
HAL Id: hal-00876975
https://hal.science/hal-00876975

Preprint submitted on 25 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online maximum k-coverage
Giorgio Ausiello, Nicolas Boria, Aristotelis Giannakos, Giorgio Lucarelli,

Vangelis Paschos

To cite this version:
Giorgio Ausiello, Nicolas Boria, Aristotelis Giannakos, Giorgio Lucarelli, Vangelis Paschos. Online
maximum k-coverage. 2010. �hal-00876975�

https://hal.science/hal-00876975
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour

l'Aide à la Décision
CNRS FRE 3234

CAHIER DU LAMSADE

299

Septembre 2010

Online maximum k-coverage

GIORGIO AUSIELLO, NICOLAS BORIA,
ARISTOTELIS GIANNAKOS, GIORGIO LUCARELLI,

VANGELIS TH. PASCHOS

Online maximum k-coverage∗

Giorgio Ausiello† Nicolas Boria‡ Aristotelis Giannakos‡

Giorgio Lucarelli‡ Vangelis Th. Paschos‡

Abstract

We study an online model for the maximum k-vertex-coverage prob-
lem, where given a graph G = (V,E) and an integer k, we ask for a subset
A ⊆ V , such that |A| = k and the number of edges covered by A is maxi-
mized. In our model, at each step i, a new vertex vi is revealed, and we
have to decide whether we will keep it or discard it. At any time of the
process, only k vertices can be kept in memory; if at some point the cur-
rent solution already contains k vertices, any inclusion of any new vertex
in the solution must entail the irremediable deletion of one vertex of the
current solution (a vertex not kept when revealed is irremediably deleted).
We propose algorithms for several natural classes of graphs (mainly reg-
ular and bipartite), improving on an easy 1

2
-competitive ratio. We next

settle a set-version of the problem, called maximum k-(set)-coverage prob-
lem. For this problem we present an algorithm that improves upon former
results for the same model for small and moderate values of k.

1 Introduction

In the maximum k-vertex-coverage (mkvc) problem we are given a graph G =
(V,E) (|V | = n, |E| = m) and an integer k, we ask for a subset A ⊆ V , such
that |A| = k and the number of edges covered by A is maximized. The mkvc

problem is NP-hard, since otherwise the optimal solution for the vertex cover
problem could be found in polynomial time: for each k, 1 ≤ k ≤ n, run the
algorithm for the mkvc problem and stop when all elements are covered.

In this paper we consider the following online model for this problem: at
each step i, a new vertex vi with its adjacent edges is revealed, and we have
to decide whether we will include vi in the solution or discard it. At any time
of the process, only k vertices can be kept in memory, so if at some point the
current solution already contains k vertices, any inclusion of any new vertex in

∗Research supported by the French Agency for Research under the DEFIS program TODO,

ANR-09-EMER-010
†ausiello@dis.uniroma1.it, Dipartimento di Informatica e Sistemistica, Università degli

Studi di Roma “La Sapienza”
‡{boria,giannako,lucarelli,paschos}@lamsade.dauphine.fr, LAMSADE, CNRS UMR

7243 and Université Paris-Dauphine

1

the solution must be compensated with the irremediable deletion of one vertex
of the current solution. Of course, a vertex that is not kept when it is revealed
is also irremediably deleted. To our knowledge, no online model for the mkvc

problem has been studied until now.
A generalization of the mkvc problem is the maximum k-(set)-coverage

(mkc) problem, where given a universe of elements E = {e1, e2, . . . , em}, a
collection of subsets of E, S = {S1, S2, . . . , Sn}, and an integer k ≤ n, we ask
for a subcollection A = {A1, A2, . . . , A|A|} ⊆ S, such that |A| = k and the
number of elements of E covered by A is maximized. The online model for the
mkc problem is the same as for the mkvc.

Clearly, the mkvc problem is a special case of the mkc problem where: (i)
each element belongs to exactly two sets and (ii) the intersection of any two sets
of S has size at most one, since multiple edges are not permitted.

The weighted generalization of the mkc problem, denoted by weighted

mkc, has been also studied in the literature. In this problem, each element
ei ∈ E has a non-negative weight w(ei), and the goal is to maximize the total
weight of the elements covered by k sets.

The analogous online model for weighted mkc problem, where at each
step i a set Si ∈ S together with its elements is revealed and only k such
sets can be kept in memory, has been studied in [7], where an algorithm of
competitive ratio 1

4 is given. The authors in their so called set-streaming model
assume that the set of elements is known a priori. Nevertheless, they do not use
this information in the proposed algorithm.

In the classical offline setting, the mkc problem is known to be non approx-
imable within a factor 1− 1

e [2]. On the other hand, even for the weighted version

of the problem, an approximation algorithm of ratio 1−
(
1− 1

k

)k
is known [5].

This ratio tends to 1− 1
e as k increases, closing in this way the approximability

question for the problem.
In [1] the inverse problem (i.e., the hitting set version of mkc), also called

maximum coverage problem, has been studied: given a universe of elements
E = {e1, e2, . . . , em}, a collection of subsets of E, S = {S1, S2, . . . , Sn}, a
non-negative weight w(Si) for each Si ∈ S, and an integer k, a set B ⊆ E is
sought, such that |B| = k and the total weight of the sets in S that intersect
with B is maximized. It is easy to see that this version is equivalent to the
weighted mkc modulo the interchange of the roles between set-system and

ground set. An algorithm of approximation ratio 1 −
(
1− 1

p

)p
is presented

in [1] for this problem, where p is the cardinality of the largest set in S. In the
case where each set has cardinality equal to two then this problem coincides with
the mkvc problem; hence a 3

4 approximation ratio is implied by the algorithm
in [1]. Several improvements for some restricted cases of the mkvc problem are
presented in [3, 4].

In this paper we study the online model described above for both the mkvc

and the mkc problems. In Section 2, we prove several negative results on the
competitiveness of any algorithm for the model handled and for both problems.
In Section 3, we present algorithms for regular graphs, regular bipartite graphs,

2

trees and chains, achieving non-trivial competitive ratios, improving upon an
easy 1

2 competitiveness result holding for any graph. Finally, in Section 4 the
k-(set)-coverage problem is handled. For this problem, we present an algorithm
that improves upon former results for the same model for small and moderate
values of k.

The following notations will be used in the sequel. They are based upon the
definition of the mkvc problem and is easily extendable to the mkc problem.

For any A ⊆ V , we denote by E(A) the set of edges covered by A and
by m(A) = |E(A)| the number of these edges. Let SOL = m(A) be the number
of edges covered by our algorithms. Moreover, we denote by A∗ ⊆ V an optimal
subset of vertices and by OPT = m(A∗) the number of edges covered by an
optimal solution.

The maximum degree (or the degree when it is regular) of the input-graph
G = (V,E) is denoted by ∆. Dealing with mkc, ∆ denotes the cardinality of a
set that contains a maximum number of elements, that is, ∆ = max{|Si| : 1 ≤
i ≤ n}.

For a subset A ⊆ V and a vertex vi ∈ A, we call public the edges of vi that
are shared by another vertex in A and private the edges of vi that are covered
just by vi in A.

Finally, as it is common in the online setting, the quality of an algorithm
is measured by means of the so-called competitive ratio representing the ratio
of the value of the solution computed by the algorithm over the optimal value
of the whole instance, i.e., the value of an optimal (offline) solution of the final
instance.

2 Negative results

In this section we give some negative results for the online maximum k-vertex-
coverage problem and their corresponding adaptations for the maximum k-
coverage problem. We start with a negative result for the restrictive case where
swaps are not allowed (replacement of a set that belongs to the current solution
by the newly revealed set is not permitted).

Proposition 1. Any deterministic online algorithm that does not allow swaps

cannot achieve a competitive ratio better than O
(

1
(n−1)1/(k+1)

)
for the mkvc

problem.

Proof. We assume that k ≪ n. Consider the following scenario. In step i,
1 ≤ i ≤ k, the central vertex vi of a star with d(vi) = (n− 1)i/(k+1) is released.

If the algorithm rejects vi, then the remaining
∑i

j=1(n − 1)j/(k+1) vertices of

the i stars plus n − i −∑i
j=1(n − 1)j/(k+1) singleton vertices are released. If

the algorithm selects vi, then vertex vi+1, with d(vi+1) = (n − 1)(i+1)/(k+1) is
released. If after the k-th vertex the algorithm has selected all the k released
vertices then a new vertex vk+1 with degree d(vk+1) = n− 1 is released; finally

3

the remaining vertices of the stars and n − k −∑k
j=1(n − 1)j/(k+1) singleton

vertices are released.
If after the step i the algorithm has rejected vi, then only vertices of degree at

most one are released. Hence, the algorithm covers k−(i−1)+
∑i−1

j=1(n−1)j/(k+1)

edges, while the optimum solution covers k−i+
∑i

j=1(n−1)j/(k+1) edges. Thus:

SOL

OPT
=

k − (i− 1) +
∑i−1

j=1(n− 1)j/(k+1)

k − i+
∑i

j=1(n− 1)j/(k+1)

=
k − (i− 1) + (n−1)i/(k+1)−(n−1)1/(k+1)

(n−1)1/(k+1)−1

k − i+ (n−1)(i+1)/(k+1)−(n−1)1/(k+1)

(n−1)1/(k+1)−1

= O

(
1

(n− 1)1/(k+1)

)

If the algorithm has selected all the k first released vertices, then it covers exactly∑k
j=1(n − 1)j/(k+1) elements, while the optimum solution (that includes vk+1

which is never selected by the online algorithm) covers n− 1 elements. Hence:

SOL

OPT
=

∑k
j=1(n− 1)j/(k+1)

n− 1
=

(n−1)(k+1)/(k+1)−(n−1)1/(k+1)

(n−1)1/(k+1)−1

n− 1

= O

(
1

(n− 1)1/(k+1)

)

that concludes the proof.

Note that, in a similar way we can prove that: “Any deterministic online
algorithm that does not allow swaps cannot achieve a competitive ratio better
than O

(
1

m1/(k+1)

)
for the mkc problem.”. In this case, in phase i, if all previously

released sets are selected by the algorithm then a set of cardinality mi/(k+1) is
released.

The next result is also a negative result but fits the model addressed in the
paper (i.e., where swaps are allowed).

Proposition 2. Any deterministic online algorithm cannot achieve a competi-
tive ratio better than 2k

3k−2 ≃ 2
3 for the mkvc problem.

Proof. Assume that 2k − 1 vertices, v11 , v
1
2 , . . . , v

1
2k−1, of degree one and 2k − 1

vertices, v21 , v
2
2 , . . . , v

2
2k−1, of degree two are released, such that (v1i , v

2
i) ∈ E,

1 ≤ i ≤ 2k − 1, and that the algorithm selects k′ ≤ k of them. Wlog, let
v21 , v

2
2 , . . . , v

2
k′ be the vertices selected by the algorithm. Next the vertex v3

of degree k′ is released, where (v2i , v3) ∈ E, 1 ≤ i ≤ k′. The solution of the
algorithm at this time is 2k′, while the inclusion or not of v3 does not play any
role for this value. Finally, 2k−1−k′ vertices, v3k′+1, v

3
k′+2, . . . , v

3
2k−1, of degree

one are released, such that (v2i , v
3
i) ∈ E, k′ + 1 ≤ i ≤ 2k− 1. In this last phase,

the algorithm can increase its solution by at most k−k′ more edges. Hence, the
final solution of the algorithm is at most k+ k′. The optimum solution consists
of the vertices v2k+1, v

2
k+2, . . . , v

2
2k−1, v3, and hence is of cardinality 2(k−1)+k′.

In all, SOL
OPT = k+k′

2(k−1)+k′
≤ 2k

3k−2 .

4

Next, we improve the result of Proposition 2 for the mkc problem even in the
case where each set covers exactly ∆ elements. Recall that for the offline version
of the mkc problem an 1− 1

e ≃ 0.63-inapproximability result is known [2].

Proposition 3. Any deterministic online algorithm cannot achieve a competi-

tive ratio better than k+2
√
k+1

2k+2
√
k+1

≃ 1
2 for the mkc problem even in the case where

all sets have the same cardinality.

Proof. A r-sunflower is a set system of regular sets of size ∆ with a common
intersection of size r; the sets of a sunflower are called petals.

Consider the following scenario. The adversary starts by sending ∆(p−1)
p -

sunflower petals where ∆
p ∈ N, while the algorithm keeps k′ of them; it continues

so until the first time τ where there are k−
⌊
k′

p

⌋
rejected sets. Notice that this

will be always the case for some τ ≤
⌈
k(2p−1)

p

⌉
.

Then the adversary starts sending disjoint sets, each one matching private
parts of p petals in the solution, until the maximum number of private parts
have been matched.

The solution of the algorithm will cover at most (k′+p−1)
p ∆ elements, while

the optimum will cover at least
⌊
k′

p

⌋
∆ elements by the matching sets plus

⌈
k− k′

p +p−1

p

⌉
∆ elements by rejected petals. Thus, the ratio is bounded above

by k′+p−1

k+(p−1) k′

p +p−1
where 0 ≤ k′ ≤ k, which is less than or equal to the simplified

expression pk+p(p−1)
(2p−1)k+p(p−1) . This expression is minimized when p =

√
k + 1,

that is (
√
k+1)k+(

√
k+1)

√
k

(2(
√
k+1)−1)k+(

√
k+1)

√
k

= k+2
√
k+1

2k+2
√
k+1

, which for k large enough tends

asymptotically to 1
2 .

3 Maximum k-vertex-coverage

In this section we deal with the online maximum k-vertex-coverage problem.
Note, first, that there exists an easy 1

2 -competitive ratio for this problem. In
fact, consider selecting k vertices of largest degrees. In an optimum solution
all the edges are, at best, covered once, while in the solution created by this
greedy algorithm, all the edges are, at worst, covered twice. Since the algorithm
selects the largest degrees of the graph, the 1

2 -competitive ratio is immediately
concluded.

Proposition 4. There is a 1
2 -competitive ratio for the online mkvc problem.

In the next sections we improve the 1
2 -competitive ratio for several classes

of graphs. But first, we give an easy upper bound for the number of elements
covered by any solution that will be used later. Its proof is straightforward.

Proposition 5. OPT ≤ k∆.

5

3.1 Regular graphs

The following preliminary result that will be used later holds for any algorithm
for the mkvc problem in regular graphs.

Proposition 6. Any deterministic online algorithm achieves a k
n -competitive

ratio for the mkvc problem on regular graphs.

Proof. An optimum solution covers at most all the edges of the graph (recall
that |E| = m), that is OPT ≤ m = n∆

2 . On the other hand, any solution

covers k∆ edges, some of them possibly twice, i.e., at least k∆
2 edges, that is

SOL ≥ k∆
2 . We so get SOL

OPT ≥ k
n .

Let us note that the result of Proposition 6 for the mkvc problem also holds
for general graphs in the offline setting [4].

We now present an algorithm for the mkvc problem in regular graphs. This
algorithm, called Algorithm mkvc-R depends on a parameter x which indicates
the improvement on the current solution that a new vertex should entail, in
order to be selected for inclusion in the solution. In other words, we replace a
vertex of the current solution by the released one, only if the solution increases
by at least

⌈
∆
x

⌉
edges.

Algorithm mkvc-R(x)

1: A = ∅; B = ∅;
2: for each released vertex v do

3: if |A| < k then

4: A = A ∪ {v};
5: if v increases the edges in B by at least

⌈
∆
x

⌉
then

6: B = B ∪ {v};
7: else if |B| < k and v increases the edges in B by at least

⌈
∆
x

⌉
then

8: Select a vertex u ∈ A \B;
9: A = A ∪ {v} \ {u}; B = B ∪ {v};

10: return A;

As we will see in what follows, the best value for x is x = n+2k+
√
4k2+n2

2n ,
leading to the following theorem.

Theorem 1. Algorithm mkvc-R achieves 0.55-competitive ratio.

Proof. Note that B ⊆ A consists of the vertices that improve the solution by
at least

⌈
∆
x

⌉
; b denotes the number of these vertices, i.e., b = |B|. We denote

by y1 the number of edges with one endpoint in B and the other in V \B, and
by y2 the number of edges with both endpoints in B. By definition,

SOL ≥ y1 + y2 = b∆− y2 =
b∆− y1

2
+ y1 =

b∆+ y1

2
(1)

We shall handle two cases, depending on the value of b with respect to k.

6

If b < k then each vertex v ∈ V \B is not selected by Algorithm mkvc-R(x)
to be in B because it is adjacent to at most

⌈
∆
x

⌉
− 1 vertices of V \ B. Thus,

there are at least ∆−
⌈
∆
x

⌉
+1 edges that connect v with vertices in B. Summing

up for all the vertices in V \ B, it holds that y1 ≥ (n − b)
(
∆−

⌈
∆
x

⌉
+ 1
)
, and

considering also (1) we get:

SOL ≥ (n− b)

(
∆−

⌈
∆

x

⌉
+ 1

)
+ y2 (2)

SOL ≥ b∆+ (n− b)
(
∆−

⌈
∆
x

⌉
+ 1
)

2
(3)

Using the upper bound for the optimum provided by Proposition 5 and expres-
sions (2) and (3), respectively, we get the following ratios:

SOL

OPT
≥ (n− b)

(
∆−

⌈
∆
x

⌉
+ 1
)
+ y2

k∆

≥ (n− b)(x− 1)

kx
=

n(x− 1)− b(x− 1)

kx
(4)

SOL

OPT
≥

b∆+(n−b)(∆−⌈∆
x ⌉+1)

2

k∆

≥ bx+ (n− b)(x− 1)

2kx
≥ n(x− 1) + b

2kx
(5)

Observe that the righthand side of (4) decreases with b while that of (5) in-
creases; thus, the worst case occurs when righthand sides of them are equal,
that is:

n(x− 1)− b(x− 1)

kx
=

n(x− 1) + b

2kx
⇔ b =

n(x− 1)

2x− 1

and hence:

SOL

OPT
≥

n(x− 1) + n(x−1)
2x−1

2kx
=

n(x− 1)

k(2x− 1)
(6)

If b = k, then trivially holds that:

SOL

OPT
≥ k

⌈
∆
x

⌉

k∆
≥ 1

x
(7)

Note that (6) increases with x while (7) decreases; therefore, for the worst case
we have:

n(x− 1)

k(2x− 1)
=

1

x
⇔ x =

n+ 2k +
√
4k2 + n2

2n

In all, it holds that:
SOL

OPT
≥ 2n

n+ 2k +
√
4k2 + n2

(8)

7

If k < 0.55n, the ratio of expression (8) leads to:

SOL

OPT
≥ 2n

n+ 2(0.55n) +
√
4(0.55n)2 + n2

=
2

2.11 +
√
2.21

= 0.55

On the other hand, the ratio provided in Proposition 6 that holds for any al-
gorithm, for k > 0.55n, gives SOL

OPT ≥ k
n ≥ 0.55n

n = 0.55, that completes the
proof.

Let us note that, as it can be easily derived from expression (8), when k =
o(n) the competitive ratio of Algorithm mkvc-R is asymptotical to 1.

3.2 Regular bipartite graphs

A better ratio can be achieved if we further restrict ourselves in regular bipartite
graphs. A key-point of such improvement is that the maximum independent set
can be found in polynomial time in bipartite graphs (see for example [6]). In
what follows in this section, we consider that the number of vertices, n, is known
a priori.

Our Algorithm mkvc-B initializes its solution with the first k released ver-
tices. At this point, a maximum independent set B, of size b, in the graph
induced by these k vertices is found. The vertices of this independent set will
surely appear in the final solution. For the remaining k − b vertices we check if

they cover at least
n∆
2 −b∆

⌈n−b
k−b ⌉ edges different from those covered by the independent

set B. If yes, we return the solution consisting of the b vertices of the indepen-
dent set and these k− b vertices. Otherwise, we wait for the next k− b vertices
and we repeat the check. In Algorithm mkvc-B, G[A] denotes the subgraph
of G induced by the vertex-subset A.

Algorithm mkvc-B

1: A = {the first k released vertices};
2: Find a maximum independent set B ⊆ A in G[A]; b = |B|;
3: for each released vertex v do

4: if |A| = k then

5: if m(A) ≥ b∆+
n∆
2 −b∆

⌈n−b
k−b ⌉ then

6: return A;
7: else

8: A = B;
9: else

10: A = A ∪ {v}
11: return A;

Theorem 2. Algorithm mkvc-B achieves a 0.6075-competitive ratio.

8

Proof. Let us call batch the set of the k − b vertices of A \ B in Lines 5–10 of
Algorithm mkvc-B.

The solution obtained by this algorithm contains a maximum independent
set of size b. Since the input graph is bipartite, it holds that b ≥ k

2 .
The number of edges of the graph uncovered by the vertices of the maximum

independent set is in total n∆
2 − b∆. Any of these edges is covered by vertices

belonging to at least one of the
⌈
n−b
k−b

⌉
batches. Hence, in average, each batch

covers
n∆
2 −b∆

⌈n−b
k−b ⌉ of those edges; so there exists a batch that covers at least

n∆
2 −b∆

⌈n−b
k−b ⌉

of them. Therefore, the algorithm covers in total at least b∆+
n∆
2 −b∆

⌈n−b
k−b ⌉ edges.

Using Proposition 5, we get:

SOL

OPT
≥

b∆+
n∆
2 −b∆

⌈n−b
k−b ⌉

k∆
=

b+
n
2 −b

⌈n−b
k−b ⌉
k

and since this quantity increases with b it holds that:

SOL

OPT
≥

k
2 +

n
2 − k

2
⌈

n−
k
2

k−
k
2

⌉

k
=

k + n−k

⌈ 2n−k
k ⌉

2k
(9)

If k ≤ 0.6075n, then expression (9) leads to SOL
OPT ≥ 0.6075. Otherwise, using

Proposition 6 we get the same ratio and the theorem is concluded.

Note that by expression (9), Algorithm mkvc-B achieves a competitive ratio
asymptotical to 3

4 when k = o(n).

3.3 Trees and chains

In this section we give algorithms that further improve the competitive ratios
for the mkvc problem in trees and chains. Dealing with trees the following
result holds.

Proposition 7. The mkvc problem can be solved within
(
1− k−1

∆∗

)
-competitive

ratio in trees, where ∆∗ is the sum of the k largest degrees in the tree. The ratio
is tight.

Proof. An upper bound for the optimum solution is OPT ≤ ∆∗, that is the case
where k non-adjacent vertices of the largest degree are selected.

Consider the algorithm that selects the k vertices of the largest degrees.
These k vertices cover ∆∗ edges, some of them possibly twice. It is easy to see
that the number of such edges is maximized when the subgraph induced by the k
selected vertices is connected. In this case, there are k − 1 edges covered twice.
Hence, the total number of covered edges is ∆∗ − (k − 1), while at most ∆∗

edges can be covered by any solution.

9

Note that, if the number of vertices of degree greater than 1 is r < k then
our algorithm finds an optimum solution using just r vertices, since the edges
that are adjacent to the leaves are covered by their other endpoints.

Furthermore, in the case where all the internal vertices of the tree have the
same degree ∆, the ratio provided by Proposition 7 becomes

(
1− k−1

k∆

)
. This

ratio is better than the ratio proved for regular bipartite graphs in Theorem 2
for any ∆ ≥ 3, but it is worse for ∆ = 2, i.e., in the case where the input graph
is a chain. An improvement for the mkvc problem in chains follows.

Algorithm mkvc-C

1: Split the “memory” of the solution into two parts B and C, i.e., A = B∪C;
2: for each released vertex v do

3: if |B| ≤ k and v adds two new edges to the solution then

4: B = B ∪ {v};
5: if |A| > k then

6: Delete an arbitrary vertex from C;
7: else if |A| ≤ k and v adds one new edge to the solution then

8: C = C ∪ {v};
9: return A;

Proposition 8. Algorithm mkvc-C achieves a 0.75-competitive ratio for the
mkvc problem in chains.

Proof. Note, first, that if k < n
3 or k > 2n

3 , then the algorithm finds an optimum
solution.

It is easy to see that |B| ≥ |C|. Moreover, it holds that SOL = 2|B|+ |C|,
while OPT ≤ 2k = 2|B|+ 2|C|. Hence:

SOL

OPT
≥ 2|B|+ |C|

2|B|+ 2|C| ≥
2|B|+ |B|
2|B|+ 2|B| =

3

4
= 0.75

and the proof is completed.

4 Maximum k-(set)-coverage

In this section we present Algorithm mkc for the online maximum k-(set)-
coverage problem. It initializes by selecting the first k released sets. Then,
considering that the current solution Aj covers m(Aj) elements, the algorithm
replaces a set Q ∈ Aj by the new released set P , only if the number of elements

covered is increased by at least
m(Aj)

k . We prove that Algorithm mkc achieves
competitive ratio strictly greater than 1

4 but that tends to 1
4 as k increases.

Recall that the algorithm presented in [7] achieves also an 1
4 -competitive ra-

tio. However, our analysis is tight and gives better results for moderately large
values of k.

10

Algorithm mkc

1: j = 1; Aj = {the first k released sets};
2: for each released set P do

3: Find the set Q ∈ Aj that covers privately the smallest number of elements
in Aj ;

4: if m(Aj \ {Q} ∪ {P}) > m(Aj) +
m(Aj)

k then

5: j = j + 1; Aj = Aj−1 \ {Q} ∪ {P};

To analyze our algorithm, let Az be the final solution obtained, i.e., SOL =
m(Az). Fix, also, an optimum solution A∗.

For A∗, we consider the following two types of events that happen during
the execution of the algorithm: (a) Algorithm mkc does not select a set of A∗,
and (b) Algorithm mkc deletes a set of A∗. Clearly, at most k such events
may happen in total. However, not all events happen in a different current
solution; let ℓ ≤ k be the number of the different current solutions when the
events happen, Aji , 1 ≤ i ≤ ℓ, 1 ≤ ji ≤ z, be the i-th of these current solutions,
and ki, 1 ≤ i ≤ ℓ, be the number of events occurred in Aji .

We will now provide an upper bound to the value OPT = m(A∗) as function
of the states Aji , 1 ≤ i ≤ ℓ. Consider that the s-th, 1 ≤ s ≤ k, event happens
in ji. Let Ps be the new set that arrives at ji and Qs ∈ Aji be the set that

covers privately the smallest number of elements in Aji . Let, also, Q̃s ⊆ Qs be
the set of private elements of Qs in Aji .

If the event is of type (a) then Ps ∈ A∗ is not selected and it covers a

subset of the elements in E(Aji \ {Qs}) plus its private elements, P̃s ⊆ Ps, in

E(Aji \ {Qs} ∪ {Ps}). Note that m(P̃s) ≤ m(Q̃s) +
m(Aji

)

k , since otherwise Ps

should be selected by the algorithm. Moreover, m(Q̃s) ≤ m(Aji
)

k , since Qs has

the smallest private part in Aji , and hence m(P̃s) ≤ 2m(Aji
)

k .
If the event is of type (b) then Qs ∈ A∗ is removed and the elements covered

by Qs are a subset of E(Aji).
In all, in the worst case we have:

E(A∗) ⊆
ℓ⋃

i=1

E(Aji) ∪
k⋃

s=1

P̃s ⊆ E(Ajℓ) ∪
ℓ⋃

i=2

[
E(Aji−1) \ E(Aji)

]
∪

k⋃

s=1

P̃s

Therefore, for the value of the optimum solution A∗ we have:

OPT ≤ m(Ajℓ) +

ℓ∑

i=2

m(E(Aji−1) \ E(Aji)) +

ℓ∑

i=1

(
ki
2m(Aji)

k

)

Claim 1. m(E(Aji−1) \ E(Aji)) ≤
|Aji−1

\Aji
|

k m(Aji−1), 2 ≤ i ≤ ℓ.

Proof. Let Qr, 1 ≤ r ≤ |Aji−1 \Aji |, be the r-th set that is removed from Aji−1

between the events i − 1 and i, considering only the sets that exist in Aji−1 .

11

Let, also, Q̃r be the private part of Qr just before it is removed. We will show
that, for any p, 1 ≤ p ≤ |Aji−1 \ Aji |, it holds that

∑p
r=1 qr ≤ p

km(Aji−1), and
thus:

m(E(Aji−1) \ E(Aji)) =

|Aji−1
\Aji |∑

r=1

qr ≤
∣∣Aji−1 \Aji

∣∣
k

m
(
Aji−1

)

Assume for a contradiction that for the first time after the removal of the set Qp

it holds that
∑p

r=1 qr > p
km(Aji−1), hence,

∑p−1
r=1 qr ≤ p−1

k m(Aji−1). Clearly,

qp >
m(Aji−1

)

k . Moreover, following Algorithm mkc Qp has the smallest private
part between the sets belonging in the solution when Qp is selected to be re-
moved. Thus, the k− p sets of Aji−1 which are still in the solution have private

parts of size greater than (k − p)
m(Aji−1

)

k in total. Consequently:

m(Aji−1) >

p∑

r=1

qr + (k − p)
m(Aji−1)

k

>
p

k
m(Aji−1) + (k − p)

m(Aji−1)

k
= m(Aji−1)

a contradiction. Therefore, there is no p such that
∑p

r=1 qr > p
km(Aji−1), and

the claim is proved.

Using Claim 1 and since m(Ajℓ) > m(Aji), 1 ≤ i ≤ ℓ − 1, and
∑ℓ

i=1 ki = k

we get:

OPT ≤ m(Ajℓ) +
ℓ∑

i=2

|Aji−1 \Aji |
k

m(Aji−1) +
ℓ−1∑

i=1

2m(Aji)

k

+ (k − ℓ+ 1)
2m(Ajℓ)

k

By definition, it holds that jℓ ≤ z and hence m(Ajℓ) ≤ m(Az) = SOL. More-

over, by Algorithm mkc, m(Ajℓ) ≥
(
1 + 1

k

)jℓ−ji
m(Aji). Thus, we have:

SOL

OPT
≥ 1

1 + 1
k

∑ℓ
i=2

ji−ji−1+2

(1+ 1
k)

jℓ−ji−1
+ 2(k−ℓ+1)

k

=
1

3 + 1
k

∑ℓ
i=2

ji−ji−1+2

(1+ 1
k)

jℓ−ji−1
− 2(ℓ−1)

k

(10)

Claim 2. For any ℓ ≥ 2, it holds that
∑ℓ

i=2
ji−ji−1+2

(1+ 1
k)

jℓ−ji−1
≤ g(ℓ)

ln(1+ 1
k)

, where

g(ℓ) =
(1+ 1

k)
2

e · eg(l−1) and g(2) =
(1+ 1

k)
2

e .

12

Proof. Set di = ji− ji−1. Consider the function fℓ(d) =
∑ℓ

i=2
di+2

(1+ 1
k)

∑ℓ
j=i

dj
. We

will prove the claim by induction to ℓ.

For ℓ = 2 we have f2(d) =
∑2

i=2
di+2

(1+ 1
k)

∑2
j=i

dj
= d2+2

(1+ 1
k)

d2
, where ∂f2(d)

∂d2
=

1−(d2+2) ln(1+ 1
k)

(1+ 1
k)

d2
. The global maximum is attained for d2 + 2 = 1

ln(1+ 1
k)

. Thus:

f2(d) ≤ 1

ln(1+ 1
k)

· 1

(1+ 1
k)

1

ln(1+ 1
k)

−2
= 1

ln(1+ 1
k)

· (1+
1
k)

2

e .

Assume that the statement is true for ℓ− 1.
For ℓ, we have:

fℓ(d) =

ℓ∑

i=2

di + 2
(
1 + 1

k

)∑ℓ
j=i dj

=
dℓ + 2
(
1 + 1

k

)dℓ
+

ℓ−1∑

i=2

di + 2
(
1 + 1

k

)∑ℓ
j=i dj

=
dℓ + 2
(
1 + 1

k

)dℓ
+

1
(
1 + 1

k

)dℓ
· fℓ−1(d)

where ∂fℓ(d)
∂dℓ

=
1−(dℓ+2+fℓ−1(d)) ln(1+ 1

k)
(1+ 1

k)
dℓ

. The global maximum is attained for

dℓ + 2 + fℓ−1(d) =
1

ln(1+ 1
k)

. Thus:

fℓ(d) ≤ 1

ln
(
1 + 1

k

) · 1

(
1 + 1

k

) 1

ln(1+ 1
k)

−2−fℓ−1(d)

≤ 1

ln
(
1 + 1

k

) ·
(
1 + 1

k

)2

e
·
(
1 +

1

k

) g(ℓ−1)

ln(1+ 1
k)

=
1

ln
(
1 + 1

k

) ·
(
1 + 1

k

)2

e
· eg(ℓ−1)

and the claim follows.

Using Claim 2 and expression (10), we get SOL
OPT ≥ 1

3+ 1
k

[

g(ℓ)

ln(1+ 1
k)

−2(ℓ−1)

] ,

where g(ℓ) =
(1+ 1

k)
2

e · eg(l−1) and g(2) =
(1+ 1

k)
2

e .
The ratio r achieved by Algorithm mkc for different values of k is shown in

Table 1.

k 2 3 5 10 30 50 100 300 500 1000

r 0.333 0.324 0.314 0.300 0.282 0.275 0.268 0.261 0.258 0.256

Table 1: Approximation ratio of Algorithm mkc

To see that the ratio achieved by Algorithm mkc is always greater than 1
4 ,

13

consider the following expression for the ratio, slightly less fine than expres-
sion (10):

SOL

OPT
≥ 1

3 + 1
k

∑ℓ
i=2

ji−ji−1

(1+ 1
k)

jℓ−ji−1
+ 1

k

∑ℓ
i=2

(
2

(1+ 1
k)

jℓ−ji−1
− 2

)

Note first that if ℓ = 1 then both sums on the denominator are zero and hence we
have a 1

3 -competitive ratio. If ℓ ≥ 2 we have the following analysis. For the first

sum, by a similar analysis as in Claim 2 we can prove that
∑ℓ

i=2
ji−ji−1

(1+ 1
k)

jℓ−ji−1
≤

g(ℓ)

ln(1+ 1
k)

, where g(ℓ) = 1
e · eg(l−1) and g(2) = 1

e . It is easy to see by a simple

induction that g(ℓ) ≤ 1 for any ℓ ≥ 2 and hence
∑ℓ

i=2
ji−ji−1

(1+ 1
k)

jℓ−ji−1
≤ 1

ln(1+ 1
k)

≤
k. For the second sum, we have:

ℓ∑

i=2

(
2

(
1 + 1

k

)jℓ−ji−1
− 2

)
≤

2∑

i=2

(
2(

1 + 1
k

) − 2

)
=

2k

k + 1
− 2 = − 2

k + 1

Therefore, using these bounds to the ratio we get:

SOL

OPT
≥ 1

4− 2
k(k+1)

=
1

4
+

1

4

1

2k(k + 1)− 1

It is hopefully clear from the previous discussion, that the analysis of Algo-

rithm mkc works also for the weighted mkc problem, up to the assumption
that m(·) in Algorithm mkc is the total weight of the elements and not their
number.

5 Conclusions

There exist several interesting questions arising from the results presented in
this paper. The first of them is to improve the easy 1

2 -competitive ratio for
mkvc in general graphs and the (less easy) worst-case 1

4 -competitive ratio in set
systems. Another open question is to provide tighter upper bounds for the on-
line model handled in regular graphs. An equally interesting issue for ongoing
research is the improvement of the competitive ratio in set-systems where sets
have the same cardinality. The analysis of Algorithm mkc made in Section 4
is quite tight and we still do not see how we can improve it in the case of equal
cardinalities, or how to tighten the upper bound of Proposition 3 in Section 2, in
order to match (or to get closer to) the 1

4 -competitive ratio of Algorithm mkc.
Let us note that an algorithm in the spirit of Algorithm mkvc-R of Section 3.1
for the case of equal-cardinality sets, only achieves ratio 1√

k
.

References

[1] A. Ageev and M. Sviridenko. Approximation algorithms for maximum
coverage and max cut with given sizes of parts. In 7th Integer Programming

14

and Combinatorial Optimization (IPCO’99), volume 1610 of LNCS, pages
17–30. Springer, 1999.

[2] U. Feige. A threshold of lnn for approximating set cover. Journal of the
ACM, 45:634–652, 1998.

[3] U. Feige and M. Langberg. Approximation algorithms for maximization
problems arising in graph partitioning. Journal of Algorithms, 41:174–211,
2001.

[4] Q. Han, Y. Ye, H. Zhang, and J. Zhang. On approximation of max-vertex-
cover. European Journal of Operational Research, 143:342–355, 2002.

[5] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in prob-
lems of maximum k-coverage. Naval Research Logistics, 45:615–627, 1998.

[6] V. Th. Paschos. A survey of approximately optimal solutions to some
covering and packing problems. ACM Computing Surveys, 29:171–209,
1997.

[7] B. Saha and L. Getoor. On maximum coverage in the streaming model &
application to multi-topic blog-watch. In 9th SIAM International Confer-
ence on Data Mining (DM’09), pages 697–708. SIAM, 2009.

15

