Giorgio Ausiello
email: ausiello@dis.uniroma1.

Nicolas Boria

Aristotelis Giannakos

Giorgio Lucarelli

Vangelis Th

Paschos
email: paschos@lamsade.dauphine.fr

Online maximum k-coverage *

We study an online model for the maximum k-vertex-coverage problem, where given a graph G = (V, E) and an integer k, we ask for a subset A ⊆ V , such that |A| = k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is revealed, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of any new vertex in the solution must entail the irremediable deletion of one vertex of the current solution (a vertex not kept when revealed is irremediably deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 1 2 -competitive ratio. We next settle a set-version of the problem, called maximum k-(set)-coverage problem. For this problem we present an algorithm that improves upon former results for the same model for small and moderate values of k.

Introduction

In the maximum k-vertex-coverage (mkvc) problem we are given a graph G = (V, E) (|V | = n, |E| = m) and an integer k, we ask for a subset A ⊆ V , such that |A| = k and the number of edges covered by A is maximized. The mkvc problem is NP-hard, since otherwise the optimal solution for the vertex cover problem could be found in polynomial time: for each k, 1 ≤ k ≤ n, run the algorithm for the mkvc problem and stop when all elements are covered.

In this paper we consider the following online model for this problem: at each step i, a new vertex v i with its adjacent edges is revealed, and we have to decide whether we will include v i in the solution or discard it. At any time of the process, only k vertices can be kept in memory, so if at some point the current solution already contains k vertices, any inclusion of any new vertex in the solution must be compensated with the irremediable deletion of one vertex of the current solution. Of course, a vertex that is not kept when it is revealed is also irremediably deleted. To our knowledge, no online model for the mkvc problem has been studied until now.

A generalization of the mkvc problem is the maximum k-(set)-coverage (mkc) problem, where given a universe of elements E = {e 1 , e 2 , . . . , e m }, a collection of subsets of E, S = {S 1 , S 2 , . . . , S n }, and an integer k ≤ n, we ask for a subcollection A = {A 1 , A 2 , . . . , A |A| } ⊆ S, such that |A| = k and the number of elements of E covered by A is maximized. The online model for the mkc problem is the same as for the mkvc.

Clearly, the mkvc problem is a special case of the mkc problem where: (i) each element belongs to exactly two sets and (ii) the intersection of any two sets of S has size at most one, since multiple edges are not permitted.

The weighted generalization of the mkc problem, denoted by weighted mkc, has been also studied in the literature. In this problem, each element e i ∈ E has a non-negative weight w(e i), and the goal is to maximize the total weight of the elements covered by k sets.

The analogous online model for weighted mkc problem, where at each step i a set S i ∈ S together with its elements is revealed and only k such sets can be kept in memory, has been studied in [START_REF] Saha | On maximum coverage in the streaming model & application to multi-topic blog-watch[END_REF], where an algorithm of competitive ratio 1 4 is given. The authors in their so called set-streaming model assume that the set of elements is known a priori. Nevertheless, they do not use this information in the proposed algorithm.

In the classical offline setting, the mkc problem is known to be non approximable within a factor 1-1 e [START_REF] Feige | A threshold of ln n for approximating set cover[END_REF]. On the other hand, even for the weighted version of the problem, an approximation algorithm of ratio 1 -1 -1 k k is known [START_REF] Hochbaum | Analysis of the greedy approach in problems of maximum k-coverage[END_REF].

This ratio tends to 1 -1 e as k increases, closing in this way the approximability question for the problem.

In [START_REF] Ageev | Approximation algorithms for maximum coverage and max cut with given sizes of parts[END_REF] the inverse problem (i.e., the hitting set version of mkc), also called maximum coverage problem, has been studied: given a universe of elements E = {e 1 , e 2 , . . . , e m }, a collection of subsets of E, S = {S 1 , S 2 , . . . , S n }, a non-negative weight w(S i) for each S i ∈ S, and an integer k, a set B ⊆ E is sought, such that |B| = k and the total weight of the sets in S that intersect with B is maximized. It is easy to see that this version is equivalent to the weighted mkc modulo the interchange of the roles between set-system and ground set. An algorithm of approximation ratio 1 -1 -1 p p is presented in [START_REF] Ageev | Approximation algorithms for maximum coverage and max cut with given sizes of parts[END_REF] for this problem, where p is the cardinality of the largest set in S. In the case where each set has cardinality equal to two then this problem coincides with the mkvc problem; hence a 3 4 approximation ratio is implied by the algorithm in [START_REF] Ageev | Approximation algorithms for maximum coverage and max cut with given sizes of parts[END_REF]. Several improvements for some restricted cases of the mkvc problem are presented in [START_REF] Feige | Approximation algorithms for maximization problems arising in graph partitioning[END_REF][START_REF] Han | On approximation of max-vertexcover[END_REF].

In this paper we study the online model described above for both the mkvc and the mkc problems. In Section 2, we prove several negative results on the competitiveness of any algorithm for the model handled and for both problems. In Section 3, we present algorithms for regular graphs, regular bipartite graphs, trees and chains, achieving non-trivial competitive ratios, improving upon an easy 1 2 competitiveness result holding for any graph. Finally, in Section 4 the k-(set)-coverage problem is handled. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k.

The following notations will be used in the sequel. They are based upon the definition of the mkvc problem and is easily extendable to the mkc problem.

For any A ⊆ V , we denote by E(A) the set of edges covered by A and by m(A) = |E(A)| the number of these edges. Let SOL = m(A) be the number of edges covered by our algorithms. Moreover, we denote by A * ⊆ V an optimal subset of vertices and by OP T = m(A *) the number of edges covered by an optimal solution.

The maximum degree (or the degree when it is regular) of the input-graph G = (V, E) is denoted by ∆. Dealing with mkc, ∆ denotes the cardinality of a set that contains a maximum number of elements, that is, ∆ = max{|S i | : 1 ≤ i ≤ n}.

For a subset A ⊆ V and a vertex v i ∈ A, we call public the edges of v i that are shared by another vertex in A and private the edges of v i that are covered just by v i in A.

Finally, as it is common in the online setting, the quality of an algorithm is measured by means of the so-called competitive ratio representing the ratio of the value of the solution computed by the algorithm over the optimal value of the whole instance, i.e., the value of an optimal (offline) solution of the final instance.

Negative results

In this section we give some negative results for the online maximum k-vertexcoverage problem and their corresponding adaptations for the maximum kcoverage problem. We start with a negative result for the restrictive case where swaps are not allowed (replacement of a set that belongs to the current solution by the newly revealed set is not permitted). Proposition 1. Any deterministic online algorithm that does not allow swaps cannot achieve a competitive ratio better than O

1 (n-1) 1/(k+1)
for the mkvc problem.

Proof. We assume that k ≪ n. Consider the following scenario. In step i,

1 ≤ i ≤ k, the central vertex v i of a star with d(v i) = (n -1) i/(k+1) is released.
If the algorithm rejects v i , then the remaining i j=1 (n -1) j/(k+1) vertices of the i stars plus ni -i j=1 (n -1) j/(k+1) singleton vertices are released. If the algorithm selects v i , then vertex v i+1 , with d(v i+1) = (n -1) (i+1)/(k+1) is released. If after the k-th vertex the algorithm has selected all the k released vertices then a new vertex v k+1 with degree d(v k+1) = n -1 is released; finally the remaining vertices of the stars and nk -k j=1 (n -1) j/(k+1) singleton vertices are released.

If after the step i the algorithm has rejected v i , then only vertices of degree at most one are released. Hence, the algorithm covers k-(i-1)+ i-1 j=1 (n-1) j/(k+1) edges, while the optimum solution covers k-i+ i j=1 (n-1) j/(k+1) edges. Thus:

SOL OP T = k -(i -1) + i-1 j=1 (n -1) j/(k+1) k -i + i j=1 (n -1) j/(k+1) = k -(i -1) + (n-1) i/(k+1) -(n-1) 1/(k+1) (n-1) 1/(k+1) -1 k -i + (n-1) (i+1)/(k+1) -(n-1) 1/(k+1) (n-1) 1/(k+1) -1 = O 1 (n -1) 1/(k+1)
If the algorithm has selected all the k first released vertices, then it covers exactly k j=1 (n -1) j/(k+1) elements, while the optimum solution (that includes v k+1 which is never selected by the online algorithm) covers n -1 elements. Hence:

SOL OP T = k j=1 (n -1) j/(k+1) n -1 = (n-1) (k+1)/(k+1) -(n-1) 1/(k+1) (n-1) 1/(k+1) -1 n -1 = O 1 (n -1) 1/(k+1)
that concludes the proof.

Note that, in a similar way we can prove that: "Any deterministic online algorithm that does not allow swaps cannot achieve a competitive ratio better than O 1 m 1/(k+1) for the mkc problem.". In this case, in phase i, if all previously released sets are selected by the algorithm then a set of cardinality m i/(k+1) is released.

The next result is also a negative result but fits the model addressed in the paper (i.e., where swaps are allowed).

Proposition 2. Any deterministic online algorithm cannot achieve a competitive ratio better than 2k 3k-2 ≃ 2 3 for the mkvc problem. Proof. Assume that 2k -

1 vertices, v 1 1 , v 1 2 , . . . , v 1 2k-1 , of degree one and 2k -1 vertices, v 2 1 , v 2 2 , . . . , v 2 2k-1 , of degree two are released, such that (v 1 i , v 2 i) ∈ E, 1 ≤ i ≤ 2k -1, and that the algorithm selects k ′ ≤ k of them. Wlog, let v 2 1 , v 2 2 , . . . , v 2 k ′ be the vertices selected by the algorithm. Next the vertex v 3 of degree k ′ is released, where (v 2 i , v 3) ∈ E, 1 ≤ i ≤ k ′ .
The solution of the algorithm at this time is 2k ′ , while the inclusion or not of v 3 does not play any role for this value. Finally, 2k -

1 -k ′ vertices, v 3 k ′ +1 , v 3 k ′ +2 , . . . , v 3 2k-1 , of degree one are released, such that (v 2 i , v 3 i) ∈ E, k ′ + 1 ≤ i ≤ 2k -1.
In this last phase, the algorithm can increase its solution by at most kk ′ more edges. Hence, the final solution of the algorithm is at most k + k ′ . The optimum solution consists of the vertices

v 2 k+1 , v 2 k+2 , . . . , v 2 2k-1 , v 3 , and hence is of cardinality 2(k -1) + k ′ . In all, SOL OP T = k+k ′ 2(k-1)+k ′ ≤ 2k 3k-2 .
Next, we improve the result of Proposition 2 for the mkc problem even in the case where each set covers exactly ∆ elements. Recall that for the offline version of the mkc problem an 1 -1 e ≃ 0.63-inapproximability result is known [START_REF] Feige | A threshold of ln n for approximating set cover[END_REF]. Proposition 3. Any deterministic online algorithm cannot achieve a competitive ratio better than k+2

√ k+1 2k+2 √ k+1 ≃ 1 2
for the mkc problem even in the case where all sets have the same cardinality.

Proof. A r-sunflower is a set system of regular sets of size ∆ with a common intersection of size r; the sets of a sunflower are called petals.

Consider the following scenario. The adversary starts by sending ∆(p-1) p sunflower petals where ∆ p ∈ N, while the algorithm keeps k ′ of them; it continues so until the first time τ where there are k -k ′ p rejected sets. Notice that this will be always the case for some τ ≤ k(2p-1) p . Then the adversary starts sending disjoint sets, each one matching private parts of p petals in the solution, until the maximum number of private parts have been matched.

The solution of the algorithm will cover at most (k ′ +p-1) p ∆ elements, while the optimum will cover at least k ′ p ∆ elements by the matching sets plus

k-k ′ p +p-1 p
∆ elements by rejected petals. Thus, the ratio is bounded above by

k ′ +p-1 k+(p-1) k ′ p +p-1
where 0 ≤ k ′ ≤ k, which is less than or equal to the simplified expression pk+p(p-1)

(2p-1)k+p(p-1)
. This expression is minimized when

p = √ k + 1,
that is

(√ k+1)k+(√ k+1) √ k (2(√ k+1)-1)k+(√ k+1) √ k = k+2 √ k+1 2k+2 √
k+1 , which for k large enough tends asymptotically to 1 2 .

Maximum k-vertex-coverage

In this section we deal with the online maximum k-vertex-coverage problem. Note, first, that there exists an easy 1 2 -competitive ratio for this problem. In fact, consider selecting k vertices of largest degrees. In an optimum solution all the edges are, at best, covered once, while in the solution created by this greedy algorithm, all the edges are, at worst, covered twice. Since the algorithm selects the largest degrees of the graph, the 1 2 -competitive ratio is immediately concluded.

Proposition 4. There is a 1 2 -competitive ratio for the online mkvc problem. In the next sections we improve the 1 2 -competitive ratio for several classes of graphs. But first, we give an easy upper bound for the number of elements covered by any solution that will be used later. Its proof is straightforward. Proposition 5. OP T ≤ k∆.

Regular graphs

The following preliminary result that will be used later holds for any algorithm for the mkvc problem in regular graphs. Proposition 6. Any deterministic online algorithm achieves a k n -competitive ratio for the mkvc problem on regular graphs.

Proof. An optimum solution covers at most all the edges of the graph (recall that |E| = m), that is OP T ≤ m = n∆ 2 . On the other hand, any solution covers k∆ edges, some of them possibly twice, i.e., at least k∆ 2 edges, that is SOL ≥ k∆ 2 . We so get SOL OP T ≥ k n . Let us note that the result of Proposition 6 for the mkvc problem also holds for general graphs in the offline setting [START_REF] Han | On approximation of max-vertexcover[END_REF].

We now present an algorithm for the mkvc problem in regular graphs. This algorithm, called Algorithm mkvc-R depends on a parameter x which indicates the improvement on the current solution that a new vertex should entail, in order to be selected for inclusion in the solution. In other words, we replace a vertex of the current solution by the released one, only if the solution increases by at least ∆ x edges.

Algorithm mkvc-R(x)

1: A = ∅; B = ∅; 2:
for each released vertex v do

SOL ≥ y 1 + y 2 = b∆ -y 2 = b∆ -y 1 2 + y 1 = b∆ + y 1 2 (1)
We shall handle two cases, depending on the value of b with respect to k.

If b < k then each vertex v ∈ V \ B is not selected by Algorithm mkvc-R(x) to be in B because it is adjacent to at most ∆

x -1 vertices of V \ B. Thus, there are at least ∆-∆

x + 1 edges that connect v with vertices in B. Summing up for all the vertices in V \ B, it holds that y 1 ≥ (nb) ∆ -∆

x + 1 , and considering also [START_REF] Ageev | Approximation algorithms for maximum coverage and max cut with given sizes of parts[END_REF] we get:

SOL ≥ (n -b) ∆ - ∆ x + 1 + y 2 (2)
SOL ≥ b∆ + (n -b) ∆ -∆ x + 1 2 (3)
Using the upper bound for the optimum provided by Proposition 5 and expressions (2) and (3), respectively, we get the following ratios:

SOL OP T ≥ (n -b) ∆ -∆ x + 1 + y 2 k∆ ≥ (n -b)(x -1) kx = n(x -1) -b(x -1) kx (4) SOL OP T ≥ b∆+(n-b)(∆-⌈ ∆ x ⌉+1) 2 k∆ ≥ bx + (n -b)(x -1) 2kx ≥ n(x -1) + b 2kx (5)
Observe that the righthand side of (4) decreases with b while that of (5) increases; thus, the worst case occurs when righthand sides of them are equal, that is:

n(x -1) -b(x -1) kx = n(x -1) + b 2kx ⇔ b = n(x -1) 2x -1 and hence: SOL OP T ≥ n(x -1) + n(x-1) 2x-1 2kx = n(x -1) k(2x -1) (6)
If b = k, then trivially holds that:

SOL OP T ≥ k ∆ x k∆ ≥ 1 x (7)
Note that (6) increases with x while (7) decreases; therefore, for the worst case we have:

n(x -1) k(2x -1) = 1 x ⇔ x = n + 2k + √ 4k 2 + n 2 2n
In all, it holds that:

SOL OP T ≥ 2n n + 2k + √ 4k 2 + n 2 (8)
If k < 0.55n, the ratio of expression (8) leads to:

SOL OP T ≥ 2n n + 2(0.55n) + 4(0.55n) 2 + n 2 = 2 2.11 + √ 2.21 = 0.55
On the other hand, the ratio provided in Proposition 6 that holds for any algorithm, for k > 0.55n, gives SOL OP T ≥ k n ≥ 0.55n n = 0.55, that completes the proof.

Let us note that, as it can be easily derived from expression (8), when k = o(n) the competitive ratio of Algorithm mkvc-R is asymptotical to 1.

Regular bipartite graphs

A better ratio can be achieved if we further restrict ourselves in regular bipartite graphs. A key-point of such improvement is that the maximum independent set can be found in polynomial time in bipartite graphs (see for example [START_REF] Th | A survey of approximately optimal solutions to some covering and packing problems[END_REF]). In what follows in this section, we consider that the number of vertices, n, is known a priori.

Our Algorithm mkvc-B initializes its solution with the first k released vertices. At this point, a maximum independent set B, of size b, in the graph induced by these k vertices is found. The vertices of this independent set will surely appear in the final solution. For the remaining kb vertices we check if they cover at least

if |A| = k then 5: if m(A) ≥ b∆ + n∆ 2 -b∆ ⌈ n-b k-b ⌉ then 6:
return A; Using Proposition 5, we get:

SOL OP T ≥ b∆ + n∆ 2 -b∆ ⌈ n-b k-b ⌉ k∆ = b + n 2 -b ⌈ n-b k-b ⌉ k
and since this quantity increases with b it holds that:

SOL OP T ≥ k 2 + n 2 -k 2 n-k 2 k-k 2 k = k + n-k ⌈ 2n-k k ⌉ 2k (9)
If k ≤ 0.6075n, then expression (9) leads to SOL OP T ≥ 0.6075. Otherwise, using Proposition 6 we get the same ratio and the theorem is concluded.

Note that by expression (9), Algorithm mkvc-B achieves a competitive ratio asymptotical to 3 4 when k = o(n).

Trees and chains

In this section we give algorithms that further improve the competitive ratios for the mkvc problem in trees and chains. Dealing with trees the following result holds.

Proposition 7. The mkvc problem can be solved within 1 -k-1 ∆ * -competitive ratio in trees, where ∆ * is the sum of the k largest degrees in the tree. The ratio is tight.

Proof. An upper bound for the optimum solution is OP T ≤ ∆ * , that is the case where k non-adjacent vertices of the largest degree are selected.

Consider the algorithm that selects the k vertices of the largest degrees. These k vertices cover ∆ * edges, some of them possibly twice. It is easy to see that the number of such edges is maximized when the subgraph induced by the k selected vertices is connected. In this case, there are k -1 edges covered twice. Hence, the total number of covered edges is ∆ * -(k -1), while at most ∆ * edges can be covered by any solution.

Note that, if the number of vertices of degree greater than 1 is r < k then our algorithm finds an optimum solution using just r vertices, since the edges that are adjacent to the leaves are covered by their other endpoints.

Furthermore, in the case where all the internal vertices of the tree have the same degree ∆, the ratio provided by Proposition 7 becomes 1 -k-1 k∆ . This ratio is better than the ratio proved for regular bipartite graphs in Theorem 2 for any ∆ ≥ 3, but it is worse for ∆ = 2, i.e., in the case where the input graph is a chain. An improvement for the mkvc problem in chains follows.

Algorithm mkvc-C

1: Split the "memory" of the solution into two parts B and C, i.e., A = B ∪ C; 2: for each released vertex v do 3:

if |B| ≤ k and v adds two new edges to the solution then 4:

B = B ∪ {v}; 5: if |A| > k then 6:
Delete an arbitrary vertex from C; Proof. Note, first, that if k < n 3 or k > 2n 3 , then the algorithm finds an optimum solution.

It is easy to see that |B| ≥ |C|. Moreover, it holds that SOL = 2|B| + |C|, while OP T ≤ 2k = 2|B| + 2|C|. Hence:

SOL OP T ≥ 2|B| + |C| 2|B| + 2|C| ≥ 2|B| + |B| 2|B| + 2|B| = 3 4 = 0.75
and the proof is completed.

Maximum k-(set)-coverage

In this section we present Algorithm mkc for the online maximum k-(set)coverage problem. It initializes by selecting the first k released sets. Then, considering that the current solution A j covers m(A j) elements, the algorithm replaces a set Q ∈ A j by the new released set P , only if the number of elements covered is increased by at least m(Aj) k

. We prove that Algorithm mkc achieves competitive ratio strictly greater than 1 4 but that tends to 1 4 as k increases. Recall that the algorithm presented in [START_REF] Saha | On maximum coverage in the streaming model & application to multi-topic blog-watch[END_REF] achieves also an 1 4 -competitive ratio. However, our analysis is tight and gives better results for moderately large values of k.

Algorithm mkc

1: j = 1; A j = {the first k released sets}; 2: for each released set P do 3:

Find the set Q ∈ A j that covers privately the smallest number of elements in A j ;

4: if m(A j \ {Q} ∪ {P }) > m(A j) + m(Aj) k then 5: j = j + 1; A j = A j-1 \ {Q} ∪ {P };
To analyze our algorithm, let A z be the final solution obtained, i.e., SOL = m(A z). Fix, also, an optimum solution A * .

For A * , we consider the following two types of events that happen during the execution of the algorithm: (a) Algorithm mkc does not select a set of A * , and (b) Algorithm mkc deletes a set of A * . Clearly, at most k such events may happen in total. However, not all events happen in a different current solution; let ℓ ≤ k be the number of the different current solutions when the events happen, A ji , 1 ≤ i ≤ ℓ, 1 ≤ j i ≤ z, be the i-th of these current solutions, and k i , 1 ≤ i ≤ ℓ, be the number of events occurred in A ji .

We will now provide an upper bound to the value OP T = m(A *) as function of the states A ji , 1 ≤ i ≤ ℓ. Consider that the s-th, 1 ≤ s ≤ k, event happens in j i . Let P s be the new set that arrives at j i and Q s ∈ A ji be the set that covers privately the smallest number of elements in A ji . Let, also,

Q s ⊆ Q s be the set of private elements of Q s in A ji .
If the event is of type (a) then P s ∈ A * is not selected and it covers a subset of the elements in E(A ji \ {Q s }) plus its private elements, P s ⊆ P s , in

E(A ji \ {Q s } ∪ {P s }). Note that m(P s) ≤ m(Q s) + m(Aj i) k
, since otherwise P s should be selected by the algorithm. Moreover, m(Q s) ≤ In all, in the worst case we have:

E(A *) ⊆ ℓ i=1 E(A ji) ∪ k s=1 P s ⊆ E(A j ℓ) ∪ ℓ i=2 E(A ji-1) \ E(A ji) ∪ k s=1 P s
Therefore, for the value of the optimum solution A * we have:

OP T ≤ m(A j ℓ) + ℓ i=2 m(E(A ji-1) \ E(A ji)) + ℓ i=1 k i 2m(A ji) k Claim 1. m(E(A ji-1) \ E(A ji)) ≤ |Aj i-1 \Aj i | k m(A ji-1), 2 ≤ i ≤ ℓ. Proof. Let Q r , 1 ≤ r ≤ |A ji-1 \ A ji |
, be the r-th set that is removed from A ji-1 between the events i -1 and i, considering only the sets that exist in A ji-1 .

Let, also, Q r be the private part of Q r just before it is removed. We will show that, for any p, 1 ≤ p ≤ |A ji-1 \ A ji |, it holds that p r=1 q r ≤ p k m(A ji-1), and thus:

m(E(A ji-1) \ E(A ji)) = |Aj i-1 \Aj i | r=1 q r ≤ A ji-1 \ A ji k m A ji-1
Assume for a contradiction that for the first time after the removal of the set Q p it holds that p r=1 q r > p k m(A ji-1), hence, p-1 r=1 q r ≤ p-1 k m(A ji-1). Clearly, q p > m(Aj i-1) k

. Moreover, following Algorithm mkc Q p has the smallest private part between the sets belonging in the solution when Q p is selected to be removed. Thus, the kp sets of A ji-1 which are still in the solution have private parts of size greater than (kp) m(Aj i-1) k in total. Consequently:

m(A ji-1) > p r=1 q r + (k -p) m(A ji-1) k > p k m(A ji-1) + (k -p) m(A ji-1) k = m(A ji-1)
a contradiction. Therefore, there is no p such that p r=1 q r > p k m(A ji-1), and the claim is proved.

Using Claim 1 and since

m(A j ℓ) > m(A ji), 1 ≤ i ≤ ℓ -1, and ℓ i=1 k i = k we get: OP T ≤ m(A j ℓ) + ℓ i=2 |A ji-1 \ A ji | k m(A ji-1) + ℓ-1 i=1 2m(A ji) k + (k -ℓ + 1) 2m(A j ℓ) k
By definition, it holds that j ℓ ≤ z and hence m(A j ℓ) ≤ m(A z) = SOL. Moreover, by Algorithm mkc, m(A j ℓ) ≥ 1 + 1 k j ℓ -ji m(A ji). Thus, we have:

SOL OP T ≥ 1 1 + 1 k ℓ i=2 ji-ji-1+2 (1+ 1 k) j ℓ -j i-1 + 2(k-ℓ+1) k = 1 3 + 1 k ℓ i=2 ji-ji-1+2 (1+ 1 k) j ℓ -j i-1 -2(ℓ-1) k (10) Claim 2. For any ℓ ≥ 2, it holds that ℓ i=2 ji-ji-1+2 (1+ 1 k) j ℓ -j i-1 ≤ g(ℓ) ln(1+ 1 k)
, where

g(ℓ) = (1+ 1 k) 2 e
• e g(l-1) and g

(2) = (1+ 1 k) 2 e . Proof. Set d i = j i -j i-1 . Consider the function f ℓ (d) = ℓ i=2 di+2 (1+ 1 k)
ℓ j=i d j . We will prove the claim by induction to ℓ.

For ℓ = 2 we have f

2 (d) = 2 i=2 di+2 (1+ 1 k) 2 j=i d j = d2+2 (1+ 1 k) d 2 , where ∂f2(d) ∂d2 = 1-(d2+2) ln(1+ 1 k) (1+ 1 k) d 2
. The global maximum is attained for

d 2 + 2 = 1 ln(1+ 1 k)
. Thus:

f 2 (d) ≤ 1 ln(1+ 1 k) • 1 (1+ 1 k) 1 ln (1+ 1 k) -2 = 1 ln(1+ 1 k) • (1+ 1 k) 2 e .
Assume that the statement is true for ℓ -1.

For ℓ, we have:

f ℓ (d) = ℓ i=2 d i + 2 1 + 1 k ℓ j=i dj = d ℓ + 2 1 + 1 k d ℓ + ℓ-1 i=2 d i + 2 1 + 1 k ℓ j=i dj = d ℓ + 2 1 + 1 k d ℓ + 1 1 + 1 k d ℓ • f ℓ-1 (d)
where ∂f ℓ (d)

∂d ℓ = 1-(d ℓ +2+f ℓ-1 (d)) ln(1+ 1 k) (1+ 1 k) d ℓ
. The global maximum is attained for

d ℓ + 2 + f ℓ-1 (d) = 1 ln(1+ 1 k)
. Thus:

f ℓ (d) ≤ 1 ln 1 + 1 k • 1 1 + 1 k 1 ln (1+ 1 k) -2-f ℓ-1 (d) ≤ 1 ln 1 + 1 k • 1 + 1 k 2 e • 1 + 1 k g(ℓ-1) ln (1+ 1 k) = 1 ln 1 + 1 k • 1 + 1 k 2 e • e g(ℓ-1)
and the claim follows.

Using Claim 2 and expression (10), we get

SOL OP T ≥ 1 3+ 1 k g(ℓ) ln (1+ 1 k) -2(ℓ-1)
, where g

(ℓ) = (1+ 1 k) 2 e
• e g(l-1) and g(2) = (1+ To see that the ratio achieved by Algorithm mkc is always greater than 1 4 , consider the following expression for the ratio, slightly less fine than expression (10):

SOL OP T ≥ 1 3 + 1 k ℓ i=2 ji-ji-1 (1+ 1 k) j ℓ -j i-1 + 1 k ℓ i=2 2
(1+ 1 k) j ℓ -j i-1 -2 Note first that if ℓ = 1 then both sums on the denominator are zero and hence we have a 1 3 -competitive ratio. If ℓ ≥ 2 we have the following analysis. For the first sum, by a similar analysis as in Claim 2 we can prove that ℓ i=2 ji-ji-1

(1+ 1 k) j ℓ -j i-1 ≤ g(ℓ) ln(1+ 1 k)
, where g(ℓ) = 1 e • e g(l-1) and g(2) = 1 e . It is easy to see by a simple induction that g(ℓ) ≤ 1 for any ℓ ≥ 2 and hence ℓ i=2 ji-ji-1

(1+ 1 k) j ℓ -j i-1 ≤ 1 ln(1+ 1 k) ≤ k.
For the second sum, we have:

ℓ i=2 2 1 + 1 k j ℓ -ji-1 -2 ≤ 2 i=2 2 1 + 1 k -2 = 2k k + 1 -2 = - 2 k + 1
Therefore, using these bounds to the ratio we get:

SOL OP T ≥ 1 4 -2 k(k+1) = 1 4 + 1 4 1 2k(k + 1) -1
It is hopefully clear from the previous discussion, that the analysis of Algorithm mkc works also for the weighted mkc problem, up to the assumption that m(•) in Algorithm mkc is the total weight of the elements and not their number.

Conclusions

There exist several interesting questions arising from the results presented in this paper. The first of them is to improve the easy 1 2 -competitive ratio for mkvc in general graphs and the (less easy) worst-case 1 4 -competitive ratio in set systems. Another open question is to provide tighter upper bounds for the online model handled in regular graphs. An equally interesting issue for ongoing research is the improvement of the competitive ratio in set-systems where sets have the same cardinality. The analysis of Algorithm mkc made in Section 4 is quite tight and we still do not see how we can improve it in the case of equal cardinalities, or how to tighten the upper bound of Proposition 3 in Section 2, in order to match (or to get closer to) the 1 4 -competitive ratio of Algorithm mkc. Let us note that an algorithm in the spirit of Algorithm mkvc-R of Section 3.1 for the case of equal-cardinality sets, only achieves ratio 1 √ k .

5 : 6 :B = B ∪ {v}; 7 : 8 :

 5678 if v increases the edges in B by at least ∆ x then else if |B| < k and v increases the edges in B by at least ∆ x then Select a vertex u ∈ A \ B; 9: A = A ∪ {v} \ {u}; B = B ∪ {v}; 10: return A; As we will see in what follows, the best value for x is x = n+2k+ √ 4k 2 +n 2 2n , leading to the following theorem. Theorem 1. Algorithm mkvc-R achieves 0.55-competitive ratio. Proof. Note that B ⊆ A consists of the vertices that improve the solution by at least ∆ x ; b denotes the number of these vertices, i.e., b = |B|. We denote by y 1 the number of edges with one endpoint in B and the other in V \ B, and by y 2 the number of edges with both endpoints in B. By definition,

2 :

 2 edges different from those covered by the independent set B. If yes, we return the solution consisting of the b vertices of the independent set and these kb vertices. Otherwise, we wait for the next kb vertices and we repeat the check. In Algorithm mkvc-B, G[A] denotes the subgraph of G induced by the vertex-subset A. Algorithm mkvc-B 1: A = {the first k released vertices}; Find a maximum independent set B ⊆ A in G[A]; b = |B|; 3: for each released vertex v do 4:

Theorem 2 .

 2 Algorithm mkvc-B achieves a 0.6075-competitive ratio. Proof. Let us call batch the set of the kb vertices of A \ B in Lines 5-10 of Algorithm mkvc-B.The solution obtained by this algorithm contains a maximum independent set of size b. Since the input graph is bipartite, it holds that b ≥ k 2 . The number of edges of the graph uncovered by the vertices of the maximum independent set is in total n∆ 2 -b∆. Any of these edges is covered by vertices belonging to at least one of the n-b k-b batches. Hence, in average, each batch covers n∆ 2 -b∆ ⌈ n-b k-b ⌉ of those edges; so there exists a batch that covers at least n∆ 2 -b∆ ⌈ n-b k-b ⌉ of them. Therefore, the algorithm covers in total at least b∆ + n∆ 2 -b∆ ⌈ n-b k-b ⌉ edges.

7 :

 7 else if |A| ≤ k and v adds one new edge to the solution then 8: C = C ∪ {v}; 9: return A; Proposition 8. Algorithm mkvc-C achieves a 0.75-competitive ratio for the mkvc problem in chains.

m(

 Aj i) k , since Q s has the smallest private part in A ji , and hence m(P s) ≤ 2m(Aj i) k . If the event is of type (b) then Q s ∈ A * is removed and the elements covered by Q s are a subset of E(A ji).

Table 1 .

 1 The ratio r achieved by Algorithm mkc for different values of k is shown in

	1 k)

2 e .

Table 1 :

 1 Approximation ratio of Algorithm mkc

* Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010