou en univers certain, par un système de relations mathématiques liant des variables de commande à des variables d'état et des paramètres (et des variables aléatoires dans les formulations stochastiques), pour aboutir à un ensemble de contraintes et une fonction-objectif à optimiser. L'analyse des conditions d'optimalité permet de définir les valeurs optimales des variables de commande. Les premiers modèles établis, celui de la quantité économique de commande (univers certain) et celui du marchand de journaux (univers aléatoire) étaient très simples, n'utilisaient qu'une variable de commande et n'intégraient aucune contrainte. Ces approches formelles se sont considérablement complexifiées et, depuis une vingtaine d'années, de nombreux modèles ont été proposés pour traiter des problèmes liant plusieurs maillons de la chaîne logistique même si les premiers écrits sont anciens [START_REF] Clark | Optimal policies for a multi echelon inventory problem[END_REF]. Illustrons cette évolution par quelques exemples. [START_REF] Diks | Optimal control of a divergent multi-echelon inventory system[END_REF] cherchent à minimiser les coûts de détention des stocks et de pénalité pour un système composé de N échelons utilisant une politique de recomplètement périodique de stocks avec des délais d'approvisionnement fixes. [START_REF] Chen | Worst-case analysis of (R;Q) policies in a two stage serial inventory system with deterministic demand and backlogging[END_REF], vise à minimiser le coût total moyen d'un système multi-échelons où chaque échelon utilise une politique de recomplètement périodique, avec délais d'approvisionnement nuls. [START_REF] Axsater | A joint replenishment policy for multi-echelon inventory control[END_REF] évaluent les coûts d'un système composé d'un entrepôt central approvisionnant plusieurs distributeurs avec des délais d'approvisionnement constants. [START_REF] So | Impact of supplier's lead-time and forecast demand updating on retailer's order quantity variability in a two-level supply chain[END_REF] analysent deux facteurs qui contribuent à la forte variabilité des quantités commandées dans le cas de fournisseur : le délai de livraison du fournisseur, supposé variable et dépendant des quantités commandées par le client, et la mise à jour des prévisions de la demande. [START_REF] Rau | Integrated inventory model for deteriorating items under a multiechelon supply chain environment[END_REF] étudient une chaîne logistique composée d'un fournisseur, d'un fabricant et d'un distributeur avec des délais de livraison négligeables et développent un modèle de gestion des stocks multi-échelons visant à minimiser le coût optimal de l'ensemble de la chaîne.

L'approche simulatoire est utilisée par certains auteurs lorsque l'approche analytique devient trop compliquée du point de vue de la description du système étudié ou de l'établissement de solution analytique. Par exemple, [START_REF] Ng | Simulation workbench for analyzing multi-echelon supply chains[END_REF] simulent le fonctionnement de chaînes logistiques composées de N échelons, avec des délais d'approvisionnements aléatoires et comparent différents types de politiques de stock. [START_REF] Martel | Policies for multi-echelon supply, DRP systems with probabilistic time-varying demands[END_REF] simule le fonctionnement d'une chaîne logistique composée de trois niveaux, qui utilisent des politiques de recomplètement périodique avec des délais d'approvisionnement prédéterminés, pour définir des politiques de planification glissante permettant de gérer efficacement les flux. [START_REF] Liberopoulos | Tradeoffs between base stock levels, numbers of kanbans, and planned supply lead times in production/inventory systems with advance demand information[END_REF] simulent une chaîne logistique de production à deux niveaux, avec des délais d'approvisionnement planifiés ; ils comparent les résultats obtenus en terme de niveau de stock et de performance du système en employant soit une politique de type base stock, soit une politique hybride mélangeant base stock et Kanban.

Certains auteurs adoptent une démarche hybride combinant simulation et utilisation de solution analytiques de modèles de gestion des approvisionnements. Par exemple, [START_REF] Mohebbi | Versus dual sourcing in a continuous-review inventory system with lost sales[END_REF] étudient une chaîne logistique composée d'un centre de production qui utilise une politique à point de commande et qui peut être approvisionné par un, deux ou plusieurs fournisseurs avec des délais d'approvisionnement stochastiques ; ils comparent les résultats obtenus en fonction du nombre de fournisseurs sélectionnés. [START_REF] Moinzadeh | A multi-echelon inventory system with information exchange[END_REF] propose une politique de recomplètement pour un fournisseur devant approvisionner plusieurs distributeurs avec des délais d'approvisionnement constants, chaque distributeur utilisant une politique à seuil de commande. [START_REF] Tang | The detailed coordination problem in a two-level assembly system with stochastic lead times[END_REF] analysent un système d'assemblage à deux niveaux, avec des délais d'approvisionnement stochastiques et une politique de réapprovisionnement de lot pour lot ; leur but est de minimiser une fonction de coût liée aux ruptures d'approvisionnement et à la détention des stocks. [START_REF] Forsberg | Exact evaluation of (R, Q)-policies for two level inventory systems with Poisson demand[END_REF] ou [START_REF] Seifbarghy | Cost evaluation of a two-echelon inventory system with lost sales and approximately Poisson demand[END_REF] cherchent à évaluer les coûts d'une chaîne logistique composée d'un entrepôt approvisionnant plusieurs distributeurs avec des délais constants et utilisation des politiques périodiques à seuil de commande.

Ces approches reposant sur une coopération ne tiennent pas vraiment compte de l'autonomie décisionnelle des acteurs, du partage des gains induits par des politiques coordonnées d'approvisionnement et de la possibilité d'une détérioration de la position d'un maillon passant d'une gestion autonome à une gestion coordonnée. L'intérêt de ces modèles (en univers aléatoire) de détermination des valeurs optimales de variables de commande de l'approvisionnement de maillons de la CLA est, en réalité, assez limité : l'impact d'une rupture de stock est tel qu'il est difficilement envisageable d'accepter une rupture de stock qui ne soit pas négligeable. On se place donc ici dans le cadre d'une autonomie décisionnelle des maillons de la CLA qui gèrent tous leurs approvisionnements avec un risque prédéterminé négligeable de rupture de stock, conditions assurant le découplage des maillons de la chaîne logistique, en régime de croisière. En tout état de cause, les politiques optimales d'approvisionnement se caractérisant par des probabilités optimales de rupture de stock. Ce qui suit reste valable quel que soit le risque accepté, à condition que ce risque ne soit pas trop élevé. Ajoutons qu'il sera fait appel à la simulation seulement pour déterminer des distributions de probabilités impossibles à obtenir autrement en cas de combinaison de sources d'aléas et non pour simuler un système afin de déterminer des valeurs de variables de commande garantissant une certaine performance.

Caractéristiques générales des stocks de sécurité

On commencera par présenter les raisons de la mise en place de stocks de sécurité et de leurs localisations dans une perspective de « propagation de la demande » le long d'une chaîne logistique. On précisera les caractéristiques de la demande aléatoire à prendre en considération pour définir la politique d'approvisionnement conduisant au stock de sécurité. On verra comment le risque accepté et ces caractéristiques influent sur son niveau. On examinera enfin la relation existant entre stock de sécurité et stock résiduel moyen avant livraison.

Localisation et justification des stocks de sécurité dans la chaîne logistique

Sur le plan des principes, le stock de sécurité est constitué dans le cadre d'une politique d'approvisionnement pour faire face à une demande qui n'est pas connue avec certitude et qui ne peut être satisfaite en totalité par une production à la commande. L'approvisionnement peut porter sur des produits commandés auprès d'un fournisseur pour couvrir les besoins d'une unité de production (ou d'une unité de distribution dans la chaîne logistique-aval). Il peut également concerner les produits fabriqués par une unité de production, lorsque cette unité ne peut produire complètement à la commande, le point de pénétration de commande de ses clients ne rentrant pas suffisamment dans son processus productif [START_REF] Giard | Production à flux tirés dans une chaîne logistique[END_REF].

Dans sa version de base, la politique d'approvisionnement calendaire, la seule envisagée dans cet article, se caractérise par la passation périodique d'une commande égale à la différence entre un niveau de recomplètement R et la position de stock observée au moment de la passation de la commande. L'intervalle  entre deux passations de commande correspond à la période de révision calendaire. Le stock de sécurité est égal à la différence entre R et la demande moyenne définie sur l'intervalle de temps séparant la commande de sa livraison. Le niveau de recomplètement est défini de telle sorte que le risque d'une rupture de stock soit égal à une probabilité cible, déterminée ou non par le calcul économique. Ce risque  ne peut être élevé, sous peine de pouvoir conduire à un stock de sécurité négatif, ce qui n'aurait guère de sens d'un point de vue opérationnel. Notons que l'on retrouve l'usage du stock de sécurité dans les politiques d'approvisionnement du type « quantité économique de commande -point de commande » dans lesquelles le point de commande joue un rôle comparable à celui du niveau de recomplètement.

En gestion calendaire, la définition du stock de sécurité découle donc de celle du niveau de recomplètement. Les modèles de gestion optimale des stocks utilisent des fonctions correspondant à l'espérance mathématique d'un coût périodique à minimiser, pour proposer des relations analytiques de détermination du niveau de recomplètement optimal. Il correspond toujours au fractile de la distribution de demande retenue associé à un risque de rupture optimal, ce dernier étant fonction de la structure relative des coûts de la fonction à optimiser. En régime de croisière, les caractéristiques de la demande et le niveau de recomplètement sont stables. La quantité commandée correspond à la différence entre la position de stock après la dernière commande passée -c'est-à-dire le niveau de recomplètement -et la position de stock à la passation de commande. La quantité commandée est donc égale à la demande exprimée depuis la dernière commande, si les demandes non satisfaites sont différées, et à la demande satisfaite si les demandes non satisfaites sont perdues. Dans ce dernier cas, il a peu de différence entre demandes exprimées et demandes satisfaites si le risque de rupture est faible. En général, dans les politiques d'approvisionnement des maillons de la chaîne logistique -amont, les demandes non satisfaites sont différées et le risque de rupture de stock accepté très faible. Deux observations opérationnelles peuvent être faites.

-Pour le fournisseur, la quantité commandée, qui correspond à un cumul de demandes aléatoires, est une variable aléatoire dont les caractéristiques découlent de celles des demandes que son client doit satisfaire.

-Cette propriété n'est pas valide si certaines pièces approvisionnées sont rejetées pour des raisons de qualité : il faut alors ajouter à la demande exprimée depuis la dernière commande le nombre de pièces prélevées qui ont été rejetées.

Un dimensionnement pertinent des stocks de sécurité dans les différents maillons d'une chaîne logistique en limite les à-coups de fonctionnement. La qualité de ce dimensionnement repose en grande partie sur une bonne propagation des informations disponibles de l'aval vers l'amont ; on reviendra sur ce point en conclusion. On s'intéresse ici aux stocks de sécurité du maillon B de la sous-chaîne logistique A  B  C dans laquelle, par exemple, C est une ligne d'assemblage de véhicules automobiles, B est une unité d'assemblage de moteurs et A une unité de fabrication de carters. Deux types de stock de sécurité peuvent être détenus dans cette unité B en raison de ses relations avec l'amont et l'aval.

-Les stocks de sécurité de production portent sur des composants i produits par le maillon B pour être vendu à son client (maillon C) lorsque le point de pénétration de commande du maillon C dans le système productif du maillon B ne permet pas à B de produire entièrement à la commande. Ces stocks de sécurité sont détenus par le fournisseur. On suppose que le client C transmet une commande q it de 

i i i F D   
), il peut produire à la commande. Si l'intervalle i i D   est supérieur à la période de révision calendaire , c'est que le client C exploite des informations de programmation de sa production au-delà de ce qui lui est strictement nécessaire. Cette anticipation de réquisition peut permettre au fournisseur B de passer d'une production pour stock à une production à la commande ; en allant plus loin, elle peut permettre au fournisseur A de B de produire éventuellement à la commande. Lorsqu'elle est possible, cette propagation permet à la fois une meilleure efficacité (élimination de la possibilité de rupture de stock dans certains maillons) et une meilleure efficience (élimination de stock de sécurité dans certains maillons), cette proposition étant à amender si l'on n'a pas la garantie d'une parfaite qualité des produits livrés.

-Les stocks de sécurité d'approvisionnement portent sur des composants j acquis auprès d'un fournisseur (maillon A) pour être utilisé en production par le maillon B. Ces stocks sont détenus par le client (ici le maillon B), contrairement au cas précédent où ils sont détenus par le fournisseur. Adaptons les conventions du paragraphe précédent. La commande q jt du composant j passée par B à son fournisseur A au début du jour t est à livrer au début du jour j D t  avec un délai de mise à disposition D j et un délai de livraison  j ( j j D   ). La synchronisation des passations de commandes de A et B permet une meilleure connaissance de la demande à satisfaire pour B (après programmation de sa production) mais elle ne s'impose pas. Au moment de la passation de commande de B à A, le maillon B a défini une programmation de la production des références utilisant le composant j jusqu'au début du jour 

Détermination de la demande à prendre en considération

On a vu que le niveau de recomplètement, dont dépend le stock de sécurité, est un fractile d'une distribution de probabilités d'une demande pendant une période. Plusieurs aléas peuvent se combiner dans la détermination de cette distribution, ce qui conduit rapidement à déterminer par simulation la distribution de probabilité à utiliser. On illustrera numériquement l'obtention de ces distributions de référence et la détermination du fractile associé à un risque prédéterminé.

Sources d'aléas retenues

La demande d'un composant alternatif i ayant toujours la même probabilité p i d'être monté sur l'un des produits qui passent successivement sur un même poste d'une ligne d'assemblage est une variable aléatoire qui peut combiner 3 sources de variation.

-La taille de l'ensemble considéré est le produit d'une consommation quotidienne n par un nombre L de jours, qui peut être certain ou aléatoire. A priori, L ne peut être aléatoire que dans l'approvisionnement de composants acquis auprès d'un fournisseur.

-La demande à satisfaire X iL définie sur L jours suit, en régime de croisière, la loi Binomiale B (nL, p i ).

-Enfin, si un produit livré a une probabilité positive  i de ne pas être conforme, la demande X iL a peu de chance d'être satisfaite en totalité. Pour être en mesure de couvrir cette demande X iL il faut disposer d'une quantité complémentaire z iL , donc de X iL + z iL pièces disponibles. Le nombre de pièces non conformes dans ce cas suit la loi Binomiale B (X iL + z iL ,  i ). La quantité z iL doit être considérée comme une occurrence de la variable aléatoire Z iL , qui suit la loi Binomiale négative BN (X iL ,  i ) dont la probabilité cumulée P(Z iL ≤ z iL ) correspond à la probabilité d'avoir au plus z iL pièces non-conformes dans un lot de X iL + z iL pièces. Il convient donc de s'intéresser à la distribution de probabilité du nombre de pièces disponibles Y iL = X iL + Z iL pour être en mesure de déterminer la valeur du fractile * iL Y n'ayant qu'une probabilité  de ne pas être en mesure couvrir la demande à satisfaire, compte tenu des trois sources d'aléa identifiées.

Qualité des produits livrés

L i certain L i aléatoire Parfaite (π i = 0)→étude de X iL Cas 1 Cas 2

Imparfaite (π i > 0)→étude de Y iL Cas 3 Cas 4

Tableau 1. Caractérisation de la demande à prendre en considération

3.2.2.

Illustration numérique

On s'intéressera ici à l'approvisionnement de 6 composants alternatifs (moteurs) susceptibles d'être montés sur un poste d'assemblage qui traite n = 962 produits (véhicules) par jour. L'un de ces composants alternatifs est nécessairement retenu au montage. Cet approvisionnement est destiné à satisfaire une demande qui n'est connue qu'en probabilité (probabilités p i données dans le tableau 2). On suppose que cette structure de probabilités est stable et donc que l'on est en régime de croisière. Si cette structure évolue lentement, on se ramènera au cas précédent en révisant périodiquement les caractéristiques de ce régime de croisière. Bien évidemment, la structure de la demande observée pour un jour quelconque varie d'un jour à l'autre pour des raisons classiques de fluctuations d'échantillonnage.

Moteur i 1 2 3 4 5 6

p i 54,46% 13,29% 3,58% 21,51% 5,13% 2,03%

Tableau 2. Distribution de probabilités p i des moteurs

Le vecteur X iL des demandes des composants i sur L jours suit la loi Multinomiale M {n = 962.L ; [p i ]}. La demande totale de composants alternatifs à monter au cours de ces L jours est nécessairement égale à la production totale de ces journées

( L nL X L l i il 962 1 6 1      
). Cela étant, la demande du composant alternatif i suit la loi Binomiale B (nL ; p i ), puisque l'analyse porte sur ce moteur i contre le regroupement de tous les autres moteurs. L'intérêt d'avoir identifié la présence d'une loi Multinomiale apparaîtra lorsqu'on analysera les conséquences de la consolidation des politiques d'approvisionnement.

Pour la longueur L de la période de production, on travaillera sur une valeur certaine (L = 12) et deux distributions discrètes. La première est la distribution discrète uniforme de bornes 10 et 14 jours : L ~DU [10, 14]). La seconde est une distribution discrète empirique unimodale D {[10, 3 %], [11, 23 %], [12, 50 %], [13, 18 %], [14, 6 %]}. L'espérance mathématique de ces deux distributions est 12, ce qui permet de rapprocher les résultats obtenus avec ceux trouvés dans le cas d'un délai certain. Pour l'étude de l'impact des problèmes de qualité dans l'analyse de la demande à satisfaire on retiendra  = 1%, comme probabilité qu'un composant livré ne soit pas considéré conforme. Le tableau 3 illustre un jeu de valeurs de R iL tel que

     ) ( P iL iL R X
, pour les 6 moteurs considérés, pour α = 0,01 % et avec L = 1 ou L = 12. Ces valeurs peuvent être trouvées facilement avec un tableur. Les distributions de probabilité des moteurs 1 et 5 pour L = 12 sont illustrées à la figure 1. Supposons à présent que le délai d'obtention L soit aléatoire. La loi de la demande de X iL suit la loi Binomiale B (962.L, p i ), le nombre d'épreuves étant maintenant une variable aléatoire. La détermination de cette distribution de probabilités est compliquée analytiquement même dans le cas relativement simple traité ici, on approchera empiriquement cette distribution en utilisant l'approche de Monte Carlo1 . Le tableau 4 donne les principaux paramètres de ces distributions et quelques fractiles pour α = 0,01% (pour ce cas 2 et les suivants), en combinant les 3 hypothèses relatives au délai L et 2 hypothèses de qualité des composants livrés. Les distributions de probabilités des moteurs 1 et 5 sont illustrées à la figure 1. On observe sur l'ensemble des moteurs (même si deux seulement sont repris ici) que le caractère multimodal de ces distributions est d'autant plus accentué que la probabilité p i de montage du moteur i est forte (les 5 modes observés étant liés au fait que la distribution discrète des durées comporte 5 valeurs).

Cas 3 et 4 -délai certain ou aléatoire & qualité non garantie

La possibilité que le composant livré ne soit pas considéré comme conforme au montage avec une probabilité  (=1%) conduit à faire appel à la variable aléatoire Z iL qui suit une loi Binomiale Négative. Pour illustrer la démarche suivie dans l'utilisation de cette loi, on commencera par retenir une occurrence arbitraire de la variable aléatoire X iL , pour le composant i = 5 et une durée certaine de période L = 12 ; la valeur choisie est x 5,12 = 750. Pour maîtriser le risque de ne pas couvrir cette demande de 750, il faut disposer d'une quantité complémentaire z 5,12 , d'où un disponible de 750 + z 5,12 pièces. Le nombre de pièces non conformes dans ce disponible suit la loi Binomiale B (750 + z 5,12 , ). La probabilité d'avoir dans ce lot moins de 750 pièces conformes peut se calculer à partir de la loi Binomiale pour différentes valeurs de z 5,12 mais il est plus simple de faire directement appel à la loi Binomiale négative BN (750, ) dont la probabilité cumulée P(Z 5,12 ≤ z 5,12 ) correspond à la probabilité d'avoir au plus z 5,12 pièces non conformes dans un lot de 750 + z 5,12 pièces. Cette distribution est retracée dans le tableau 5.

Z 10 1 1 1 2 13 14 15 1 6 1 7 P(Z=z ) 8,80% 6,10% 3,80% 2,30% 1,20% 0,60% 0,30% 0,10% P(Z≤z ) 85,50% 91,50% 95,40% 97,60% 98,80% 99,50% 99,80% 99,90% P(Z≥z ) 14,50% 8,50% 4,60% 2,40% 1,20% 0,50% 0,20% 0,10% Tableau 5. Distribution de probabilités de la loi Binomiale Négative BN (750, )

Si l'on refuse de courir un risque  supérieur à 1 % de ne pas être en mesure de satisfaire une demande de 750, il convient alors de disposer de 765 unités 1 . Si la demande à couvrir est inférieure à 750, il est évident que le risque encouru en disposant de 765 unités est inférieur à 1 % et est d'autant plus faible que cette demande à couvrir est faible. La demande à couvrir X iL étant aléatoire, il convient alors de s'intéresser à la distribution de Y iL = X iL + Z iL , où X iL suit la loi Binomiale B (nL, p i ), où L est une variable certaine ou aléatoire discrète et Z iL suit la loi Binomiale négative BN (X iL ,  i ). Une illustration numérique de cette distribution Y iL est donnée au tableau 4 et dans la figure 1. Dans cet exemple numérique, si l'on refuse de courir un risque  supérieur à 0,01 % de ne pas être en mesure de satisfaire la demande il faut disposer de 690 unités, contre 682 en l'absence de problème de qualité lorsque la période de référence est de 12 jours ; si cette période de référence est aléatoire, il faut disposer de 776 unités contre 785 si L ~DU [10, 14]) et de 775 unités contre 776 si L suit la loi discrète retenue en exemple.

En s'intéressant à l'approvisionnement d'un composant alternatif ou optionnel monté sur un poste d'une ligne d'assemblage, on est amené à utiliser la distribution Binomiale B (nL, p i ). Sous certaines conditions [START_REF] Giard | Gestion de la production et des flux[END_REF], facilement vérifiées si nLp i a une valeur suffisamment élevée (ce qui est habituellement le cas dans les CLA), cette distribution peut être approximée par la distribution Normale

N ( nL p p nLp i i i ) 1 ( , 
). Avec la définition de la variable centrée réduite t  associée au risque , le fractile

 iL R est lié à t  , à l'espérance mathématique de la distribution et à son écart-type par la relation [1]. ) 1 ( i i i iL p nLp t nLp R      [1] Le stock de sécurité i iL iL nLp R SS     est alors défini par la relation [2]. ) 1 ( i i iL p nLp t SS     [2]
Dans l'industrie, on utilise assez souvent le concept de coefficient de sécurité qui est la constante par laquelle il convient de multiplier la demande moyenne pour calculer le stock de sécurité. Il est intéressant de l'exprimer comme une fonction du coefficient de variation, rapport de l'écart-type à la moyenne, c'est-à-dire ici 

i i i nLp nL p p / ) 1 (  = ) /( ) 1 ( i i nLp p  . La
i i i i i i iL nLp p t nLp p nLp t nLp R         [3]
L'usage fréquent dans l'industrie d'une règle fixant les stocks de sécurité par le biais d'un coefficient empirique imposé pour un ensemble de références aboutit mécaniquement à des risques de rupture de stock variables d'une référence à une autre pour une même production totale. Le tableau 6 retrace l'évolution des stocks de sécurité et des coefficients de sécurité pour les moteurs 1 et 5, une production quotidienne de 962 véhicules, quelques valeurs comprises entre 1 et 30 du nombre L de jours de définition de la demande à prendre en considération et une probabilité de rupture de stock limitée à 0,01 %. 

) ( I ) ( E ) ( I r p    iL L iL iL R X R R    [4]
Lorsque la probabilité de rupture est négligeable, I r (   

) ( P ) f( ) ( I R R R r t t t t R     , avec  / ) ( x R t R   et  2 / ) f( 2 / 2 R t R e t  
[5]

Cette relation [5] est utilisée dans le tableau 7 pour calculer les ruptures moyennes de stock et les stocks résiduels moyens pour le moteur 1, pour différents niveaux de recomplètement associés à plusieurs risques de rupture et 2 périodes différentes de production (1 jour et 12 jours), étant entendu que l'approximation de la loi Binomiale par la loi Normale est possible dans ces deux cas. 

L = 1 → nL = 962 L = 12 → nL = 11544 α R 1Lα I r (R 1Lα ) I p (R 1Lα ) R 1Lα I r (R 1Lα ) I p (R 1Lα ) 1,00% 560 

Stock de sécurité de composants approvisionnés

La commande q jt du composant j passée par le maillon B à son fournisseur A au début du jour t est à livrer au début du jour j D t  avec un délai de mise à disposition D j et un délai de livraison  j ( )

j j D  
. La position de stock PS jt au début du jour t est la somme du stock observé S jt et des k j commandes en attente de livraison, augmentée des demandes non satisfaites différées. Si la probabilité de rupture est faible, comme c'est normalement le cas dans la politique d'approvisionnement de la CLA, l'impact des demandes non satisfaites (différées ou perdues) peut être négligé. Le nombre k j de commandes en attente est nul si la période de révision calendaire est plus grande que le délai de mise à disposition (

j j D  
) et positif dans le cas contraire. Dans ce dernier cas, on a ) / max( arg

j j j D K K k   
. D'une manière générale, la position de stock à la commande est définie par la relation [6].

     j k h h t j j j q S PS 1 ,  , avec ) / max( arg j j j D K K k    [6]
On commencera par étudier la situation caractérisée par un horizon de planification P j du client B inférieur ou égal au délai de mise à disposition D j négocié avec le fournisseur A (

j j D P 
). Dans ce cas, la commande se fonde entièrement sur une connaissance statistique des besoins et le client B n'a aucun intérêt à négocier un délai de mise à disposition supérieur au délai de livraison car dans le cas contraire, à risque identique, son stock de sécurité est plus important (

j j j P D     ).
On examinera ensuite le cas où Dans ces deux premiers cas étudiés, on fait l'hypothèse qu'aucune contrainte de lotissement n'intervient dans la définition de la commande à passer. L'approvisionnement est alors qualifié d'unitaire. On traitera ensuite ( §4.3) la prise en compte de la contrainte de lotissement sur les composants approvisionnés pour terminer ( §4.4) par la prise en compte de la contrainte de capacité du transport utilisé. Implicitement, on s'intéresse dans ce qui suit -au moins dans un premier tempsà un système dans lequel le composant j est demandé pour permettre la production d'un ou plusieurs composants alternatifs i requis par le client C dont la production quotidienne est n. On lèvera cette hypothèse restrictive dans un second temps. Dans tous les cas de figure, on supposera que le risque de rupture de stock accepté  est prédéterminé et très faible.

Approvisionnements unitaires -demande uniquement stochastique

L'analyse qui vient d'être faite de cette situation conduit à utiliser une distribution de probabilités définie sur la période ( ) ).

j j    -et donc la loi B   ( ) ,
Si l'approximation Normale est possible, on utilise la distribution 

N   ( ) , ( ) ( 1 
j j j j j j j j j j R n p t n p p               [7]
, , ( ) ( 1 )

j j j j j j j SS t n p p           [8]
Illustrons l'application de ces principes par un exemple numérique portant sur l'approvisionnement d'un carter C 1 qui n'est monté que sur le moteur M 1 (p 1 = 54,46%). Supposons qu'une commande soit passée tous les deux jours ( = 2, les commandes étant passées les numéros de jour pairs) en fin de journée t sur la base de la différence entre le niveau de recomplètement R jt et la position de stock PS jt . Par ailleurs, supposons que le délai d'obtention soit de 10 jours ( =10). Dans ce contexte, la distribution de probabilité à utiliser est définie sur 12   j j   jours, ce qui conduit à la loi Binomiale B (12 962  ; 54,46%). Pour un risque de rupture  = 0,01 %, le niveau de recomplètement est R 1 = 6 486 (voir tableau 3). Le tableau 8 illustre l'utilisation de cette politique d'approvisionnement sur 24 jours, avec des demandes générées aléatoirement. -Aux jours 3 et 4, le cumul des commandes en attente de livraison (5 201) correspond aux livraisons qui seront faites au jour 13 (1050, commande du jour 2), au jour 11 (1037, commande du jour -1), au jour 9 (1026, commande du jour -3), au jour 7 (1057, commande du jour -5) et au jour 5 (1031, commande du jour -7).

-On peut vérifier la propriété énoncée au § 3.1 selon laquelle, en régime de croisière, la commande passée correspond au cumul des demandes observées depuis la précédente passation de commande (q 4 = 1 047 = D 3 + D 4 = 516 + 531 ; q 6 = 1 029 = D 5 + D 6 = 511 + 518 ; etc.). Les commandes passées sont bien des réalisations de variables aléatoires indépendantes.

Si le délai d'obtention est aléatoire et / ou si la qualité n'est pas garantie à la livraison, on doit travailler sur une distribution générée par la méthode de Monte Carlo, comme on l'a présenté au § 3.1 pour déterminer le niveau de recomplètement associé au risque . La lecture du tableau 4 montre qu'en retenant toujours un risque de 0,01 % de rupture de stock, le niveau de recomplètement du moteur 1 doit passer de 6 486 à :

-7525, si   est aléatoire et suit la distribution uniforme discrète DU (8, 12),   +   ~ DU (10, 14)  cas 2. Dans cet exemple, il y a peu de chances pour que les livraisons se fassent dans l'ordre des commandes, ceci n'a pas d'impact sur le risque encouru et la détermination de la quantité à commander puisque dans le calcul de la position de stock, l'arrivée précoce d'une livraison augmente d'autant le stock physiquement détenu et, simultanément, diminue d'autant le cumul des livraisons attendues.

-6 553, si les pièces ne sont pas toutes bonnes ( 1 =1% ;   =12)  cas 3.

-7 602, si les pièces ne sont pas toutes bonnes et si, en outre,   est aléatoire ( 1 =1% ;  +   ~DU (10, 14))  cas 4.

Le cas 3 est illustré par la simulation du tableau 9 (page suivante) qui reprend les mêmes demandes à satisfaire. Une colonne « livraison correcte » a été introduite : elle diminue la quantité livrée d'un nombre de pièces mauvaises, générées aléatoirement à partir d'une loi Binomiale dont le nombre d'épreuves correspond au nombre de pièces livrées, chacune ayant la même probabilité  1 (= 1%) de ne pas passer le contrôle (c'est aussi la probabilité utilisée dans la génération de la variable aléatoire Z suivant la loi Binomiale Négative). Le stock initial et les premières livraisons attendues ont été définis arbitrairement en tenant compte de ce problème de qualité ; ces données diffèrent donc de celle du tableau 8, dont on a conservé que les demandes.

Dans cette simulation, le contrôle de qualité est réputé être effectué à la réception (colonne « livraison correcte »). La simulation d'un contrôle de qualité fait au montage n'est guère plus compliquée. Dans ce cas, la colonne « livraison correcte » disparaît et le stock disponible peut comporter des pièces non conformes tout comme les livraisons attendues. Il faut alors introduire dans l'équation de conservation des stocks une consommation additionnelle de pièces rejetées, obtenue comme une occurrence d'une variable aléatoire suivant une loi Binomiale Négative ayant pour arguments la demande de la journée considérée et  1 . -Si tous les composants alternatifs montés sur un même poste de travail du client final C sont approvisionnés auprès d'un fournisseur unique B, la demande quotidienne totale de composants alternatifs est constante (n), les variables aléatoires Binomiales étant liées par une loi Multinomiale. Les quantités commandées périodiquement le sont aussi (n). À son tour, le maillon B peut s'approvisionner en composants alternatifs j (tous les moteurs ont un carter, une même référence de carter pouvant être utilisée par plusieurs moteurs). S'il le fait auprès du même fournisseur, on retrouve la propriété de constance des quantités commandées au fournisseur. A contrario, le partage de l'approvisionnement de composants alternatifs entre plusieurs fournisseurs induit pour chacun d'entre eux un volume périodique aléatoire de commandes à satisfaire. Cette fluctuation de charge rend plus difficile les engagements capacitaires du fournisseur et a de fortes chances d'induire des charges supplémentaires.

-Dans une perspective similaire, le maillon B peut non seulement n'approvisionner son client C que sur une partie des références qu'il produit, ce qui conduit à un volume aléatoire des commandes reçues de son client comme on vient de le voir, mais il peut en outre approvisionner d'autres clients sur des références communes, ce qui accroît la variabilité de la demande à satisfaire par B. La détermination de la distribution de demande du composant j, utilisé par des références achetées par les différents clients de B est inextricable analytiquement mais ne pose aucun problème avec une simulation de Monte-Carlo. Supposons que le composant j étudié soit monté sur le même composant fabriqué par le maillon B pour 3 chaînes d'assemblage. La première a une demande quotidienne qui suit la loi B (962 ; 54,62 %), la deuxième, la loi B (425 ; 17,23 %) et la dernière, la loi B (610 ; 5%). L'utilisation de la méthode de Monte Carlo1 pour générer la distribution de probabilité de la somme de ces 3 demandes conduit à un fractile de 7 765 pour un risque de 0,01 %. Le passage par la simulation est incontournable si l'on s'intéresse aux cas 2, 3 et 4 identifiés au § 3.2.1. Ajoutons qu'en cas de problème de qualité, la génération de la variable aléatoire Z doit, bien évidemment, s'appuyer sur le cumul des demandes générées pour ces trois clients.

Approvisionnements unitaires -demande mixte stochastique / déterministe

Examinons maintenant la situation caractérisée par un horizon de planification P j du client B excédant le délai de mise à disposition D j négocié avec son fournisseur A, de moins de  j jours ( 0    j j j D P



). On suppose, dans un premier temps, que le délai d'obtention est certain et qu'il n'y a pas de problème de qualité (ce délai de mise à disposition D j pouvant être égal au délai d'obtention  j ). 

j nH p avec 1 3 2 2 ( ) ( ) ( ) j j j j j j H D K P D K K P K                   , 1 arg max( ( ) / ) j j j K KK D      , 2 arg min( ( 1) / ) j j K KK D     et 3 arg min( / ) j j K KK P    [ 9 ]
Si l'on considère comme négligeable la possibilité de demandes non satisfaites perdues, cette différence est nécessairement égale, en régime de croisière, au cumul de la demande observée sur les   ) ( 

j j j j j h t P h t jt j h j h h t D h t P D q x x                 , si 0    j j D P  [10]
Comme précédemment, la prise en compte des problèmes de qualité (cas 3) oblige à utiliser la simulation pour établir la distribution de probabilités de référence de j Y nécessaire à la détermination du fractile associé au niveau de recomplètement. Pour définir la variable j Z , qui suit une loi Binomiale Négative, il faut tenir compte du fait que le problème de qualité se pose sur la totalité des pièces consommées sur la période de référence la commande qui est la somme d'une demande aléatoire et de demandes fermes connues lors de la passation de commande (celle des jours 1, 6, 7, 11 et 12 dans notre exemple). L'inconvénient de cette démarche rigoureuse est qu'elle oblige à établir une nouvelle distribution de probabilité à chaque prise de décision. Pour éviter cela, on peut adopter la solution approchée de la relation [11, valable si la probabilité de défaut j  est faible et reposant sur le fait que les demandes certaines sont des occurrences de la binomiale B (n, p j )

j j j Z X Y   , avec j X défini par la relation [9], j Z ~ BN ( ( , ) j j U  où j U ~B ( ; ) j n D p j j       [11]
L'application de cette relation dans notre exemple conduit à un niveau de recomplètement de 6657, au risque de 0,01%. Supposons enfin que le délai de livraison j  soit aléatoire. Si la valeur maximale de ce délai ne dépasse pas celle du délai de mise à disposition j D , alors ce qui vient d'être vu reste valable. Dans le cas contraire, on pourrait imaginer de transposer la démarche précédente en remplaçant j D par j  mais se poserait la question de la prise en compte correcte de la connaissance exacte des demandes jusqu'au jour j P . La solution la plus simple est d'ignorer ces informations et de se ramener au cas entièrement stochastique étudié à la fin du §4.2.

Approvisionnements par lot

Dans la pratique, l'approvisionnement externe dépend souvent de contraintes de lotissement qui font que toute commande passée est nécessairement un multiple du nombre  d'unités du conditionnement utilisé en transport. Ce cas de figure est pris en compte dans les modèles de gestion des stocks : la solution analytique se caractérise alors par une double inégalité portant sur les probabilités cumulées de deux valeurs discrètes successives multiples de  devant encadrer une probabilitécible optimale dépendant de la structure relative des coûts pris en compte dans la fonction-objectif du modèle. Pour l'approvisionnement d'une chaîne logistique -amont, nous avons privilégié l'utilisation d'un risque  à ne pas dépasser. Ce qui suit est valable dans les 4 cas introduits au tableau 1.

-Si la commande passée est ramenée au multiple le plus fort de  respectant la condition d'une probabilité de rupture inférieure à , c'est-à-dire

 sup j q ) / ) ( min( arg   j j PS R K K   
, la protection contre la rupture de stock peut être jugée excessive.

-Si la commande passée est ramenée au multiple le plus faible de  conduisant à une probabilité de rupture supérieure à , c'est-à-dire

 inf j q ) / ) ( max( arg   j j PS R K K   
, la protection contre la rupture de stock peut être jugée insuffisante.

Reprenons l'exemple du tableau 8 ( certain et  = 0%) et supposons maintenant que le composant 1 approvisionné (carter, par exemple) soit transporté par conteneur de  = 18 unités. Avec un risque  de 0,01 %, le niveau de recomplètement utilisé dans le tableau 8 était de R = 6 486. Considérons que l'on accepte d'aller jusqu'au risque  de 0,015 %, en raison du problème posé par le lotissement. Sachant que q 1 = R 1 -PS 1 ( R 1 = q 1 + PS 1 ), le remplacement de q 1 par q inf revient à diminuer R d'un entier compris entre 0 et  -1 puisque que la différence qq inf est un entier compris entre 0 et  -1. Le tableau 10 montre que tant que qq inf reste inférieur à 6, le choix de q inf conduit à une prise de risque ne dépassant pas .

R1

6479 6480 6481 6482 6483 6484 6485 6486 P(X >R1) 0,02% 0,02% 0,01% 0,01% 0,01% 0,01% 0,01% 0,01% Tableau 10. Évolution du risque de rupture en fonction du niveau de recomplètement utilisé, avec X 1 ~ B (12.962 ; 54,46 %).

D'une manière générale, si on note j R  le niveau de recomplètement associé au risque  maximal admissible (6480 dans notre exemple), il convient de commander .arg max( ( ) / )

inf j q si inf ) ( j j j PS q R   est inférieur à j j R R   ( 6 
j q KK R P S j j      si ) ( .arg max( ( ) / ) j j j j PS R R R K K R P S j j         sinon .arg min( ( ) / ) j q KK R P S j j      [12]
Le tableau 11 (page suivante) simule la politique d'approvisionnement avec les hypothèses du tableau 8, mais en tenant compte de la contrainte de lotissement ( = 18). Lorsque la commande passée est mise en italique, on est en présence d'une minoration ; dans le cas contraire, il y a majoration. L'adaptation de cette démarche pour traiter les cas 2, 3 et 4 est immédiate, la seule différence étant que la distribution de probabilités de référence est obtenue par simulation.

Risque encouru et contrainte de capacité de transport

On a vu au § 3.1 que, dans une politique calendaire, la quantité commandéeet donc à transporter -est une variable aléatoire. En général, les moyens de transport ont une capacité limitée G que la quantité commandée ne pourra excéder ( ) G , ( Max

j j PS R 
). Le risque encouru sera plus élevé que celui souhaité, sauf si cette capacité a très peu de chances d'être dépassée, auquel cas le transport risque d'être peu efficient. Reprenons l'exemple de l'approvisionnement unitaire du carter C 1 du § 4.1 caractérisé par  = 2,  = 10, R 1 = 6 486 (défini pour le risque  = 0,01%) et supposons que G = 1 060 ; une simulation de cette politique d'approvisionnement, avec demandes non satisfaites différées, sur 50 millions de jours ( 25 millions de livraisons) conduit à un risque encouru de 0,0774 %. Si l'on veut maintenir le risque cible de 0,01 %, il convient d'augmenter le niveau de recomplètement qu'il faut établir par tâtonnements (méthode par dichotomie pouvant être utilisée ici sans problème). Avec cette contrainte de transport, pour limiter le risque de rupture à 0,01 %, le niveau de recomplètement passe de 6486 à 6530. Le stock de sécurité (très peu différent du stock résiduel) passe alors de 199,1 (cf. tableau 6) à 233,4. La simulation permet de dépasser une vision locale de l'optimisation en donnant accès à un arbitrage global entre coûts de transport, coûts de possession, coûts de passation de commande et coûts de rupture de stock.

La prise en compte complémentaire d'une contrainte de conditionnement est à peine plus compliquée, la contrainte de capacité du transport étant nécessairement un multiple de la taille du conditionnement.

Stock de sécurité de composants produits

On s'intéresse maintenant à la production d'un produit i fabriqué par le maillon B pour faire face à une demande de son client, le maillon C de la chaîne logistique. Dans ce contexte, le délai de livraison i  , séparant un lancement en production, de la rentrée en stock du composant fabriqué, peut raisonnablement être considéré comme certain. Ce délai d'obtention correspond, en production, à ce que l'on appelle temps de cycle ou délai de fabrication. On examinera le cas d'une production entièrement pour stock puis celui d'une production entièrement à la commande avant de traiter le cas d'une production partiellement pour stock et partiellement à la commande.

Production entièrement pour stock

Si le cycle de fabrication H n'est pas plus grand que la période de révision calendaire 

) ( i H    et si la commande reçue du client C est immédiatement exécutable ( i i D   = 0)
ou, ce qui revient au même, si le temps restant avant expédition est inférieur à la période de révision calendaire  (

i i i D     
) la distribution de référence à retenir pour déterminer le niveau de recomplètement est la loi Binomiale B ( i n , p i ). En régime de croisière, la quantité à lancer en production par B est égale à la quantité venant d'être expédiée vers C, c'est donc une variable aléatoire. Toutefois, si le fournisseur produit toutes les références alternatives qui sont montées sur le poste d'assemblage de la ligne du client et si celles-ci sont approvisionnées en même temps ( 

    i ),

  

), deux cas doivent être distingués. a) Si le produit i est le seul à être fabriqué dans ce cycle de production, alors H = F i . Au moment de la passation de commande au début de la journée t, la position de stock PS it de composant i augmenté de la quantité lancée en production q it (= R it -PS it ) qui sera livrée au début du jour t + H doit permettre de couvrir la demande jusqu'à la fin du cycle de production suivant en t + 2H. Tableau 12. Simulation de la politique de production du moteur 1, le cycle de production étant de 5 jours -mise à disposition de la production au bout de 5 jours -Niveau de recomplètement de 4 373 (si 2 livraisons à couvrir) ou 6 486 (si 3 livraisons à couvrir)

En régime de croisière, la production varie d'un cycle de production à l'autre puisque le lancement en production correspond à un cumul de demandes passées ; ces variations périodiques de la production sont fortement amplifiées si la longueur du cycle de production H n'est pas un multiple de celle du cycle d'approvisionnement . On peut noter par ailleurs que la quantité à lancer en production par B n'est égale au cumul de quantités expédiées précédemment vers C que si le niveau de recomplètement utilisé pour le lancement en production est le même que celui utilisé au lancement précédent. Tableau 13. Simulation de la politique de production du moteur 1, le cycle de production étant de 5 jours -mise à disposition de la production au bout de 2 jours b) Supposons maintenant qu'au début de la journée t, on décide du lancement en production d'un ensemble de références alternatives sur un nouveau cycle de fabrication, l'ordre de lancement de ces références étant le même quel que soit le cycle. Supposons que, sur un cycle de 5 jours, la production du composant 1, dont le rang de lancement n'est pas nécessairement le premier, soit disponible à la fin du deuxième jour du cycle ( i F = 2 ; H = 5). Au moment de la passation de commande au début de la journée t, la position de stock PS it de composant i augmenté de la quantité lancée en production q it (= R it -PS it ) qui sera livrée au début du jour t + H doit permettre de couvrir la demande jusqu'à la livraison suivante au début du jour t + H + F i . Le nombre de livraisons pouvant survenir au cours d'une période de (H

+ F i ) jours est nécessairement compris entre ) / ) ( max( arg 1   i F H K K    et ) / ) ( min( arg 2   i F H K K    .
Dans ).

Le tableau 13 (page précédente) illustre la politique de recomplètement de stock du maillon B pour le composant 1 ; les distributions de référence sont les lois B ( 962 2 4   ; 0,5446), et B ( 962 1 4   ; 0,5446), qui conduit à des niveaux de recomplètement définis au risque de 0,01 % de 4 354 (couverture pour 2 livraisons) et 2 211 (couverture pour 1 livraison). On peut noter que, dans cet exemple, seuls les lancements en production des cycles 1 et 5 ont une seule commande à honorer dans les 7 jours (respectivement celles des jours 5 et 25) ; les autres cycles (2, 3, et 4) ont 2 commandes à honorer. L'analyse montre une répétition du schéma 1-2-2-2, ce qui justifie facilement.

Si, au cours de n'importe quel cycle de production, toutes les références alternatives produites couvrent la totalité des besoins sur la ligne d'assemblage finale, alors la quantité totale produite de l'ensemble de ces références alternatives ne peut être stable d'un cycle à l'autre que si le nombre de livraisons à couvrir par la production d'une référence est toujours un même multiple de , quels que soient la référence et le cycle de production. Dans le cas contraire, en régime de croisière, des fluctuations de production sont inévitables et induiront des fluctuations accrues en approvisionnement des composants nécessaires à leurs productions.

Production entièrement à la commande

Si le cycle de fabrication n'est pas plus long que la période de révision calendaire

) ( i H    et si l'anticipation dont le fournisseur dispose ( i i D   ) est supérieure à la période de révision calendaire ( i i i D     
), alors la production peut se faire entièrement à la commande et le lancement en production concernera au plus une seule livraison. Dans ce cas, il n'y aura pas systématiquement de lancement en production, le nombre maximum de lancements nuls consécutifs étant égal à arg min( ( ) / )

i i K K D H   
. Supposons, par exemple, que H = 5,  i = 12 et i i D   = 14, le nombre maximum de lancements nuls consécutifs sera 2 ; si le premier lancement en production coïncide avec le début d'un cycle de révision calendaire (la quantité à livrer a début du jour 1 ayant été nécessairement produite antérieurement), seuls les cycles de production commençant au début des jours 6, 16, 32, 41, 52… lanceront en production la référence i pour des livraisons à expédier au début des jours 13, 25, 37, 49, 61… et 

i i D H    
), alors la production peut se faire entièrement à la commande. Dans ce cadre, il est possible de lancer en production ce qui devra être livré au cours du cycle de production suivant et, si l'anticipation est suffisante, une ou plusieurs livraisons ultérieures. Il est préférable cependant de lisser la charge et de s'en tenir à lancer en production le cumul des livraisons à effectuer au cours du cycle de production suivant.

Là encore, ce nombre de livraisons à prendre en considération peut varier d'un cycle de production à l'autre : il est d'au moins une livraison et ne peut dépasser arg min( ( ) / )

i i i K K D H     
. Supposons, par exemple, que H = 5,  i = 3 et i i D   = 11, ce qui conduit à lancer en production au plus la quantité correspondant à 2 livraisons successives ; si le premier lancement en production coïncide avec le début d'un cycle de révision calendaire, le cycle de production commençant au début du jour 1 produit ce qui sera livré au début des jours 7 et 10 (les livraisons des jours 1 et 4 ayant fait l'objet d'une production au cours du cycle précédent), le cycle débutant le jour 6 produira la livraison des jours 13 et 16, celui du jour 11 les livraisons du jour 19, celui débutant le jour 16, les livraisons des jours 22 et 25, etc. L'irrégularité du nombre de lancements associés aux quantités lancées en production conduit nécessairement à une désorganisation préjudiciable. Elle peut être éliminée si le cycle de fabrication coïncide avec la période de révision calendaire tout en restant inférieur à l'anticipation dont le fournisseur dispose (

     i i D
). D'une commande à l'autre les quantités varient puisqu'elles correspondent à des remplacements de quantités consommées qui suivent des lois Binomiale. Cela étant, si le fournisseur produit toutes les références alternatives qui sont montées sur le poste d'assemblage de la ligne du client, le cumul des quantités commandées est stable (n) car on est en présence d'une multinomiale. Si ce fournisseur a plusieurs clients pour tout ou partie des références produites, la condition qui vient d'être énoncée doit être étendue pour chaque client.

Production partiellement pour stock et partiellement à la commande

Il vient d'être montré que :

si ) (   jours, toujours avec même risque de rupture de stock que dans les exemples précédents est de 2 211. Le niveau de recomplètement du premier cycle est égal à la commande connue du jour 5 (2 063), augmenté de 2 211 pour couvrir la commande inconnue de la période 10. Avec une position de stock de 2178, il faut lancer en production 2 096. Le niveau de recomplètement du deuxième cycle est égal à la somme des commandes connues des jours 9 et 13 (4 232) ; il n'y a pas d'autres commandes de niveau inconnu pour cette prise de décision. On note qu'après la livraison en période 12, puis livraison de la période 13, le stock résiduel est nul, ce qui s'explique par le fait que la connaissance est complète.

Conclusion

Dans une chaîne logistique dédiée à la production de masse de produits fortement diversifiés, pilotée par des politiques de réapprovisionnement calendaires, l'analyse du régime de croisière des relations entre un maillon d'une chaîne logistique et ses maillons adjacents montre la nécessité de constituer deux types de stocks de sécurité : des stocks de sécurité de composants produits et des stocks de sécurité de composants approvisionnés. Nous avons mis en évidence des règles et procédures de détermination des stocks de sécurité de composants produits et approvisionnés à détenir dans une chaîne logistique dont le dernier maillon produit à la commande, en tenant compte d'un certain nombre d'aléas : le niveau et la structure de la production du maillon final, la variabilité des délais d'obtention, la maîtrise de la qualité, les règles de lotissement en transport, les contraintes de capacité de transport. La variabilité des quantités échangées périodiquement entre deux maillons dépend, en outre, de l'anticipation de la demande, disponible lors la prise de décision, du niveau de synchronisation des flux expédiés, produits et réapprovisionnés qui peut conduire ou éviter la création de cycles.

La pertinence des règles de réapprovisionnement ou de lancement en production, et donc la détermination des stocks de sécurité, repose sur celle des informations structurelles propagées le long de la chaîne logistique. Des travaux complémentaires sont donc nécessaires pour déterminer la demande d'un composant fabriqué dans un maillon quelconque d'une chaîne logistique amont, en utilisant en cascade des mécanismes d'explosion des nomenclatures et d'absorption des délais adaptés de la MRP.

La stabilité postulée du régime de croisière est nécessaire pour mettre en évidence les conditions d'un pilotage performant. Cette performance reste possible en cas de remise en cause périodique des caractéristiques du régime de croisière, à condition que soient diffusées à temps ces nouvelles informations le long de la chaîne logistique en tenant compte du décalage temporel séparant la production d'un composant de son intégration dans le produit fini. Au final, la performance de la CLA dépend tout autant de l'entreprise propriétaire des usines d'assemblage final qui doit transmettre aux acteurs de la CLA les informations spécifiques qui le concerne, que de l'unité qui reçoit ces informations et qui doit les exploiter aussitôt de manière pertinente. Tableau 14. Simulation de la politique de production du moteur 1, le cycle de production étant de 5 jours -l'horizon de B étant de 6 jours.

Figure 1 .

 1 Figure 1. Distributions de probabilité des moteurs 1 et 5 pour une durée certaine (L = 12) ou aléatoire L ~ U (10, 14) ou L ~ D {[10,3 %], [11,23 %], [12,50 %], [13,18 %], [14,6 %]} et avec ( = 1%) ou sans ( = 0%) problème de qualité

  est-àdire du stock de sécurité. Stock résiduel moyen et rupture moyenne de stock varient en sens inverse et font peser sur l'entreprise respectivement un coût de possession et un coût de rupture. Dans le cas d'une loi Normale, l'espérance mathématique I r (  iL R ) de la rupture de stock est donnée 2 par la relation [5] dans laquelle les indices i, L et  sont omis. Le tableau 7 donne les ruptures de stock moyennes et les stocks résiduels moyens pour le moteur 1, pour différents niveaux de recomplètement associés à plusieurs risques de rupture et 2 périodes différentes de production (1 jour et 12 jours).

  passée peut se fonder en partie sur des besoins connus. Il est évident que, dans le cas contraire ( commande est déterminée par les besoins certains à couvrir et qu'aucun stock de sécurité n'est nécessaire.

.

  La relation [10] résume la détermination de la commande à passer, en régime de croisière, dans le cas d'une demande mixte stochastique / déterministe.1 1

  dans l'exemple) et sup j q dans le cas contraire, ce que résume la relation [12].



  Reprenons l'analyse du problème faite au § 3.1. Le client C (ligne d'assemblage véhicule) transmet ses commandes de la référence i (moteur) à son fournisseur B, en début de journée tous les i  jours (ouvrables). La commande reçue au début du jour t est à expédier à la fin de la journée i D t  . Avec un délai de livraison i lancements en fabrication du composant i s'intègrent dans un cycle de fabrication de H jours, la production du composant i s'achevant F i jours après le début du cycle ; si ce cycle ne porte que sur le seul composant i, il est évident que H = F i . Notons qu'il n'y a pas de raison d'avoir de synchronisation entre les expéditions (tous les i  jours) et les lancements en production (tous les H jours).

.

  on est amené à produire partiellement à la commande et partiellement pour stock. L'analyse des configurations possibles est similaire à celle présentée au § 5.1a. La seule différence est que les  livraisons au client effectuées dans les lancement en production de la référence i au début de la journée t sont connues et doivent être couvertes par une production à la commande. Ce nombre est soit ) La différence, éventuellement nulle, entre  et  correspond donc aux livraisons à couvrir par une production pour stock.Le tableau 14 (page suivante) illustre ce cas de figure avec 7 nombre de commandes à venir connues au lancement de la production est 1 (et donc 1 ou 2) et du niveau de recomplètement établi pour les demandes à venir inconnues. Dans cet exemple, on a a au plus 1 seule commande à venir inconnue ; le niveau de recomplètement pour une demande aléatoire définie sur 4

  composants i à son fournisseur B au début du jour t, la livraison devant se faire au début du jour

	i D t  , compte tenu d'un délai contractuel de mise à disposition D i et du délai de livraison  i (avec i i D   ). La commande suivante est passée au début du jour t + . Le fournisseur B dispose alors de i D   jours pour exécuter la commande reçue. Si i cette durée est inférieure au délai de fabrication F i du composant i (qui peut être
	lancé de façon indépendante ou conjointement avec d'autres composants), le
	fournisseur exécute la commande en prélevant les quantités requises dans des stocks
	qui sont dimensionnés en tenant compte des caractéristiques aléatoires de la
	demande du client et du risque de rupture de stock accepté. Dans le cas contraire
	(

. Stock de sécurité et stock résiduel moyen avant livraison

  Si la probabilité de rupture de stock avant livraison est faible, ce qui est normalement le cas dans les politiques d'approvisionnement des CLA, l'espérance mathématique de cette rupture de stock est également faible, ce qui conduit le stock de sécurité à être très peu différent de l'espérance mathématique du stock résiduel avant réception d'une livraison. En effet, de manière générale l'espérance mathématique I p (  ] est valable quelle que soit la distribution de probabilité de X L .
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	la relation 1 [4] dans laquelle interviennent l'espérance mathématique I r (  R ) de la iL rupture de stock et l'espérance mathématique de la demande exprimée ) ( X . Cette E L relation [4
			Moteur 1 (i=1)			Moteur 5 (i=5)	
	L	1	3	5	12	30	1	3	5	12	30
	962L	962 2886 4810 11544 28860 962 2886 4810 11544 28860
	962Lp i 523,9 1572 2620 6287 15717 49,4 148,1 246,8 592,2 1481
	R iLα	581 1671 2748 6486 16032 77	194	306	682 1 622
	SS iLα 57,1 99,3 129 199,1 314,8 27,6 45,9 59,2 89,8 141,5
	C. Sec. 10,9% 6,3% 4,9% 3,2% 2,0% 56,0% 31,0% 24,0% 15,2% 9,6%
	Tableau 6. Évolution des coefficients de sécurité (C. Sec.) pour les moteurs 1 et 5 en fonction de L, avec  = 0,01
	R ) du stock résiduel à la fin de la période sur laquelle s'exprime 3.4iL la demande X que l'on cherche à satisfaire avec le stock initial  iL R est donnée par

  )

	n	j   	j j p	n	j   	j j p		p	j	. Dans ce cadre, l'adaptation des
	relations [1] et [2] conduit aux relations [7] et [8] de définition du niveau de
	recomplètement et du stock de sécurité.		
	,	,	(		)		(			) ( 1	)

  Au moment de la passation de la commande au début du jour t, pour une livraison au début du jour X déterminé sur une simulation de cette distribution par la méthode de Monte Carlo est de 6 486 unités en l'absence de problème de qualité et de 6 553 avec une probabilité  1 =1% de ne pas être conforme (voir tableau 4). Ce nombre ne sera pas atteint si la demande du jour de passation de commande et celle de la veille étaient connues lors de la décision d'approvisionnement les incluant ; si tel est le cas, le même phénomène se produira aussi pour les demandes certaines prises en compte dans la commande passée au début du jour t. Si le numéro de cycle d'approvisionnement

	1 6    ) était destinée, comme précédemment, à couvrir 2 demandes connues (celles 5 des jours 6 et 7) et 4 demandes inconnues (celles des jours 8 à 11). On remarque enfin que la demande du jour 1 t  était connue lors de la décision prenant en compte l'approvisionnement de cette période (au début de la période 11  ).
	Sur l'horizon de ( t, il y a donc 17 2 2 1 12 j j D        jours pour lesquels la demande est inconnue, ce qui conduit, en 1 7 ) jours, utilisé lors de la prise de décision au début du jour régime de croisière, à utiliser la distribution B (11 544 ; 54,46%). Le fractile 1;12;0,01% R de 1
	Pour établir une formulation générale, il faut utiliser trois constantes. 1 arg max( ( ) / ) j j j K KK D      correspond au nombre entier de cycles de réapprovisionnement contenu dans l'horizon ( ) j j D   , utilisé à la prise de décision ; il y a donc au plus   1 ( ) j j j j D K P D     jours pour lesquels la demande est inconnue.
	2 arg min(  à celui 3 arg min( ( K KK  K KK P  1) / ) j j D   / ) contenant la première demande connue est inférieur j j   qui intègre la dernière commande connue de la prochaine séquence de ( ) j j P D  demandes connues, il convient alors de retrancher à   1 ( ) j j j j D K P D     , la quantité 2 ( ) j j P K    . En définitive, la commande passée en t est la somme :
		-D'une quantité certaine		1 h t D x j j h t P     	jh	égale à la demande des
	(	j P D 	j	)	premiers jours suivant la livraison au début du jour	t D 	j	.
		-D'une quantité égale à la différence entre, d'une part, un niveau de recomplètement
		, , j			
	j le client B connaît avec certitude les besoins des périodes D t  , destinée à couvrir les besoins des jours t D t D  j  correspond aux besoins de j j D P  jours. Par exemple, avec 6 j   , la commande passée au début du jour 1  t sera disponible, au plus tard, au j à 1 j j t D     , à 1 j t P   , ce qui 11 j D  , 13 j P  et début du jour 12 j t D   . Elle est destinée à satisfaire les besoins des périodes 12 à 17, sachant que les besoins des jours 12 et 13 sont certains et ceux des 4 jours suivants, inconnus.
	On peut remarquer que, de la même façon, la livraison faite au début du jour j j t D    (ici 1 11 6 6    ), correspondant à la commande passée en j t   (ici

H R

 déterminé pour faire face, avec un risque  prédéterminé, à une demande aléatoire j X qui est définie sur le nombre H de jours pour lesquels la demande n'est pas connue parmi les j D   jours constitutifs de l'horizon d'une prise de décision et, d'autre part, la position de stock à la passation de commande, diminuée des quantités certaines prises en compte dans les livraisons attendues. La distribution de probabilité de référence de j X est donnée par la relation

[9]

. j X  B ( , )

  = 4, le nombre de livraisons est soit 2, soit 3 ; bien évidemment si 2H est un multiple de , le nombre de livraisons sur une période de 2H jours est constant.La distribution de référence à utiliser pour déterminer le niveau de recomplètement est la loi Binomiale B (

	commandes à honorer dans les 10 jours (respectivement celles des jours 5&9, 9&13
	et 26&30) tandis que les cycles 2 et 3 ont 3 commandes à honorer (respectivement
	celles des jours 13&17&21 et 17&21&26). L'analyse montre une répétition du
	schéma 2-3-3-2-2, ce qui se justifie aisément.			
	Cycle de prod de B	Jour t	Livraison au début de t	Stock début	Demande de C	Stock fin	Position de stock	R	Production lancée au début de t +1
	-	1			2153	2075	78	2178 4354	2176
		2	2100		2178		2178	4373	
		3			2178		2178	4373	
		4			2178		2178	4373	
	Le nombre de livraisons 2310 pouvant survenir au cours d'une période de 2H jours est nécessairement compris 5 2178 2063 115 entre ) / 2 max( arg 1   H K K   et ) / 2 min( arg 2   H K K   6 115 115 2310 4354 2044 1 . Par exemple, avec 7 2176 2291 2291 4354 8 2291 2291 4354 H = 5 et  i n , p i ), avec 1    ou 2    9 2291 2113 178 2241 qui pourra, dans de nombreux cas, être approximée par la loi N ( ) 1 ( 2 ; i i p p n n    10 178 178 2241 ). 11 178 178 2241 6486 4245 2
	i 12  n , p i ), avec H   et  D i  i 2044 B ( i F i    arg H 13	 2222 production pour stock, R déterminé à partir de 2222 6486 ) / 2 max(  H K K  ou ) / 2 min( arg   H K K   2222 2089 133 4397	i X ~ [14]
	14 Le tableau 12 de la page suivante illustre la politique de recomplètement de stock 133 133 4397 15 133 133 4397 du maillon B qui reçoit des commandes tous les = 4 jours du maillon C avec 4 i i D    . Les distributions de référence sont les lois B ( 962 2 4 ( 962 3 4 compte qu'au cours des 2 10 H  jours à venir (jours 2 à 11), deux commandes de C 20 2256 2256 4364 pour 3 livraisons). Le lancement en production effectué au début du jour 2 doit tenir 19 2256 2256 4364 risque de 0,01 % de 4 354 (couverture pour 2 livraisons) et de 6 486 (couverture 18 2256 2256 4364   ; 0,5446) ; elles conduisent à des niveaux de recomplètement définis au 17 4245 4378 2122 2256 4364   ; 0,5446), et B expédition immédiate ; le cycle de fabrication de ce composant i étant H = 5 jours et 16 133 133 4397 6486 2089 3
	arriveront (jours 5 et 9) ; le niveau de recomplètement à utiliser R est donc 4 354. Le lancement en production effectué au début du jour 7 doit tenir compte qu'au cours 21 2256 2110 146 2254 4354 2119 4
	des 10 jours à venir (jours 7 à 16), deux commandes de C arriveront, (9 et 13)R=
	4 373. Le lancement en production effectué au début du jour 12 doit tenir compte
	qu'au cours des 10 jours à venir (jours 12 à 21), trois commandes de C arriveront,
	(13, 17 et 21)R= 6 486. Le lancement en production effectué au début du jour 17
	doit tenir compte qu'au cours des 10 jours à venir (jours 17 à 26), trois commandes
	de C arriveront, (17, 21 et 25)R= 6 486. Le lancement en production effectué au
	début du jour 22 doit tenir compte qu'au cours des 10 jours à venir (jours 22 à 31),
	deux commandes de C arriveront, (25 et 29)R= 4 354. On peut noter que, dans cet
	exemple, seuls les lancements en production des cycles 1, 4 et 5 ont deux

  notre exemple, le nombre de livraisons à couvrir est soit 1, soit 2. Si (H + F i ) est un multiple de , le nombre de livraisons sur une période de (H + F i ) jours est constant. La distribution de référence à utiliser pour déterminer le niveau de recomplètement est la loi Binomiale B (

	i n , p i ), avec pourra, dans de nombreux cas, être approximée par la loi N ( n	1   ou  2 ; n  	  1 ( i p	 	2 p	i	qui )

  les cycles commençant au début des jours1, 11, 21, 26, 36, 46, 57… ne lancent pas en production cette référence (on peut noter que les lancements potentiels des cycles de production successifs commençant les jours 21 et 26 ne sont pas utilisés).

	Si le cycle de fabrication est plus long que la période de révision calendaire ) ( i H    et si l'anticipation dont le fournisseur dispose ( i i D   ) est au moins égale à deux fois le cycle de fabrication ( 2

En définitive, la caractérisation de la demande à prendre en considération conduit à distinguer les 4 cas de figure du tableau 1 suivant.

L'add-in d'Excel, @Risk, a été utilisé pour toutes les simulations réalisées dans article. Le risque retenu étant très faible, un jeu de deux millions de simulations a été systématiquement retenu pour reconstituer les distributions de probabilités et calculer des espérances mathématiques.

On notera que cette démarche est également celle qu'il convient de retenir si la demande à couvrir est certaine, comme c'est le cas de composants systématiquement montés sur tous les produits passant sur une ligne d'assemblage, dès lors que la qualité n'est pas garantie. Comme le nombre de composants défectueux varie d'une livraison à une autre, le problème de qualité conduit à mobiliser une politique calendaire d'approvisionnement. Par exemple, si la production quotidienne d'une ligne d'assemblage est de 750 unités, chacune ayant 1% de chance d'être défectueuse et si la commande passée en fin de journée est livrée en début de journée suivante, l'approvisionnement doit se faire sur la base d'un recomplètement quotidien du stock à 765 unités pour limiter à 1% le risque d'arrêt de la ligne en raison d'une rupture de stock de ce composant, induite par un problème de qualité.

3.3. Incidence du risque de rupture d'approvisionnement retenu et de la variabilité de la demande sur le stock de sécuritéEn gestion calendaire, le stock de sécurité se définit comme la différence entre le niveau de recomplètement, qui est le fractile R iL associé à un risque  prédéterminé, et la demande moyenne de la distribution sur laquelle le fractile été défini. D'une manière générale, le stock de sécurité varie dans le même sens que le coefficient de variation (rapport de l'écart-type de la distribution de la demande à sa moyenne) et en sens inverse du risque accepté. On va établir ici des relations spécifiques au cas étudié d'approvisionnement de composants alternatifs dans une chaîne logistique dédiée à une production de masse de produits fortement diversifiés. Le cas traité implicitement ici est celui de l'approvisionnement d'un composant auprès d'un fournisseur pour couvrir des besoins connus seulement en probabilité lors de la passation de commande.

Voir V.[START_REF] Giard | Gestion de la production et des flux[END_REF], p.670.

Voir V.Giard (2003), p.675. 

On peut remaquer que, dans cet exemple numérique, l'approximation Normale des lois Binomiales de chacune des demandes était possible, ce qui donne, pour la demande cumulée, une loi N (7531,6 ; 62,8) conduisant au même fractile.