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Abstract : Telecommunication networks can be seen as the stacking of several layers like, for
instance, IP-over-Optical networks. This infrastructure has to be sufficiently survivable to restore
the traffic in the event of a failure. Moreover, it should have adequate capacities so that the demands
can be routed between the origin-destinations. In this paper we consider the Multilayer Capacitated
Survivable IP Network Design problem. We study two variants of this problem with simple and
multiple capacities. We give two multicommodity flow formulations for each variant of this problem
and describe some valid inequalities. In particular, we characterize valid inequalities obtained using
Chvatal-Gomory procedure from the well known Cutset inequalities. We show that some of these
inequalities are facet defining. We discuss separation routines for all the valid inequalities. Using
these results, we develop a Branch-and-Cut algorithm and a Branch-and-Cut-and-Price algorithm
for each variant and present extensive computational results.

Keywords : IP-over-optical network, survivability, capacities, Branch-and-Cut-and-Price algo-
rithms.

1 Introduction

In the past years, telecommunication networks have seen a big development with the advances
in optical technologies and the explosive growth of the Internet. Also the data traffic has increased
dramatically and has now surpassed voice traffic in volume. Using the new optical technologies,
different systems allow a very large increase of transport capacity and the transfert of almost
illimitated quantities of information. Hence, in the event of a catastrophic failure, a big amount of
traffic may be lost. In consequence telecommunication networks must have a survivable topology,
that is to say a topology that permits to the service to be restored and the network to remain
functionnal in the event of a failure. For this, network survivability has become a major objective
in the design of telecommunication networks.

Data networks have always been analysed, described and managed in a multilayer structure.
Indeed, it is quite natural to assume that the more elaborate functionalities of a network rely
on a set of simple ones provided by some lower layer. This is in particular the case of modern
telecommunication networks where different technologies (SDH/SONET, WDM, Gigabit Ethernet,
ATM, IP, . . . ) are combined in various ways on successive layers. From a practical point of view,
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this means that, in order to carry its traffic on some layer, the network may need to use a lower-
level technology. Then several layers can be piled up in order to have an operational network
offering a variety of services. The advantage of this is that each technology can be used for its most
favorable features. Moreover, each technology is characterized by a certain range of traffic rates.
The drawback, however, is that each technology, and hence each layer, manages its own routing
control scheme independently from the others, and addresses its own survivability issues.

The capacities of a given layer correspond to the (worst-case) traffic demands that must be routed
on the layer just below. The process of determining the capacities to install on the different layers
of a network, usually called dimensioning, often reduces to a succession of multicommodity flow
problems. Usually there is an empirical relation between these problems, and the whole dimensioning
problem is never treated in an optimal way. As a consequence, in a network design problem, reliability
is considered layer by layer without tackling the redondancy and the non-optimality yielded by
the multilayer structure. Moreover, a failure in the network can be handled by several successive
layers. This results in a potential huge global over-provisioning of ressources, each layer protecting
in turn the ones above. However the relation between technologies used in the different layers is
usually complex, and does not permit to efficiently correlate the control of the successive layers. In
consequence, the solution provided for this multilayer survivability problem usually consists of an
over protection of the whole network. But this may be very costly and sometimes not efficient.

The introduction of new protocols in telecommunication (like GMPLS) [44] gives a new trend
for multilayer data networks. This new system provides a common signaling and routing framework
between the different layers, and it does not restrict the way these layers work together. This
evolution is yielding new survivability issues in multilayer networks. In [43], Voge studies different
problems about the multilayer telecommunication networks based on MPLS and GMPLS.

In this paper we introduce a multilayer capacitated survivable network design problem that
may be of practical interest for the design and the dimensioning of IP-over-optical networks. These
networks, based on the GMPLS technology, consist of two layers, the IP (service, client) layer and
the optical (transport) layer. We give mixed integer programming formulations for this problem and
discuss Branch-and-Cut and Branch-and-Cut-and-Price algorithms.

Survivability and dimensioning have already been studied in the literature for multilayer net-
works. In particular, heuristic approaches have been proposed. In [18, 19], Gouveia and Patrício
study the design of MPLS-over-WDM networks. They address the dimensioning subject to some
path constraints in the WDM layer and hop constraints in the MPLS layer. They give an inte-
ger programming formulation and devise a heuristic technique based on that formulation. In [39],
Ricciato et al. consider the problem of off-line configuration of MPLS-over-WDM networks under
time-varying offered traffic. They present a mixed integer programming formulation for the problem
and discuss heuristic approaches. There are also some recent works carried out on two-layered net-
work design with or without dimensioning. In [34], Orlowsky and Wessäly describe a general integer
linear programming model for the design of multi-layer telecommunication network de sign problem
which integrates hardware, capacity, routing and grooming decisions. They give also a sketch of an
algorithmic approach. Orlowski et al. [33] develop three primal heuristics to be called in a Branch-
and-Cut algorithm to solve the problem with two layers. Knippel and Lardeux [27] study heuristic
and exact algorithms based on metric inequalities for a multilayer design problem (see also [28]).

The first major survivability requirement used in telecommunications networks is the so-called
2-connectivity. That is there must exist at least two edge-disjoint paths between every pair of nodes
in the network. This implies that the network remains connected in the event of any single edge
failure. The problem of finding a minimum cost 2-edge connected subgraph has been extensively
investigated in the past decade [3, 20, 25, 26, 32, 41].

Most of research on the design of networks concentrates on uncapacitated networks where each
link can support all the traffic at once. However, for many telecommunication networks, capacities
play a fundamental role. Nevertheless several problems with capacity loading have been studied. In
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[13] Dahl and Stoer present a cutting plane approach for solving the MULTIcommodity SUrvivable
Network design problem (MULTISUN problem). This consists, given point-to-point traffic demands
in a network, in finding minimum cost capacities that permit the routing of the given demands.
The possible capacity choices on each edge give rise to a discrete cost function. Another problem
called the Network Loading Problem (NLP) plays a central role in the design of telecommunication
networks. It is a special case of the MULTISUN problem. For the NLP, a single type of capacitated
facility is considered, and each link can be assigned one or several facilities in such a way that
the network can carry given point-to-point demands at minimum cost. Barahona [4] studies this
problem in the both nonbifurcated and bifurcated cases that is when the flow of each commodity
is carried by a single path or when it could use several paths. He proposes a separation algorithm
for the so-called cut inequalities, which seem to play a central role for solving the problem. In [30]
Magnanti et al. study the polyhedral structure of two core subproblems of the NLP. And in [31] they
discuss a further problem, called the Two-Facility capacitated network Loading Problem (TFLP),
in which considers two types of capacities.

The paper is organised as follows. In the following section we discuss the IP-over-optical networks
and the interaction between the different layers. We present a multilayer survivable network design
problem with capacity constraint, called the multilayer capacitated survivable IP network design
problem. We describe two versions of this problem : with and without multiple edges. We give
mixed integer programming formulations for this problem. Section 3 presents the column generation
algorithm to solve a linear relaxation of the problem. In Section 4, we study the associated polytopes.
We identify a few classes of valid inequalities and describe conditions for theses inequalities to be
facet defining. In Section 5, we describe the Branch-and-Cut algorithms and Branch-and-Cut-and-
Price algorithms for the problem. Our computational results are presented and discussed in Section
6. In Section 7, we give some concluding remarks.

2 The Multilayer Capacitated Survivable IP Network Design Pro-

blem

2.1 Multilayer telecommunication networks

Telecommunication networks are now moving toward a model of high-speed routers interconnec-
ted by intelligent optical core networks. Moreover, there is a general consensus that the control plan
of the optical networks should utilize IP-based protocols for dynamic provisioning and restoration
of lightpaths [9, 24, 35, 36, 37].

The optical network consists of multiple switches (also called Optical Cross-Connects (OXC))
interconnected by optical links. The IP and optical networks communicate through logical control
interfaces called User-Network-Interfaces (UNI). The optical network essentially provides point-to-
point connectivity between routers in the form of fixed bandwidth lightpaths. These lightpaths
define the topology of the IP network.

Each router in the IP network is connected to at least one of the optical switches. Moreover
to each link between two routers in the IP network corresponds a routing path in the optical one
between two switches corresponding to these routers. Figure 1 shows an IP-over-optical network.
The IP network has four routers R1, . . . , R4 and the optical network has seven switches S1, . . . , S7.
Only the optical switches S1, . . . , S4 communicate with one router throught the UNI.

The introduction of this new infrastructure of telecommunication networks gives rise to survi-
vability issues. For example consider the IP-over-optical network given in Figure 1. Suppose that
the link R1 − R2 of the IP network corresponds to the optical path S1 − S2, and the link R1 −R3

corresponds to the path S1 − S2 − S6 − S3. Here, the network is not survivable to single link fai-
lures. For instance, if the optical link S1 − S2 fails, then the links in the IP network R1 − R2 and
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Fig. 1 – An IP-over-optical network

R1 − R3 are cut, and therefore the router R1 is no more connected to the rest of the routers. As
a consequence, survivability strategies have to be considered. If the transport network is fixed, one
has to determine the suitable client network topology for the network to be survivable.

In addition to the survivability aspect, we may need to install capacities on the IP network
in order to route commodities between some routers. In this paper we shall be concerned by this
problem which considers simultaneously both the survivability and the dimensioning of the IP
network when the transport network is fixed.

2.2 The problem

The first major survivability requirement used in telecommunication networks is the 2-connectivity.
That is there must exist at least two edge-disjoint paths between every pair of nodes in the network.
This assumption, that only one edge may fail at a time, is based on the naive idea that the links
in the network are independent and no equipment can be commonly used by two distinct links.
However, this is not the case, for instance, for the IP-over-optical networks, when the optical layer
is taken into account in the management of the IP network.

In fact, any edge of the client network is supported by a path in the optical network (lightpaths).
That is the traffic of an edge in the client network is routed in the optical network along the path
corresponding to that edge. Therefore an edge of the optical network may appear in several paths
supporting distinct edges. In consequence, the failure of an edge in the optical network may affect
several optical paths, and hence the edges of the client network corresponding to these paths. As
a result, several edges may fail at the same time in the IP layer (such a group of links is usually
refered to as a Shared Risk Link Group, or SRLG).

The multilayer survivable IP network design problem (MSIPND problem) introduced by Borne
et al. [7] consists in finding the set of links to be installed in the IP network so that if a failure occurs
on an optical link, the IP subnetwork obtained by removing the corresponding edges is connected.

In our problem, we can install capacities of 2.5 Gbits or 10 Gbits on any link of the IP network.
Usually, the installed capacities have to be symmetric. Hence, we consider that each time a certain
capacity is installed from a router R1 to a router R2, one has to install the same capacity from R2

to R1. Figure 2 shows the eligible and the forbidded situations.

Consequently, a more realistic model which has to be investigated, would consist in setting up
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Fig. 2 – Symmetric capacities

capacities with a minimum cost to the client network that allows a multicommodity flow which
respects the capacities for any simple edge failure in the transport network.

In this paper we consider this problem. More precisely, we consider the overlay model where the
IP and the optical networks are separated. We suppose that the topology and the routing of the
optical network are fixed and satisfy some survivability requirements. We also suppose that a set of
IP routers (resp. optical switches) is given as well as the possible links between the routers (resp.
switches). As the routing of the optical network is known, one can determine for each optical link
e, the set of edges of the IP network that may be affected if e is cut. If a certain cost is associated
with each type of capacity on each edge of the IP network, the Multilayer Capacitated Survivable IP
Network Design problem (MCSIPND problem) is to find the minimum cost set of links to be installed
in the IP network and facilities to be loaded on theses links so that if a failure occurs on an optical
link, the IP subnetwork obtained by removing the corresponding edges allows a multicommodity f
low which satisfies the capacities.

(a)

R2R1

R2R1

R2R1

(b)

or

Fig. 3 – Two variants of the problem

We consider two variants of the problem : the multiple MCSIPND (denoted by MCSIPNDm)
which allows multiple links, and the simple MCSIPND (denoted by MCSIPNDs) where only one
link of one type of capacity can be loaded between two routers. Figure 3 illustrates the two possi-
bilities of installing capacities. The orientation of the links between the routers is omitted because
the capacities are symmetric. A capacity installed in the two directions between two routers is re-
presented by a cylinder (a small one for capacity 2.5 Gbits and a big one for 10 Gbits). Figure 3(a)
corresponds to the multiple case and figure 3(b) to the simple one.

In what follows we give mixed integer programming formulations for the MCSIPND problem.
To this end, we first introduce some definitions and notations.

2.3 Definitions and notation

We denote a graph by G = (V,E) where V is the node set and E the edge set of G. If e ∈ E
is an edge between two nodes u and v, then we also write e = uv to denote e. We denote also by
D = (V,A) the bidirected graph associated with G such that each edge e = uv ∈ E is replaced by
two arcs (u, v) and (v, u), respectively from u to v and from v to u, in the arc set A of D. For an
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edge subset F ⊆ E we denote by ~F ⊆ A the associated arc subset. For F ⊆ E we let G\F denote
the subgraph of G obtained by removing the edges of F and D\~F the associated subgraph obtain
from D by removing the arcs of ~F . Throughout the paper we will consider simple graphs.

Let G = (V,E) be an undirected graph. Given W ⊆ V , we denote by δG(W ) the set of edges of
G having exactly one node in W . The edge set δG(W ) is called a cut. A subset F ⊆ E of G is called
an edge cutset if F is a cut. For W ⊆ V , we denote by G(W ) the subgraph of G induced by W . If
W ⊂ V , W denotes V \W . If U and W are two node subsets such that U ∩W = ∅, then we denote
by [U,W ] the set of edges having one node in U and the other in W . If V1, . . . , Vp is a partition of
V , we let δG(V1, . . . , Vp) denote the set of edges of G between the elements of the partition.

Given a graph G = (V,E), a path P in G = (V,E) is an alternate sequence of nodes and edges
(v1, e1, v2, e2, . . . , vp, ep, vp+1) such that ei = vivi+1 for i = 1, . . . , p and vi 6= vj for i = 1, . . . , p+ 1,
j = 1, . . . , p + 1. Nodes v1, vp+1 are the extremities of P and we will say that P goes from v1 to
vp+1 or P is between v1 and vp+1.

Given a vector x ∈ IRE and F ⊆ E, we let x(F ) =
∑

e∈F x(e).

G1

G2

e

f

Pf Pe

v1

v4v2

v3

w3

w2

w1

w4

Fig. 4 – Graphs of an IP-over-optical network

Throughout the paper, given an IP-over-optical network, we suppose that to each router of the
IP layer corresponds exactly one optical switch. We will represent an IP-over-optical network by two
graphs G1 = (V 1, E1) and G2 = (V 2, E2), that represent the IP and optical networks, respectively.
The nodes of G1 (resp. G2) correspond to the routers of the IP layer (resp. the optical switches),
and the edges represent the possible links between the routers (resp. switches). A chaque sommet
vi ∈ V 1 est associé un sommet wi ∈ V 2. For an edge f ∈ E1, we denote by Pf the path in G2

corresponding to f . Figure 4 shows graphs G1 and G2 corresponding to the IP-over-optical network
of Figure 1. In G2, are indicated two paths Pe and Pf which correspond to the edges e and f of G1.

2.4 Formulations

In terms of graphs, the MCSIPND problem, for both multiple and simple variants, can be
presented as follows.

For an edge e of graph G2 = (V 2, E2) corresponding to the optical network, let Fe be the set
of edges of the IP network that may be affected by a failure of e, that is Fe = {f ∈ E1 | e ∈ Pf}.
We let F = {Fe, e ∈ E2}. Also we denote by D1 the directed graph associated with G1 and
~F = { ~Fe | Fe ∈ F}. We denote by K the set of commodities. For each k ∈ K, we know the origin
ok, the destination dk and the amount ωk of the demand k.

Let µ1 = 2.5 Gbit/s and µ2 = 10 Gbit/s be the possible facilities. For each ij ∈ E1, let clij be
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the cost of installing a capacity µl on ij for l = 1, 2. Then, the MCSIPNDm problem consists in
finding a minimum cost subgraph H of G1 such that for every edge e ∈ E2, the graph obtained from
H by removing the edges of Fe has enough capacity to route the commodities of K with respect to
the capacity of the remaining edges.

In what follows we give two different formulations for the MCSIPND problem : the node-arc
or conventional formulation and the path or column-generation formulation. A survey of linear
multicommodity flow models and solution procedures is presented in [2].

2.4.1 Node-arc formulation

In order to give a node-arc formulation for the MCSIPND problem, let us denote by fk,euv for an
arc (u, v) ∈ A1, an edge e ∈ E2 and a commodity k ∈ K, the flow of k on (u, v) from u to v in case
of failure of e (i.e. when the arcs of ~Fe are removed in D1). For an edge uv ∈ E1 let xluv be the
number of facilities µl installed on uv, for l = 1, 2. Set

bvk =







−ωk if v = ok,

0 if v 6= ok, dk,

ωk si v = dk,

for all v ∈ V 1, for all k ∈ K.

Hence the multiple MCSIPND problem is equivalent to the following integer programming pro-
blem.

Minimize
∑

l=1,2

∑

uv∈E1

cluvx
l
uv

∑

u:(u,v)∈A1\~Fe

fk,euv −
∑

u:(v,u)∈A1\~Fe

fk,evu = bvk for all v ∈ V 1, for all k ∈ K, for all e ∈ E2, (1)

∑

k∈K

fk,euv ≤
∑

l=1,2

µlxluv for all uv ∈ E1, for all e ∈ E2, (2)

∑

k∈K

fk,evu ≤
∑

l=1,2

µlxluv for all uv ∈ E1, for all e ∈ E2, (3)

xluv ≥ 0 and integer for all uv ∈ E1, l = 1, 2, (4)

fk,euv , f
k,e
vu ≥ 0 for all uv ∈ E1, for all k ∈ K, for all e ∈ E2. (5)

Inequalities (1) are called flow conservation constraints. Inequalities (2) and (3) express the fact
that the sum of the flows of all commodities k ∈ K on an edge has to be less than or equal to the
capacity of this edge. They will be called capacity constraints. Inequalities (4) and (5) are called
trivial inequalities.

By adding the following inequalities

x1
uv + x2

uv ≤ 1 for all uv ∈ E1, (6)

and by replacing inequalities (4) by

xluv ∈ {0, 1} for all uv ∈ E1, l = 1, 2, (7)

we obtain a valid formulation for the simple MCSIPND problem.

Inequalities (6) express the fact that only one link can be used between two given nodes. Then
we have only one type of capacity on an edge. Constraints (7) are the integrality constraints that
express the fact that xluv = 1 if capacity µl, l = 1, 2, is installed on uv and 0 otherwise.
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Note that the following inequalities

fk,euv + fk,evu ≤ ωk for all u, v ∈ V 1, for all k ∈ K, for all e ∈ E2, (8)

are valid for the MCSIPND problem. They are called bound inequalities.

The Arc Residual Capacity inequalities have been introduced in [30] for the Network Loading
Problem and used for the Two-Facility capacitated network loading Problem [31]. In the following
we extend these inequalities for our problem.

Theorem 2.1 Let L ⊆ K. Set

QL =

∑

k∈L ωk

2.5
, σL =

⌈

QL

4

⌉

and sL =

{

4 if QL mod 4 = 0,
QL mod 4 otherwise.

Then we have QL = 4(σL − 1) + sL.
Let u, v ∈ V 1 and e ∈ E2, then inequality

1

2.5

∑

k∈L

(fk,euv + fk,evu )− 2x1
uv − sL × 2x2

uv ≤ (σL − 1)(4 − sL) (9)

is valid for the polytope associated with the MCSIPND problem.

Proof. Inequality (9) can be written as

1

2.5

∑

k∈L

(fk,euv + fk,evu ) ≤ QL − sL(σL − 2x2
uv) + 2x1

uv

for L ⊆ K, u, v ∈ V 1 and e ∈ E2 because (σL − 1)(4 − sL) = QL − σLsL.
– If 2x2

uv ≥ σL then QL − sL(σL − 2x2
uv) + 2x1

uv ≥ QL.
We know that inequalities (8) are valid for the problem. By summing these inequalities, we
obtain

∑

k∈L

(fk,euv + fk,evu ) ≤
∑

k∈L

ωk.

Then

1

2.5

∑

k∈L

(fk,euv + fk,evu ) ≤ QL,

which implies that inequality (9) is valid.
– If 2x2

uv ≤ σL − 1, then
QL − sL(σL − 2x2

uv) + 2x1
uv

= 4(σL − 1) + sL − sL(σL − 2x2
uv) + 2x1

uv

= 4(σL − 1) + sL(2x2
uv − (σL − 1)) + 2x1

uv.
Let sL = 4− t with 0 ≤ t < 4, we obtain
QL − sL(σL − 2x2

uv) + 2x1
uv

= 4(σL − 1) + (4− t)(2x2
uv − (σL − 1)) + 2x1

uv

= 8x2
uv + 2x1

uv + t(−2x2
uv + (σL − 1)).

Then

QL − sL(σL − 2x2
uv) + 2x1

uv ≥ 8x2
uv + 2x1

uv, (10)

because t ≥ 0 and 2x2
uv ≤ σL − 1. As

∑

k∈K

fk,euv ≤ 2.5x1
uv + 10x2

uv and
∑

k∈K

fk,evu ≤ 2.5x1
uv + 10x2

uv,

8



then 1
2.5

∑

k∈K(fk,euv + f
k,e
vu ) ≤ 2x1

uv + 8x2
uv , and hence

1

2.5

∑

k∈L

(fk,euv + fk,evu ) ≤ 2x1
uv + 8x2

uv. (11)

By (10) and (11), it follows that inequality (9) is valid.
�

2.4.2 Path formulation

As in the node-arc formulation, for an edge uv ∈ E1 we denote by xluv the number of facilities
µl installed on uv for l = 1, 2. For an edge e ∈ E2 and a commodity k we denote by Pek the set of

paths from ok to dk in the graph D1\~Fe (i.e. when the edge e ∈ E2 fails). For a path P of Pek, let
yek(P ) be the amount of flow of commodity k on P in case of faillure of e. Set

τuv(P ) =

{

1 if the arc (u, v) belongs to P,
0 otherwise,

for all u, v ∈ V . Hence we notice that for all u, v ∈ V , k ∈ K, and e ∈ E2,

fk,euv =
∑

P∈Pe
k

τuv(P )yek(P ) =
∑

P∈Pe
k
| (u,v)∈P

yek(P ).

By substituting the path variables in the node-arc formulation, we obtain the following mixed
integer programming formulation which is valid for the multiple MCSIPND problem.

Minimiser
∑

l=1,2

∑

uv∈E1

cluvx
l
uv

∑

P∈Pe
k

yek(P ) = ωk for all k ∈ K, for all e ∈ E2, (12)

∑

k∈K

∑

P∈Pe
k
| (u,v)∈P

yek(P ) ≤
∑

l=1,2

µlxluv for all uv ∈ E1, for all e ∈ E2, (13)

∑

k∈K

∑

P∈Pe
k
| (v,u)∈P

yek(P ) ≤
∑

l=1,2

µlxluv for all uv ∈ E1, for all e ∈ E2, (14)

yek(P ) ≥ 0 for all e ∈ E2, for all k ∈ K, for all P ∈ P
e
k, (15)

xluv ≥ 0 and integer for all uv ∈ E1, l = 1, 2. (16)

This formulation has a collection of |K| demand constraints (12) that represent the flow of each
path P in Pek, k ∈ K for each failure e ∈ E2 and (

∑

P∈Pe
k
yek(P ) represents the amount of flow

of commodity k passing through the set of paths from ok to dk). This flow has to be equal to the
amount ωk between ok and dk. Inequalities (13) and (14) are called capacity constraints. The flow
through the edge uv has to be less than the capacity of this edge from u to v (constraints (13)) and
from v to u (constraints (14)). Inequalities (15) and (16) are the trivial constraints.

By adding inequalities (6) and replacing inequalities (16) by inequalities (7), we obtain a valid
formulation for the simple MCSIPND problem.

The linear relaxation of the node-arc MCSIPND formulation contains a large number of constraints
and a large number of variables. The linear relaxation of the path formulation, however, contains a
moderate number of constraints (for each failure, one for each commodity and one for each arc) and
a huge number of variables (one for each path for each commodity for each failure). These linear
relaxations may require excessive memory and times to solve. An appropriate method to solve this
second type of formulation would be the column generation approach. In the next section, we discuss
this approach.
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3 Column generation

Column generation will be used to solve the linear relaxation of the path based formulation
of the MCSIPND problem (called the master problem). This approach has been extensively used
for modeling and solving large versions of the linear multicommodity flow problem [2, 5, 29]. The
general idea of column generation is to solve a restricted linear program with a small number of
columns (variables) in order to determine an optimal solution for the master problem. In fact a
limited number of variables may induce an optimal basis solution for the master problem. So the
column generation algorithm solves the linear relaxation of the master problem by solving the
linear relaxations of several restricted master problems. After determining the solution of the linear
relaxation of a restricted master problem, we use the pricing problem which consists in finding
whether there are any columns not yet in the restricted master problem with negative red uced
cost. If none can be found, the current solution is optimal for the linear relaxation of the master
problem. However, if one or more such columns do exist, then they are added to the restricted
master problem and the process is repeated. This approach could be combined with row generation
to obtain a very strong method to solve the linear relaxations (see [6]).

3.1 Initial Solution

To start the column generation scheme, an initial restricted master problem has to be provided.
This initial problem must have a feasible solution to ensure that correct information is passed to
the pricing problem.

For the version of the MCSIPND problem with multiple edges (MCSIPNDm problem), finding an
initial feasible solution is very easy. Indeed we look for shortest paths between the origin-destinations
of all commodities. These paths are then used to carry the flow for each commodity. As we can
install as much capacity as we want, this multicommodity flow is feasible.

For the MCSIPNDs problem, we consider the following linear program obtained from the path
based formulation by setting x1

uv = 0 and x2
uv = 1 for all edge uv ∈ E1, that is to say by fiwing a

capacity of 10 Gbits for each edge. We also consider a new variable ε.

Minimiser ε

∑

P∈Pe
k

yek(P ) = ωk for all k ∈ K, for all e ∈ E2, (17)

∑

k∈K

∑

P∈Pe
k
| (u,v)∈P

yek(P ) ≤ µ2 + ε for all (u, v) ∈ A1, for all e ∈ E2, (18)

yek(P ) ≥ 0 for all e ∈ E2, for all k ∈ K, for all P ∈ P
e
k, (19)

ε ≥ 0. (20)

At the optimum, variable ε corresponds to the minimum amount of capacity we must add to
each edge in order to allow a multicommodity flow. We solve this linear program using a column
generation algorithm similar to the algorithm used to solve the MCSIPNDm problem. If the optimal
solution for this linear program imposes that ε > 0, we conclude that the MCSIPNDs problem has
no solution. On the other hand, if ε = 0, the set of variables used in the column generation permits
to have an initial feasible solution for the restricted master problem.

When defining the initial restricted master problem, it is necessary to ensure the existence of a
feasible solution. Finding a "good" initial restricted master problem could be important. Indeed this
would permit to determine the initial dual variables which will be passed to the pricing problem.
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3.2 Pricing problem

For any restricted master problem, let γek, ϑ
e
(u,v) and ϑe(v,u) be the dual variables associated

with constraints (12), (13) and (14), respectively. The reduced cost associated with the variable

of a path P ∈ Pek is Rk,eP =
∑

(u,v)∈P ϑ
e
(u,v) − γek. The pricing problem can then be reduced to

the search of several shortest path problem with non-negative costs. Indeed the princing problem
consist in finding for each commodity k ∈ K and each edge e ∈ E2, a path P in Pek such that

R
k,e
P = minP ′∈Pe

k
R
k,e
P ′ and R

k,e
P < 0. Therefore, we can identify columns which have to be added

to the restricted master problem by solving one shortest path problem for each commodity k ∈ K
and each edge e ∈ E2 in the graph with arc costs equal to ϑe(u,v) for each (u, v) ∈ A1\~Fe. If one or
more paths have non-positive reduced cost, then they are added in the restricted master problem.
Otherwise, the master problem has been solved to optimality.

Combining column and row generation can yield a very strong linear relaxation. In the next
section, we describe some valid inequalities. These will be used as cutting planes in our Branch-
and-Cut-and-Price algorithm for the two variants of the problem. We introduce some inequalities
which are valid for the problem with or without multiple edges.

4 Valid inequalities and facets

Throughout the following sections we consider a graph G = (V,E) and the associated digraph
D = (V,A) obtained from G by substituting each edge of E by two arcs. We consider also a family
F = {F1, . . . , Ft} ⊆ 2E , t ≥ 2 of edge subsets of E and the family ~F = {~F1, . . . , ~Ft} ⊆ 2A of arc
subsets associated with F. Let K be a set of demands. For an arc (u, v) ∈ A, a commodity k ∈ K

and i ∈ {1, . . . , t}, let us denote by fk,iuv the flow of k on (u, v) from u to v when the arcs of ~Fi are
removed in D1. For i ∈ {1, . . . , t}, we will denote by Gi = (V,Ei) (resp. Di = (V,Ai)) the subgraph
of G (resp. D) obtained by removing the edges of Fi (resp. ~Fi). Hence Ei = E\Fi (resp. Ai = A\~Fi).
In the following we consider µ1 = 2.5 and µ2 = 10.

Now, consider the following inequalities :
∑

u:(u,v)∈A\~Fi

fk,iuv −
∑

u:(v,u)∈A\~Fi

fk,ivu = bvk for all v ∈ V, for all k ∈ K, i = 1, . . . , t, (21)

∑

k∈K

fk,iuv ≤ 2.5x1
uv + 10x2

uv for all uv ∈ E, i = 1, . . . , t, (22)

∑

k∈K

fk,ivu ≤ 2.5x1
uv + 10x2

uv for all uv ∈ E, i = 1, . . . , t, (23)

xluv ≥ 0 for all uv ∈ E, l = 1, 2, (24)

fk,iuv , f
k,i
vu ≥ 0 for all uv ∈ E, for all k ∈ K, i = 1, . . . , t, (25)

x1
uv + x2

uv ≤ 1 for all uv ∈ E. (26)

Let MCSIPNDna
m (G,F,K) and MCSIPNDna

s (G,F,K) be the polytopes associated with the
MCSIPNDm problem and the MCSIPNDs problem (when G = G1 and F = {Fe, e ∈ E

2}), i.e.

MCSIPNDna
m (G,F,K) = {(x, f) ∈ D

na
m | x and f satisfy (21)-(25)},

MCSIPNDna
s (G,F,K) = {(x, f) ∈ D

na
s | x and f satisfy (21)-(26)}

with
D
na
m = {x ∈ IN2|E|, f ∈ IR2|E|×|K|×|F|}

and
D
na
s = {x ∈ {0, 1}2|E|, f ∈ IR2|E|×|K|×|F|}.
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Let Pik be the set of paths between ok and dk in the graph D\~Fi for i ∈ {1, . . . , t}. Let
MCSIPNDp

m(G,F,K) denote the convex hull of the integer solutions of the system

∑

P∈Pi
k

yik(P ) = ωk for all k ∈ K, i = 1, . . . , t, (27)

∑

k∈K

∑

P∈Pi
k
| (u,v)∈P

yik(P ) ≤ 2.5x1
uv + 10x2

uv for all uv ∈ E, i = 1, . . . , t, (28)

∑

k∈K

∑

P∈Pi
k
| (v,u)∈P

yik(P ) ≤ 2.5x1
uv + 10x2

uv for all uv ∈ E, i = 1, . . . , t, (29)

xluv ≥ 0 for all uv ∈ E, l = 1, 2, (30)

yik(P ) ≥ 0 for all k ∈ K, i = 1, . . . , t, for all P ∈ P
i
k. (31)

By adding constraints (26) to MCSIPNDp
m(G,F,K), we obtained MCSIPNDp

s(G,F,K).

We can remark that if G = G1 and F = {Fe, e ∈ E2}, MCSIPNDp
m(G,F,K) (resp.

MCSIPNDp
s(G,F,K)) is nothing but the polytope associated with the MCSIPNDm (resp. MCSIPNDs)

problem.

If no confusion may arise, we will sometimes write MCSIPNDm(G,F,K) for the two polytopes
MCSIPNDna

m (G,F,K) and MCSIPNDp
m(G,F,K). Similarly the polytope MCSIPNDs(G,F,K) will

correspond indifferently to the polytopes MCSIPNDna
s (G,F,K) and MCSIPNDp

s(G,F,K).

The following theorem gives the dimension of the polytope MCSIPNDna
m (G,F,K).

Theorem 4.1 dim(MCSIPNDna
m (G,F,K)) = 2|E|+ 2|F| × |K| − (|N | − 1)|F| × |K|.

Proof. The node-arc formulation of the MCSIPNDm problem contains 2|E| + 2|F| × |E| × |K|
variables and (|N | − 1)|F| × |K| nonredondant equality constraints. Hence
dim(MCSIPNDna

m (G,F,K)) ≤ 2|E| + 2|F| × |E| × |K| − (|N | − 1)|F| × |K|.
The proof of dim(MCSIPNDna

m (G,F,K)) ≥ 2|E| + 2|F| × |E| × |K| − (|N | − 1)|F| × |K| uses
arguments similar to those used in theorem 4.9 and we, therefore, omit it. �

In the following, we introduce several classes of valid inequalities. We also give necessary condi-
tions and sufficient conditions for one of these inequalities to be facet defining. We assume that the
reader is familiar with polyhedral combinatorics, for more details see [40].

As in [7], a subgraph H = (W,F ) of G = (V,E) is said to be F-connected with respect to
F = {F1, . . . , Ft} if for all i ∈ {1, . . . , t}, the graph H\Fi is connected.

4.1 Cut inequalities

For W ⊆ V , we denote by γ+(W ) ⊆ K (resp. γ−(W ) ⊆ K) the set of demands which have
their origin (resp. destination) in W and their destination (resp. origin) in V \W . We denote also
by γ(W ) the set γ+(W ) ∪ γ−(W ).

Theorem 4.2 Let Fi ∈ F be an edge subset of E and W ⊆ V , ∅ 6= W 6= V such that γ(W ) 6= ∅.
Then the inequality

x1(δGi
(W )) + x2(δGi

(W )) ≥ 1 (32)

is valid for MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

Proof. Trivial. �
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Inequalities of type (32) will be called design cut inequalities. Theses inequalities express the
fact that the graph G keeps connectivity between the origin and the destination of each demand
after removing the edges of Fi, for all Fi ∈ F.

Given a set of nodes W ⊆ V , ∅ 6= W 6= V , let

DW =

⌈

max

{
∑

k∈γ+(W ) ωk

2.5
,

∑

k∈γ−(W ) ωk

2.5

}⌉

.

Let Fi ∈ F be an edge subset of E and W ⊆ V , ∅ 6= W 6= V . Consider the inequality

x1(δGi
(W )) + 4x2(δGi

(W )) ≥ DW . (33)

We have the following.

Theorem 4.3 Inequality (33) is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

Proof. The aggregate capacity across δGi
(W ) must be no less than the demand across the cut

from W to V \W and from V \W to W . Thus one should have

2.5x1(δGi
(W )) + 10x2(δGi

(W )) ≥ max







∑

k∈γ+(W )

ωk,
∑

k∈γ−(W )

ωk







.

Dividing by 2.5 and rounding up the right hand side yields (33). �

Before introducing the next class of inequalities, we give a lemma.

Lemma 4.4 Let Fi ∈ F be an edge subset of E and W ⊆ V , ∅ 6= W 6= V . Then inequality

x1(δGi
(W )) + 2x2(δGi

(W )) ≥

⌈

DW

2

⌉

(34)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

Proof. The following inequalities are valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K),

x1(δGi
(W ) + 4x2(δGi

(W )) ≥ DW ,

x1
uv ≥ 0 for all uv ∈ δGi

(W ).

By summing these inequalities, we obtain

2x1(δGi
(W )) + 4x2(δGi

(W )) ≥ DW .

Dividing by 2 and rounding up the right hand side yields inequality (34). �

Theorem 4.5 Let Fi ∈ F be an edge subset of E and W ⊆ V , ∅ 6= W 6= V . Then inequality

x1(δGi
(W )) + x2(δGi

(W )) ≥

⌈

DW

4

⌉

(35)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).
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Proof. By adding the inequalities

x1
uv ≥ 0 for all uv ∈ δGi

(W ).

to inequality (34), we get

2x1(δGi
(W )) + 2x2(δGi

(W )) ≥

⌈

DW

2

⌉

.

Dividing by 2 and rounding up the right hand side yields

x1(δGi
(W )) + x2(δGi

(W )) ≥









⌈

DW

2

⌉

2









.

As

⌈
l

DW
2

m

2

⌉

=
⌈

DW

4

⌉

, we get inequality (35). �

Theorem 4.6 Let Fi ∈ F be an edge subset of E and W ⊆ V , ∅ 6= W 6= V . Then inequality

x1(δGi
(W )) + 3x2(δGi

(W )) ≥

⌈

3DW

4

⌉

(36)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

Proof. The following inequalities are valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K),

x1(δGi
(W )) + 4x2(δGi

(W )) ≥ DW

x1(δGi
(W )) + 2x2(δGi

(W )) ≥

⌈

DW

2

⌉

By summing these inequalities we obtain

2x1(δGi
(W )) + 6x2(δGi

(W )) ≥ DW +

⌈

DW

2

⌉

.

Dividing by 2 and rounding up the right hand side yields

x1(δGi
(W )) + 3x2(δGi

(W )) ≥









⌈

3DW

2

⌉

2









.

As

⌈
l

3DW
2

m

2

⌉

=
⌈

3DW

4

⌉

, we get inequality (36). �

Theorem 4.7 Let Fi ∈ F be an edge subset of E and W ⊆ V , ∅ 6= W 6= V . Then inequality

x1(δGi
(W )) + 2x2(δGi

(W )) ≥















⌈

DW

2

⌉

+ 1 if DW mod 4 = 2,

⌈

DW

2

⌉

otherwise ,

(37)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).
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Proof. The following inequalities are valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K),

x1(δGi
(W )) + x2(δGi

(W )) ≥

⌈

DW

4

⌉

,

x1(δGi
(W )) + 3x2(δGi

(W )) ≥

⌈

3DW

4

⌉

.

By summing these inequalities we obtain

2x1(δGi
(W )) + 4x2(δGi

(W )) ≥

⌈

DW

4

⌉

+

⌈

3DW

4

⌉

.

By dividing by 2 and rounding up the right hand side, we get the inequality

x1(δGi
(W )) + 2x2(δGi

(W )) ≥









⌈

3DW

4

⌉

+
⌈

DW

4

⌉

2









.

As

⌈
l

3DW
4

m

+
l

DW
4

m

2

⌉

=















⌈

DW

2

⌉

+ 1 if DW mod 4 = 2,

⌈

DW

2

⌉

otherwise ,

the theorem follows. �

Inequalities (33), (35), (36), (37) will be called capacity demand cut inequalities.

One may generate further cut based valid inequalities by combining inequalities of type (33),
(35), (36), (37) and trivial inequalities. However all inequalities obtained this way are redundant
with respect to the capacity demand cut inequalities (see [8]).

In the following, we give necessary conditions and sufficient conditions for inequality (33) to be
facet defining for MCSIPNDna

m (G,F,K).

Theorem 4.8 Inequality (33) defines a facet of MCSIPNDna
m (G,F,K) only if

1. Gi(W ) and Gi(W ) are connected,

2. there is no j ∈ {1, . . . , t}\{i} such that Fi ∩ δG(W ) ⊂ Fj ∩ δG(W ),

3. G(W ) and G(W ) are F-connected, if δG(W ) ∩ Fi = ∅,

4. DW > max

{

P

k∈γ+(W ) ωk

2.5 ,

P

k∈γ−(W ) ωk

2.5

}

,

5. DW ≥ 4.

Proof. 1. Suppose w.l.o.g., that Gi(W ) is not connected. Hence there is a partition W1, W2

of W such that δGi
(W1,W2) = ∅ (see Fig. 5). Thus δGi

(W1) = δGi
(W1,W ) and δGi

(W2) =
δGi

(W2,W ).

W2

W W

W1

Gi

Fig. 5 –
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This implies that

x1(δGi
(W )) + 4x2(δGi

(W ))

= x1(δGi
(W1,W )) + 4x2(δGi

(W1,W )) + x1(δGi
(W2,W )) + 4x2(δGi

(W2,W ))

= x1(δGi
(W1)) + 4x2(δGi

(W1)) + x1(δGi
(W2)) + 4x2(δGi

(W2))

≥ DW1 +DW2 .

The last inequality is obtain from the inequalities of type (33) corresponding to W1 and W2.
As DW1 + DW2 ≥ DW , inequality (33) is then redundant with respect to these inequalities
and hence (33) can not be facet defining.

2. Assume the contrary. Let j ∈ {1, . . . , t}\{i} such that Fi ∩ δG(W ) ⊂ Fj ∩ δG(W ). Then (33)
can be obtained as the sum of the following valid constraints.

x1(δGj
(W )) + 4x2(δGj

(W )) ≥ DW ,

x1
uv ≥ 0 for all uv ∈ (Fj\Fi) ∩ δG(W ),

4x2
uv ≥ 0 for all uv ∈ (Fj\Fi) ∩ δG(W ).

Hence it is not facet defining.

3. Suppose δG(W ) ∩ Fi = ∅ and w.l.o.g., that G(W ) is not F-connected. Then there is j ∈
{1, . . . , t} such that Gj(W ) is not connected. If j = i, then by condition 1), (33) can not
define a facet. So suppose j 6= i. If δG(W ) ∩ Fj 6= ∅, then by condition 2), (33) can not also
define a facet. Then, suppose that δG(W ) ∩ Fj = ∅. Hence, δG(W ) = δGi

(W ) = δGj
(W ). As

Gj(W ) is not connected, there is a partition W1, W2 of W such that δGj
(W1,W2) = ∅. Hence

δGj
(W1) = δGj

(W1,W ) and δGj
(W2) = δGj

(W2,W ). This implies that

x1(δGi
(W )) + 4x2(δGi

(W ))

= x1(δGj
(W )) + 4x2(δGj

(W ))

= x1(δGj
(W1,W )) + 4x2(δGj

(W1,W )) + x1(δGj
(W2,W )) + 4x2(δGj

(W2,W ))

= x1(δGj
(W1)) + 4x2(δGj

(W1)) + x1(δGj
(W2)) + 4x2(δGj

(W2))

≥ DW1 +DW2 .

Since DW1 +DW2 ≥ DW , as before, inequality (33) cannot then define a facet.

4. If DW = max

{

P

k∈γ+(W ) ωk

2.5 ,

P

k∈γ−(W ) ωk

2.5

}

, then by Proposition ?? constraint (33) is redon-

dant with respect constraints (21)-(23), and do not then facet defining.

5. If DW < 4, then for every solution of MCSIPNDna
m that satisfies (33) with equality we have

x2(e) = 0 for all e ∈ δGi
(W ).

If |δGi
(W )| ≥ 2, then there are two edges e1, e2 ∈ δGi

(W ) such that x2(e1) = x2(e2) =
0 in every solution satisfying (33) with equality. But in this case, we can not construct
dim(MCSIPNDna

s (G,F,K)) solutions satisfying (33) with equality, and affinely independant.
This implies that (33) can not be facet defining.

So suppose that δGi
(W ) = {e = uv} with u ∈ W and v ∈ W . Then in every solution

satisfying (33) with equality, one should have

x1(e) = DW ,

x2(e) = 0.

Also, in every solution satisfying (33) with equality, one should have

fk,iuv =

{

ωk + εk if k ∈ γ+(W )
εk if k ∈ γ−(W )
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fk,ivu =

{

ωk + εk if k ∈ γ−(W )
εk if k ∈ γ+(W )

where εk, k ∈ γ(W ) are positive and sufficiently small. In fact, we can see that the variables
f are not involved in constraint (33). Furthermore, as by condition 4),

DW > max

{

P

k∈γ+(W ) ωk

2.5 ,

P

k∈γ−(W ) ωk

2.5

}

, the available capacity is yet more than the demand

across the cut. This gives the possibility to route a lightly upper flow. This explains the
addition of εk from u to v and from v to u.
Set the matrix whose columns correspond to solutions satisfying (33) with equality and the

lines are associated to x1(e), x2(e), the sum of variables fk,iuv for k ∈ γ(W ) and the sum of

variables fk,ivu for k ∈ γ(W ). We denote by p the number of solutions satisfying (33) with
equality. This matrix has the following form :

x1(e)
x2(e)

∑

k∈γ(W )

fk,iuv

∑

k∈γ(W )

fk,ivu



















DW · · · DW

0 · · · 0
∑

k∈γ+(W )

ωk +
∑

k∈γ(W )

εk1 · · ·
∑

k∈γ+(W )

ωk +
∑

k∈γ(W )

εkp

∑

k∈γ−(W )

ωk +
∑

k∈γ(W )

εk1 · · ·
∑

k∈γ−(W )

ωk +
∑

k∈γ(W )

εkp



















.

By substracting the fourth line from the third one, we get a line which is multiple of the
first one. As the second line is formed only by zeros, we can not get as many as necessary of
solution affinelly independant for (33) to be facet defining.

�

Theorem 4.9 Inequality (33) defines a facet of MCSIPNDna
m (G,F,K) if

1. condition 1), 2), 4), 5) of Theorem 4.8 are satisfied,

2. G(W ) and G(W ) are F-connected.

Proof. See Appendix. �

In [31], Magnanti et al. introduce cutset inequalities valid for the Two-Facility Capacitated
Network Loading Problem (TFLP). These can be easily extended to the MCSIPNDm and the
MCSIPNDs problems. The extended ones are special cases of the capacity demand cut inequalities.

Corollary 4.10 Let Fi ∈ F be an edge subset of E, W ⊆ V , ∅ 6= W 6= V , and let

rW =

{

4 if DW mod 4 = 0,
DW mod 4 otherwise.

Then the inequality

∑

e∈δGi
(W )

(x1
e + rWx

2
e) ≥ rW

⌈

DW

4

⌉

(38)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

Proof. – If rW = 1, inequality (38) is nothing but inequality (35).

– If rW = 2, as 2
⌈

DW

4

⌉

=
⌈

DW

2

⌉

+ 1, inequality (38) is nothing but inequality (37).

– If rW = 3, as 3
⌈

DW

4

⌉

=
⌈

3DW

4

⌉

, inequality (38) is nothing but inequality (36).

– If rW = 4, as 4
⌈

DW

4

⌉

= DW , inequality (38) is nothing but inequality (33).

�
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4.2 Saturation inequalities

In this section we introduce a further class of valid inequalities for only the polytope
MCSIPNDs(G,F,K). These inequalities are also induced by cuts. In these inequalities only the
x2 variables, associated with the links with big capacity (10Gbits), are involved. In fact, the idea
behind these inequalities is that if the demand can not be routed on the links of a cut with small
capacity (2.5 Gbits), then at least one big capacity must be installed on one of the links of the cut.

Theorem 4.11 Let Fi ∈ F and W ⊆ V , ∅ 6= W 6= V . Then inequality

x2(δGi
(W )) ≥









max
{

∑

k∈γ+(W ) ωk,
∑

k∈γ−(W ) ωk

}

− |δGi
(W )| × 2.5

7.5









(39)

is valid for MCSIPNDs(G,F,K).

Proof. We suppose that x1(e) = 1 for all e ∈ δGi
(W ). The available capacity across the cut δGi

(W )

is then equal to |δGi
(W )|×2.5. Let M = max

{

∑

k∈γ+(W ) ωk,
∑

k∈γ−(W ) ωk

}

−|δGi
(W )|×2.5. Note

that M is nothing but the missing capacity across the cut δGi
(W ).

– If M ≤ 0, that is to say, the demand over the cut is less than or equal the available capacity
on the small edges. Then the edges can carry the flow across δGi

(W ). In this case, inequality
(39) can be written as x2(δGi

(W )) ≥ 0 and is thus valid for MCSIPNDs(G,F,K).
– If M > 0, this means that the edges of δGi

(W ) do not suffice to carry the whole flow between
W and W , if they get all a small capacity of 2.5 Gbits. We then have to replace some small
capacities by big ones. Let f ∈ E1 be an edge on which we install a big capacity instead of
a small one. As x1(e) + x2(e) ≤ 1 for all e ∈ E1, if x2(f) = 1 this implies that x1(f) = 0.
Therefore, installing a big capacity on f allows to add a capacity of 10-2.5=7.5 Gbits over
the cut. Hence the minimum number of edges with big capacity we need in order to route the

demand between W and W is

⌈

max
n

P

k∈γ+(W ) ωk,
P

k∈γ−(W ) ωk

o

−|δGi
(W )|×2.5

7.5

⌉

. Then inequality

(39) is valid for MCSIPNDs(G,F,K).
�

In the two following sections we present further classes of valid inequalities which are extensions
of valid inequalities introduced in [7] for the problem without capacities.

4.3 Cut-cycle inequalities

Let W ⊂ V and T1 = {e1, . . . , es}, s ≥ 3, be an edge subset of δG(W ). Let 1 ≤ q < s be an inte-
ger. Suppose that for every i = 1, . . . , s, there is ji ∈ {1, . . . t} such that Fji ∩ T1 = {ei, . . . , ei+q−1}
(the indices are modulo s). Let T2 = δG(W )\(T1 ∪ (

⋂

i=1,...,s Fji)). Such a configuration (W,T1, T2)
will be called a cut-cycle configuration (see Figure 6).

Theorem 4.12 Let (W,T1, T2) be a cut-cycle configuration such that γ(W ) 6= ∅. For e ∈ δG(W ),
let re = |{i ∈ {1, . . . , s} | e ∈ δG(W )\Fji}| and r be the smallest integer such that r(s − q) ≥
maxe∈T2{re}. Then inequality

∑

l=1,2

(xl(T1) + rxl(T2)) ≥

⌈

s

s− q

⌉

(40)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).
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e1

e2

e6

f

g1

g2

g3

W V \W

∈ T1

∈ ∩s
i=1

Fji

∈ T2

Fig. 6 – A cut-cycle configuration

Proof. The following inequalities are valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K),

∑

l=1,2

xl(δGji
(W )) ≥ 1 for i = 1, . . . , s,

(r(s− q)− re)x
l(e) ≥ 0 for all e ∈ T2, l = 1, 2.

By summing these inequalities, we obtain

∑

l=1,2

((s − q)xl(T1) + r(s− q)xl(T2)) ≥ s.

By dividing by s− q and rounding up the right hand side we get inequality (40). �

Inequalities (40) will be called design cut-cycle inequalities.

Theorem 4.13 Let (W,T1, T2) be a cut-cycle configuration such that γ(W ) 6= ∅. For e ∈ δG(W ),
let re = |{i ∈ {1, . . . , s} | e ∈ δG(W )\Fji}|, and r be the smallest integer such that r(s − q) ≥
maxe∈T2{re}.

Let rW =

{

4 if DW mod 4 = 0
DW mod 4 otherwise.

Then the inequality

x1(T1) + rWx
2(T1) + rx1(T2) + r × rWx

2(T2) ≥

⌈

s

s− q
× rW

⌈

DW

4

⌉⌉

(41)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

Proof. By Theorem 4.10, the following inequalities are valid for both MCSIPNDm(G,F,K) and
MCSIPNDs(G,F,K),

∑

e∈δGji
(W )

(x1
e + rWx

2
e) ≥ rW

⌈

DW

4

⌉

for i = 1, . . . , s.

Also consider the following inequalities which are also valid for both MCSIPNDm(G,F,K) and
MCSIPNDs(G,F,K).

(r(s− q)− re)x
1(e) ≥ 0 for all e ∈ T2,

(r(s− q)− re)rWx
2(e) ≥ 0 for all e ∈ T2.
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By summing these inequalities we obtain

∑

e∈T1

[

(s− q)x1
e + (s − q)rWx

2
e

]

+
∑

e∈T2

[

r(s− q)x1
e + r(s− q)rWx

2
e

]

≥ s× rW

⌈

DW

4

⌉

.

By dividing this inequality by s− q and rounding up the right hand side we get inequality (41). �

Inequalities (41) will be called capacity cut-cycle inequalities.

We can remark that if rW = 1 and
⌈

DW

4

⌉

= 1 we then obtain the design cut-cycle inequality

(40).

4.4 Star-partition inequalities

Let G = (V,E) be a graph and F = {F1, . . . , Ft}, with t ≥ 2, a family of edge subsets of
E. Let V0, V1, . . . , Vp be a partition of V with p odd. Suppose that for every i = 1, . . . , p, there
is ji ∈ {1, . . . , t} such that Fji ∩ [Vi, V0] 6= ∅. Let Λ = {e ∈ E | e ∈ [Vk, Vl] ∩ Fjk ∩ Fjl , for some
k, l ∈ {1, . . . , p}}. Let F =

⋃p
i=1(Fji∩[Vi, V0])∪Λ. Such a configuration will be called a star-partition

configuration (see Figure 7).

Fj1

Fj2

Fj3

Fj4

Fj5

Fj1 ∩ Fj2

e5

e6

e7

e4
e3

e1

V5 V3

V0

V4

V1 V2

e2

Fig. 7 – A star-partition configuration

Theorem 4.14 Let (V0, V1, . . . , Vp, F ) a star-partition configuration with p odd such that γ(W ) 6= ∅.
Then inequality

∑

l=1,2

xl(δG(V0, . . . , Vp)\F ) ≥
⌈p

2

⌉

(42)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

Proof. It is clear that the following inequalities are valid for both MCSIPNDm(G,F,K) and
MCSIPNDs(G,F,K).

∑

l=1,2

xl(δG\Fji
(Vi)) ≥ 1 for i = 1, . . . , p,

xl(e) ≥ 0 for all e ∈ δ(V0)\F, l = 1, 2,

xl(e) ≥ 0 for all e ∈ (δG(Vk, Vm) ∩ Fjk)\Fjm ,
k = 1, . . . , p, m = 1, . . . , p, k 6= m, l = 1, 2.
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By summing these inequalities, we obtain inequality

2
∑

l=1,2

xl(δ(V0, . . . , Vp)\F ) ≥ p.

By dividing by 2 and rounding up the right hand side , we obtain inequality (42). �

Inequalities (42) will be called design star-partition inequalities.

Theorem 4.15 Let (V0, V1, . . . , Vp, F ) be a star-partition configuration.

Let rVi
=

{

4 si DVi
mod 4 = 0,

DVi
mod 4 sinon,

for i = 1, . . . , p.

Set
re =

∑

i = 1, . . . , p :
e ∈ δG\Fji

(Vi)

rVi

and

λe =

{

re if re is even,
re + 1 otherwise ,

e ∈ δG(V0, . . . , Vp)\F.

Then inequality

∑

e∈δG(V0,...,Vp)\F

(

x1
e +

λe

2
x2
e

)

≥









∑p
i=1 rVi

⌈

DVi

4

⌉

2









(43)

is valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

Proof. The following inequalities are valid for both MCSIPNDm(G,F,K) and MCSIPNDs(G,F,K).

∑

e∈δG\Fji
(Vi)

(x1
e + rVi

x2
e) ≥ rVi

⌈

DVi

4

⌉

for i = 1, . . . , p,

x1
e ≥ 0 for all e ∈ δG(V0, . . . , Vp)\F,

x2
e ≥ 0 for i = 1, . . . , p, for all e ∈ δG(Vi, V0)\F, such that rVi

is odd,

x2
e ≥ 0 for all e ∈ δG(Vk, Vm)\(Fjk ∩ Fjm), such that re is odd,

k = 1, . . . , p, m = 1, . . . , p, k 6= m,

x1
e ≥ 0 for all e ∈ (δG(Vk, Vm) ∩ Fjk)\Fjm , k = 1, . . . , p, m = 1, . . . , p, k 6= m,

x2
e ≥ 0 for all e ∈ (δG(Vk, Vm) ∩ Fjk)\Fjm , such that rVm is odd,

k = 1, . . . , p, m = 1, . . . , p, k 6= m.

By summing these inequalities we get

∑

e∈δG(V0,...,Vp)\F

(2x1
e + λex

2
e) ≥

s
∑

i=1

rVi

⌈

DVi

4

⌉

.

As λe’s, e ∈ δG(V0, . . . , Vp)\F are all even, by dividing this inequality by 2 and rounding up the
right hand side we get the inequality

∑

e∈δG(V0,...,Vp)\F

(

x1
e +

λe

2
x2
e

)

≥









∑s
i=1 rVi

⌈

DVi

4

⌉

2









.

�

Inequalities (43) are called capacity star-partition inequalities.
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5 Branch-and-cut and branch-and-cut-and-price algorithms

In this section, we describe four algorithms for the MCSIPND problem. We consider the two
variants of the problem (simple and multiple) and for each variant we propose a Branch-and-Cut
algorithm based on the node-arc formulation and a Branch-and-Cut-and-Price algorithm based on
the path formulation. Our aim is to address the algorithmic applications of the previous results.

We now describe the framework of our algorithms. For the Branch-and-Cut algorithms based on
the node-arc formulation, we start the optimization with the linear relaxations of the formulations.
The optimal solutions (x1, x2, f) of theses relaxations are feasible for the MCSIPND problems if x1

and x2 are integral.

For the Branch-and-Cut-and-Price algorithms, we also start the optimization by solving the
linear relaxation of the path formulations. For this we use the column generation algorithms descri-
bed in Section 3. As for the node-arc formulations, the solutions then obtained are feasible for the
MCSIPND problems only if x1 and x2 are integral.

Usually, a solution (x1, x2, f) is not feasible, and thus, in each iteration of the Branch-and-
Cut and the Branch-and-Cut-and-Price algorithms, it is necessary to generate further inequalities
that are valid for the MCSIPND problem but violated by the current solution (x1, x2, f). For this,
one has to solve the so-called separation problem. This consists, given a class of inequalities, in
deciding whether the current solution (x1, x2, f) satisfies the inequalities, and if not, in finding
an inequality that is violated by (x1, x2, f). An algorithm which solves this problem is called a
separation algorithm. The inequalities given above are all valid for the four polytopes MCSIPNDna

m ,
MCSIPNDp

m, MCSIPNDna
s et MCSIPNDp

s except the saturation inequalities which are valid only
for the simple version of the problem. Hence theses inequalities are used in our algorithms. The
separation is performed in the following order :

1. arc residual capacity constraints (9) (for the Branch-and-Cut algorithms only),

2. design cut constraints (32) and capacity demand cut constraints (33)-(37),

3. saturation constraints (39) (for MCSIPNDs only),

4. design cut-cycle constraints (40),

5. capacity cut-cycle constraints (41),

6. design star-partition constraints (42),

7. capacity star-partition constraints (43).

We remark that all inequalities are global (i.e. valid in all the Branch-and-Cut tree and the
Branch-and-Cut-and-Price tree) and several constraints may be added at each iteration. Moreover,
we go to the next class of inequalities only if we have found no violated inequality. Our strategy is
to try to detect violated constraints at each node of the tree in order to obtain the best possible
lower bound and thus limit the number of generated nodes. Generated inequalities are added by
sets of at most 200 inequalities at a time.

Now we describe the separation procedures used in our algorithms. All our separation algorithms
are applied on G(x̄1,x̄2) = (V,E(x̄1,x̄2)) where (x̄1, x̄2) is the restriction on x1 and x2 of the current
LP solution, and E(x̄1,x̄2) contains all the edges uv of E such that x̄1

uv + x̄2
uv 6= 0.

To separate the design cut inequalities and the capacity demand cut inequalities, we have de-
veloped a fast heuristic. We first check whether a degree cut δG(x̄1,x̄2)

(v), v ∈ V , is violated. Then

we start contracting edges uv with high value 2.5x̄1
uv + 10x̄2

uv −
∑

k∈γ({u})∪γ({v}) ωk until we get a
graph on two nodes. In each iteration we check if the cut associated with the node arising from the
contraction, induces a violated constraint of type (33), (35), (36) or (37).

When this heuristic does not any more allow to find violated inequalities, we compute the so-
called Gomory-Hu tree [17] on the graph G(x̄1,x̄2) with the weight x̄1

uv + x̄2
uv for each edge uv. This
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tree has the property that for all pairs of nodes s, t ∈ V the minimum (s,t)-cut in the tree is also a
minimum (s,t)-cut in G. Actually, we use the algorithm developed by Gusfield [21] which requires
|V |− 1 maximum flow computations. The maximum flow computations are handled by the efficient

Goldberg and Tarjan algorithm [16] that runs in O(mnlogn
2

m
) time where m and n are the number

of edges and nodes of G, respectively. Then we calculate the right hand side for all the cuts in the
Gomory-Hu tree and check if the found constraints are violated.

During the separation of the saturation constraints (39), we consider the cuts δG(x̄1,x̄2)
(v), v ∈ V .

We test if these inequalities are violated and if so we add them to the program. We don’t consider
the other cuts of the graph G(x̄1,x̄2) induced by more than two nodes which seem almost never be
violated.

Now we turn our attention to the separation of the cut-cycle inequalities (40) and (41). For more
efficiency, we have used these constraints only when q = 1. In fact we remarked that the design
cut-cycle inequalities and the capacity cut-cycle inequalities which are violated are usually of this
type.

To separate the design cut-cycle constraints with q = 1, we compute the Gomory-Hu tree of the
graph G(x̄1,x̄2) with the weight for each edge uv equal to the sum x̄1

uv+ x̄2
uv. Then for each cut given

by the Gomory-Hu tree, with value less than 2, we test if the cut intersects at least one demand. If
this is the case, then it yields a design cut-cycle inequality (40) violated by (x̄1, x̄2). Then sets T1

and T2 are determined so that T1 is maximal, using the following greedy procedure (Algorithm 1).
Since the Gomory-Hu algorithm runs with a large complexity, in order to accelerate our separation
for the cut-cycle inequalities, we first consider the degree cuts δG(x̄1,x̄2)

(v), v ∈ V . The computation
of the Gomory-Hu tree is considered only if no cuts of this type of value less than 2 are found.

Algorithm 1

T1 ← ∅ ; T2 ← ∅ ; F̄← ∅ ;
for i = 1 to m do

if fi ∈ Fj0 for some j0 ∈ {1, . . . , t} and fi 6∈ Fj for all Fj ∈ F̄ then

T1 ← T1 ∪ {fi} ;
F̄ ← F̄ ∪ {Fj0} ;

else

T2 ← T2 ∪ {fi} ;
end if

end for

for all fi ∈ T2 do

if fi ∈ Fj for all Fj ∈ F̄ then

T2 ← T2\{fi} ;
end if

end for

For the separation of the capacity cut-cycle constraints, we first consider the degree cuts δG(x̄1,x̄2)
(v),

v ∈ V . We calculate the right hand side. If the associated constraint is violated, we then determine
the sets T1 et T2 using Algorithm 1. Then we start contracting edges until we get a graph on
two nodes. In each iteration we contract an edge uv with the biggest value for 2.5x̄1

uv + 10x̄2
uv −

∑

k∈γ({u})∪γ({v}) ωk and check whether the new node obtained by contraction together with T1 and
T2 induces a violated capacity cut-cycle inequality.

We now discuss our separation routine for the star-partition inequalities (42) and (43). Our
algorithm consists in determining fractional cycles in the supporting graph, satisfying some condi-
tions. These cycles have to be odd, in order to have a chance to find a violated design star-partition
inequality. Thus, for each detected cycle (v1, . . . , vp) we try to find edge subsets Fji , ji ∈ {1, . . . , t},
i = 1, . . . , p among the edges of [vi, V \{v1, . . . , vp}] in such a way that either the design star-
partition inequality or the capacity star-partition induced by V \{v1, . . . , vp}, {v1}, . . . , {vp}, and
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Fji , i = 1, . . . , p is violated by (x̄1, x̄2).

To store the generated inequalities, we created a pool whose size increases dynamically. All the
generated inequalities are put in the pool and are dynamic, i.e. they are removed from the current
LP when they are not active. We first separate inequalities from the pool. If all the inequalities in
the pool are satisfied by the current LP-solution, we separate the classes of inequalities in the order
given above.

In the following section, we give some computational results obtained with the algorithms pre-
sented above for random instances and for real instances provided by France Télécom.

6 Computational results

The Branch-and-Cut and Branch-and-Cut-and-Price algorithms described in the previous sec-
tion have been implemented in C++, using ABACUS (A Branch-And-CUt System) 2.4 alpha
[1, 14, 42] to manage the Branch-and-Cut tree and Cplex 9.0 as LP-solver [11]. It was tested on a
Pentium IV 2,4 GHz with 1 Gb RAM, running under Linux. We fixed the maximum CPU time to
5 hours.

Results are presented here for instances coming from real applications and instances obtained
from problems of the TSP Library ([38]) by randomly generating the node set, the edge sets Fe
and the set of demands K. For all the instances, the graph G1, representing the IP network, is
considered complete.

These instances were generated with 6, 8 and 10 nodes, |F| = 10, 20 and |K| = 5, 10, 20. Five
instances of each size, each |F| and each |K| were tested. We will consider the average results
obtained for these instances.

The real instances are extracted from operational networks and have been provided by the french
telecommunications operator France Télécom. These instances have 6 to 18 nodes and F with 11 to
32 edge sets. Actually France Télécom has provided the optical network and the routing between
every pair of nodes in this network. With an edge f of the IP network, we associate the routing
path of the optical network between the switches corresponding to the IP router extremities of f .
Using these paths, we have computed F = {Fe ⊆ E

1, e ∈ E2} where Fe is the set of edges f of E1

such that e belongs to the path associated with f .

The number of commodities is between 5 and 20. We randomly generated the extremities of
the commodities. The amount of each commodity is calculated with the gravity model which uses
the distance and the population of both the origin and destination cities. The general expression

of the gravitaty model for a commodity (ok, dk, vk) of K is vk =
Pα

ok
P

β
dk

dok,dk

where Pok
and Pdk

are

the populations of the origin and destination cities, respectively and dok,dk
represents the euclidian

distance between ok and dk. We have fixed α = 1.2 and β = 0.8 to have different volume between
two towns in the two directions.

Usually the cost associated with a link in the client network is related to the corresponding
routing path in the optical network, and then depends on the cost of this path. Actually, the cost
c(f) of link f in the IP network is given by

c(f) = c+ κ(f),

where c is a fixed cost representing the equipments of the extremity ports on the routers of f in
the IP layer, and κ(f) is a cost depending on the lenght of the path Pf corresponding to f in the
optical network.

The installation of an optical segment usually yields a fixed cost on each extremity of this
segment. Hence a first estimation of the optical cost κ(f) is the sum of the fixed costs of the optical
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segments on Pf . As these fixed costs can be considered the same in the optical network, a good
approach would be to consider a cost κ(f) proportional to the number of the optical segments on Pf .
So, a first natural function κ(f) consists of the number of links (hops) in the optical path between
the switching nodes corresponding to the extremities of f . Here we assume that there is a fixed cost
associated with each optical link. This cost is considered once the corresponding link is used. Then
the cost c(f) is given in this case by c+ |Pf |.

In the various tables, the entries are :

|V 1| : the number of nodes of G1,
|F| : the number of sets Fe,
|K| : the number of demands,
Algo : the type of algorithm (na (resp. p means that the used algorithm is based on the

: node-arcs (resp. path) formulation.
FV : the number of flow variables,
NC : the number of generated cut inequalities,
NRC : the number of generated arc residual capacity inequalities,
NS : the number of generated saturation inequalities (only for MCSIPNDs problem),
NCC : the number of generated cut-cycle inequalities,
NSP : the number of generated star-partition inequalities,
NT : the number of generated nodes in the Branch-and-Cut tree,
o/p : the number of problems solved to optimality over the number of instances

tested (only for random instances),
Copt : the value of the optimal solution,
Gap : the relative error between the best upper bound (the optimal value if the

problem has been solved to optimality) and the lower bound achieved by the
cutting plane phase (before branching),

TT : the total CPU time in h :mm :ss.

Our first series of experiments concerns the problem MCSIPNDm (with multiple links) for the
random instances. In these experiments, we have considered three instances for each size. Table 1
reports the average results obtained for these instances with both algorithms based on the node-arc
and the path formulations.

As we can observe, all the instances with 6 nodes have been solved to optimality. Moreover,
they have been solved in less than 5 minutes (and in less than 2 minutes using the path formulation
based algorithm), except those with |F| = 20 and |K| = 20 which needed around 33 minutes to
be solved to optimality using the node-arc formulation based algithm. We also remark that for the
instances with a reduced number of commodities, the problem seems to be much easier to solve. In
fact, for all the instances with 5 commodities, less than one hour was needed to get the optimal
solution except for the instances with 10 nodes and |F| = 20.

The instances with 10 and 20 commodities and |F| = 20 seem to be harder to solve. In fact, none
of these instances could be solved to optimality with the node-arc formulation within the time limit,
when the number of nodes exceeds 8. The results are more promising with the path formulation
where 5 among the 12 instances have nevertheless been solved in an average time sometimes less
than two hours.

Among the 54 tested instances, 17 could not be solved within the time limit of five hours
using the node-arc formulation based algorithm, and only 12 instances with that based on the path
formulation. So, this would imply that the latter algorithm is more efficient. However for 10 nodes,
|F| = 10 and |K| = 20, two instances have been solved with the first algorithm but they did not
with the second one.

The number of flow variables of the node-arc formulation is fixed and depends only on |V 1|, |F|
and |K|. This is not however the case for the flow variables of the path formulation. We remark
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|V 1| |F| |K| Algo FV NC NRC NCC NEP NT o/p Gap TT

6 10 5 1500 85.67 78.00 0.67 0.67 132.33 3/3 9.47 0 :00 :13.52
6 10 10 na 3000 80.00 89.00 0.00 0.00 109.67 3/3 5.86 0 :00 :40.11
6 10 20 6000 71.33 201.00 0.33 0.00 123.00 3/3 6.39 0 :02 :22.54
6 10 5 590.67 93.33 - 0.33 0.67 112.33 3/3 9.40 0 :00 :07.25
6 10 10 p 899.33 92.67 - 0.00 0.00 95.00 3/3 5.24 0 :00 :08.38
6 10 20 1363.33 124.67 - 0.00 0.00 157.00 3/3 5.96 0 :00 :15.40

6 20 5 3000 105.00 226.33 2.00 0.67 220.33 3/3 10.74 0 :01 :38.04
6 20 10 na 6000 125.67 427.67 2.67 0.00 214.33 3/3 8.41 0 :04 :27.97
6 20 20 12000 153.33 641.00 0.33 0.00 347.00 3/3 7.46 0 :33 :29.84
6 20 5 813.33 118.33 - 1.67 0.00 237.67 3/3 10.71 0 :00 :33.72
6 20 10 p 1490.00 156.67 - 1.00 0.00 165.67 3/3 8.29 0 :00 :39.12
6 20 20 2326.00 156.33 - 0.33 0.00 297.00 3/3 7.38 0 :01 :45.86

8 10 5 2800 104.00 84.00 0.67 0.33 115.00 3/3 12.09 0 :00 :38.38
8 10 10 na 5600 304.33 449.67 2.00 1.00 771.00 3/3 10.68 0 :16 :57.89
8 10 20 11200 381.33 1290.00 0.00 0.00 2585.00 1/3 9.60 4 :13 :51.50
8 10 5 1094.00 91.67 - 0.33 0.33 121.67 3/3 11.35 0 :00 :22.58
8 10 10 p 2769.33 457.00 - 0.67 0.00 876.33 3/3 10.31 0 :04 :58.44
8 10 20 4100.00 2083.00 - 1.33 0.00 3334.33 3/3 9.48 0 :22 :59.97

8 20 5 5600 282.67 1102.33 2.00 0.67 1041.00 3/3 14.84 0 :30 :23.18
8 20 10 na 11200 281.00 1524.67 2.00 0.67 2454.00 0/3 25.13 5 :00 :00.00
8 20 20 22400 283.00 3726.00 1.00 0.00 1266.33 0/3 15.30 5 :00 :00.00
8 20 5 3324.67 246.33 - 2.67 1.00 1223.67 3/3 11.89 0 :21 :40.39
8 20 10 p 5937.33 5472.00 - 1.67 2.00 9515.67 2/3 13.63 3 :11 :59.93
8 20 20 5619.00 1733.33 - 0.67 0.00 5004.67 2/3 10.64 1 :57 :35.10

10 10 5 4500 819.67 519.33 0.33 0.33 2282.33 3/3 13.58 0 :34 :04.75
10 10 10 na 9000 846.33 1188.67 1.00 0.00 1773.67 3/3 9.81 1 :39 :03.70
10 10 20 18000 524.67 1325.33 0.33 0.67 1144.00 2/3 33.42 3 :22 :05.67
10 10 5 7192.67 1271.33 - 0.33 0.00 2159.00 3/3 11.49 0 :52 :43.15
10 10 10 p 8197.33 2775.00 - 0.67 0.00 3378.33 3/3 9.98 1 :45 :52.21
10 10 20 12500.00 2773.67 - 1.00 0.00 11246.67 0/3 12.38 5 :00 :00.00

10 20 5 9000 199.33 2140.00 0.67 0.00 2653.00 1/3 38.60 4 :05 :09.57
10 20 10 na 18000 378.33 5020.00 0.67 0.00 1523.67 0/3 33.59 5 :00 :00.00
10 20 20 36000 491.00 4169.33 0.67 0.00 457.00 0/3 45.39 5 :00 :00.00

10 20 5 6991.00 1249.33 - 3.67 5.00 3978.33 1/3 33.94 3 :59 :39.57
10 20 10 p 11784.00 5659.67 - 2.67 2.33 3953.00 1/3 26.08 4 :33 :09.10
10 20 20 14427.33 3986.67 - 1.00 0.67 3665.00 0/3 33.98 5 :00 :00.00

Tab. 1 – Result for random instances for the MCSIPNDm problem

that the number of the flow variables generated, using this formulation, is generally smaller than
that of the node-arc formulation. This may explain the fact that some instances could be solved
to optimality using the path formulation whereas they could not using the node-arc one. Moreover
the CPU times obtained with the path formulation based algorithm are less than those obtained
with the node-arc formulation based algorithm except for the instances with 10 nodes and |F| = 10.
The difference of time is sometimes big. For example, for the instances with 6 nodes, |F| = 20 and
|K| = 20, the time goes from less than 2 minutes to more than 30 minutes and for 8 nodes, |F| = 10
and |K| = 20 it goes from 20 minutes to more than 4 hours. Therefore the path formulation seems
to give better results than the node-arc formulation.

We can also remark that for most of the instances, a significant number of cut and arc residual
capacity inequalities (for the node-arc formulation) have been generated. This implies that these
inequalities are useful for the random problems. However the cut-cycle and star-partition inequalities
do not seem to play an important role for this type of instances. This can be explained by the fact
that, for these instances, the edges do not necessarily belong to some Fe’s, and hence, it could be
hard to find cut-cycle and star-partition configurations.

Table 2 presents the results for the MCSIPNDm problem for the real instances with both path
and node-arc formulation based algorithms. Here the cost function represents, for each link of the IP
network, the number of links of the optical network used in the associated path. This cost function
is then integral.

It appears from the table that the difficulty to solve the instances increases with the number of
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|V 1| |F| |K| Algo FV NC NRC NCC NEP NT Copt Gap TT

6 11 5 1650 10 10 0 1 3 57 0.00 0 :00 :00.77
6 11 10 na 3300 56 111 2 3 65 99 8.08 0 :00 :27.28
6 11 15 4950 99 779 1 0 157 105 7.62 0 :02 :41.68
6 11 20 6600 199 1194 1 0 375 115 9.57 0 :13 :34.46
6 11 5 137 15 - 0 0 3 57 0.00 0 :00 :00.32
6 11 10 p 628 59 - 2 1 81 99 8.08 0 :00 :07.12
6 11 15 1071 88 - 1 0 147 105 7.62 0 :00 :17.86
6 11 20 1778 233 - 1 0 451 115 9.57 0 :01 :37.51

8 17 5 4760 173 114 2 0 115 81 11.11 0 :02 :36.71
8 17 10 na 9520 191 717 2 7 567 109 15.60 0 :49 :59.51
8 17 15 14280 512 815 4 2 621 123 13.01 2 :12 :27.03
8 17 20 19040 666 9743 7 5 709 160 33.75 5 :00 :00.00
8 17 5 1693 178 - 1 0 93 81 11.11 0 :00 :55.39
8 17 10 p 3452 180 - 2 5 449 109 15.60 0 :07 :13.23
8 17 15 4717 511 - 4 2 1155 123 14.63 0 :18 :48.43
8 17 20 8230 2570 - 5 19 5655 131 19.08 3 :34 :26.29

10 25 5 11250 71 157 4 0 113 129 7.75 0 :16 :27.52
10 25 10 na 23400 262 279 4 2 369 156 3.21 2 :45 :10.77
10 25 15 33750 772 1616 6 0 473 231 18.18 5 :00 :00.00
10 25 20 45000 447 2754 6 1 247 297 34.34 5 :00 :00.00

10 25 5 4011 99 - 2 0 151 129 8.53 0 :08 :16.44
10 25 10 p 5594 318 - 2 4 373 156 3.21 0 :43 :35.76
10 25 15 8673 5497 - 5 0 3993 213 11.27 5 :00 :00.00
10 25 20 8966 4038 - 9 3 3317 261 24.90 5 :00 :00.00

12 32 5 21120 85 180 5 0 99 129 8.53 0 :54 :33.54
12 32 10 na 42240 333 777 5 1 303 194 12.37 5 :00 :00.00
12 32 15 63360 251 1129 8 0 127 300 32.67 5 :00 :00.00
12 32 20 84480 357 2001 7 0 89 392 41.58 5 :00 :00.00
12 32 5 7188 100 - 2 0 153 129 8.53 0 :34 :49.36
12 32 10 p 15120 572 - 4 1 559 182 6.59 5 :00 :00.00
12 32 15 8852 262 - 5 2 127 285 28.77 5 :00 :00.00
12 32 20 13988 1109 - 7 0 681 378 39.15 5 :00 :00.00

14 27 5 na 24570 55 22 0 0 73 150 8.00 0 :34 :17.06
14 27 10 49140 342 298 2 0 175 198 6.06 4 :56 :12.04
14 27 5 p 4081 44 - 0 0 49 150 8.00 0 :10 :56.41
14 27 10 17610 608 - 1 0 205 198 6.06 5 :00 :00.00

16 29 5 na 34800 315 208 3 0 323 153 11.76 5 :00 :00.00
16 29 10 69600 88 206 1 0 67 185 4.32 4 :21 :11.28
16 29 5 p 15910 294 - 3 0 177 159 15.09 5 :00 :00.00
16 29 10 19934 114 - 2 0 77 185 4.32 3 :26 :08.28

18 30 5 na 45900 87 234 2 0 229 218 17.43 5 :00 :00.00
18 30 5 p 21494 47 - 0 0 63 220 18.64 5 :00 :00.00

Tab. 2 – Results for real instances for the MCSIPNDm problem

nodes and the number of commodities in the network. All the instances with 5 commodities and
up to 14 nodes have been solved in less than one hour. Also for the instances with 10 commodities,
we have obtained an optimal solution for all the instances with no more than 10 nodes in less than
3 hours with the node-arc formulation and in less than 45 minutes with the path formulation. The
instance with 16 nodes and 10 commodities has also been solved to optimality.

In addition, we remark that for the instances with 15 and 20 commodities only those with no
more than 8 nodes could be solved to optimality. For all the instances which have not been solved in
the time limit, we have nevertheless obtained feasible solutions (given in italic). Also, we can remark
that for some instances, we have obtained a relatively small gap. This is for example the case for
the instance with 12 nodes and 10 commodities where the gap is 6%. For the larger instances, the
gap does not exceed 18%.

Moreover we notice that all the instances solved with the algorithm based on the node-arc
formulation have also been solved with the one based on the path formulation, except that with
14 nodes and 10 commodities. Furthermore, the time needed was much lower. In fact, as it can
be observed, for the instance with 8 nodes and 15 commodities, the time passes from 2 hours 12
minutes to 18 minutes and for that with 10 nodes and 10 commodities, it passes from 2 hours 45
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minutes to 43 minutes. As regards the instances which have not been solved with the two algorithms
in the time limit, we can remark that the value of the best feasible solution we have found with the
path formulation is cheaper than that obtained with the node-arc one and this is for most of the
instances.

As for the random problems, for most of the real instances, a significant number of cut inequalities
have been generated. It also appears that the cut-cycle inequalities and star-partition inequalities
are more effective for this type of instances. This can be explained by the fact that the way the sets
Fe’s are built, it is easier to find cut-cycle and star-partition configurations. It seems that the node-
arc formulation permits to generate more cut-cycle inequalities (72 constraints generated for all
the instances against 58 with the path formulation) and the path formulation privileges rather the
star-partition inequalities (37 constraints generated against only 22 with the node-arc formulation).

For these instances, we can also observe that the number of flow variables generated for the path
formulation is much lower than the one used in the node-arc one. For example, the instance with
16 nodes and 10 commodities has used 69600 flow variables for the first formulation and only 19934
flow variables in the second one.

|V 1| |F| |K| Algo FV NC NRC NS NCC NEP NT o/p Gap TT

6 10 5 1500 58.67 49.67 3.67 0.33 0.00 46.33 3/3 14.04 0 :00 :07.70
6 10 10 na 3000 43.67 47.33 4.67 0.00 0.00 23.67 3/3 4.48 0 :00 :15.00
6 10 20 6000 48.67 96.67 3.33 0.00 0.00 36.33 3/3 6.63 0 :01 :17.19
6 10 5 550.67 85.00 - 3.33 0.33 0.33 52.33 3/3 13.93 0 :00 :04.58
6 10 10 p 776.67 39.57 - 4.67 0.33 0.00 29.67 3/3 4.54 0 :00 :02.95
6 10 20 836.67 21.00 - 1.33 0.00 0.00 17.00 3/3 4.93 0 :00 :02.39

6 20 5 3000 75.67 151.00 3.00 1.67 0.33 106.33 3/3 16.16 0 :01 :04.65
6 20 10 na 6000 70.67 187.33 9.67 1.00 0.00 41.00 3/3 9.93 0 :01 :29.15
6 20 20 12000 44.67 94.33 2.67 0.00 0.00 24.33 3/3 6.22 0 :03 :11.87

6 20 5 812.00 55.67 - 3.00 2.00 0.00 93.67 3/3 15.82 0 :00 :16.27
6 20 10 p 1194.33 49.33 - 8.67 2.00 0.00 50.33 3/3 9.02 0 :00 :10.58
6 20 20 1532.33 44.33 - 3.67 0.00 0.00 24.33 3/3 7.58 0 :00 :08.16

8 10 5 2800 81.67 97.33 0.67 0.33 0.33 85.00 3/3 13.16 0 :00 :45.93
8 10 10 na 5600 215.33 293.00 2.33 0.67 0.00 296.33 3/3 10.02 0 :06 :34.95
8 10 20 11200 277.00 773.33 4.33 0.00 0.00 373.67 3/3 9.02 0 :30 :53.21
8 10 5 1225.33 90.67 - 1.00 1.00 0.67 81.67 3/3 12.42 0 :00 :20.48
8 10 10 p 1910.67 259.00 - 2.33 2.33 0.00 270.33 3/3 9.16 0 :01 :15.36
8 10 20 2912.00 328.67 - 4.33 0.00 0.00 309.67 3/3 8.76 0 :02 :02.43

8 20 5 5600 177.33 570.33 1.00 1.67 0.67 118.33 3/3 13.43 0 :05 :30.62
8 20 10 na 11200 381.00 1140.00 11.00 0.67 0.67 772.33 3/3 14.34 1 :38 :42.90
8 20 20 22400 305.67 1988.00 13.00 0.33 0.00 639.67 1/3 12.44 3 :50 :48.94

8 20 5 2514.67 164.67 - 1.33 3.00 0.33 135.67 3/3 12.71 0 :02 :30.74
8 20 10 p 4944.00 623.67 - 10.00 1.00 0.33 1890.33 3/3 14.12 0 :53 :31.81
8 20 20 5373.00 425.00 - 17.33 0.33 0.00 1000.33 3/3 10.79 0 :32 :17.99

10 10 5 4500 189.67 510.00 0.00 0.00 0.00 412.00 3/3 18.06 0 :06 :52.79
10 10 10 na 9000 171.33 610.00 2.00 0.00 0.00 1379.00 3/3 11.49 1 :39 :00.75
10 10 20 18000 176.67 823.33 0.00 1.00 0.33 1214.00 2/3 15.42 2 :54 :21.12
10 10 5 7362.00 1036.33 - 0.00 0.33 0.00 2625.00 2/3 15.75 1 :46 :59.66
10 10 10 p 8874.00 873.00 - 0.33 2.00 0.00 2756.33 3/3 12.60 2 :02 :09.73
10 10 20 12624.00 1534.33 - 0.67 1.33 0.00 7562.67 1/3 11.87 2 :41 :08.19

10 20 5 9000 314.00 1293.00 0.00 3.00 0.00 507.00 1/3 22.14 3 :29 :34.19
10 20 10 na 18000 740.00 5198.00 0.00 1.00 0.00 1463.00 0/3 34.28 5 :00 :00.00
10 20 20 36000 448.67 4156.33 1.67 0.67 0.00 464.33 0/3 27.72 5 :00 :00.00
10 20 5 10438.67 722.67 - 1.33 6.67 1.33 2799.67 1/3 22.90 3 :29 :28.52
10 20 10 p 13042.00 2816.67 - 0.00 4.33 2.00 3395.67 0/3 15.92 5 :00 :00.00
10 20 20 14828.00 3292.33 - 3.33 1.33 0.00 3321.00 0/3 17.82 5 :00 :00.00

Tab. 3 – Result for random instances for the MCSIPNDs problem

Tables 3 and 4 report the results for the MCSIPNDs problem (single version). As in the previous
experiments related to the MCSIPNDm problem, we have considered random and real instances.
We have tested our two algorithms on the same instances. Table 3 reports the results for the random
instances. As for the multiple case, we have tested three instances for each size, Table 3 gives the
average result. Also here we have used the saturation constraints (39) which are valid for this variant
of the problem.
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We can note that all the instances with 6 and 8 nodes have been solved to optimality with at
least one of the algorithms. This is also the case for all the instances with |F| = 10 except that with
10 nodes and 20 commodities, and for the instances with |K| = 5, except two of the instances with
10 nodes and |F| = 20.

Among the 9 instances with 10 nodes and |F| = 20, only one has been solved in the time limit
of 5 hours. The gap obtained is generally not very hight (less than 18%). Also here both algorithms
seem to have similar performance. In fact most of the instances solved by one have also been solved
by the other.

|V 1| |F| |K| Algo FV NC NRC NS NCC NEP NT Copt Gap TT

6 11 5 1650 12 21 0 0 1 3 57 0.00 0 :00 :06.34
6 11 10 na 3300 46 137 1 2 0 79 104 10.58 0 :00 :58.33
6 11 15 4950 71 389 1 1 0 75 109 11.01 0 :01 :39.03
6 11 20 6600 72 705 1 1 0 191 122 9.84 0 :09 :39.32

6 11 5 103 4 - 2 4 0 1 57 0.00 0 :00 :00.24
6 11 10 p 618 31 - 1 3 0 89 104 10.58 0 :00 :06.05
6 11 15 931 48 - 1 2 0 57 109 10.09 0 :00 :07.15
6 11 20 1496 47 - 1 3 0 173 122 9.84 0 :00 :27.73

8 17 5 4760 187 101 1 1 0 97 82 12.20 0 :01 :45.53
8 17 10 na 9520 165 955 4 5 4 777 115 20.00 1 :23 :37.11
8 17 15 14280 320 3983 3 8 0 981 129 22.48 4 :00 :51.52
8 17 20 19040 550 8849 3 10 3 771 143 25.87 5 :00 :00.00
8 17 5 1549 109 - 1 2 0 61 82 12.20 0 :00 :27.62
8 17 10 p 2950 118 - 2 6 6 1069 115 20.00 0 :12 :13.75
8 17 15 4267 226 - 3 12 1 777 129 19.38 0 :17 :21.46
8 17 20 5856 391 - 3 12 7 731 135 20.74 0 :25 :56.44

10 25 5 11250 44 135 2 4 0 31 129 8.53 0 :04 :04.37
10 25 10 na 23400 82 47 1 0 0 17 157 3.82 0 :05 :29.97
10 25 15 33750 553 1743 2 4 0 485 223 13.90 5 :00 :00.00
10 25 20 4500 336 3346 2 6 0 227 261 24.52 5 :00 :00.00
10 25 5 3043 37 - 2 5 0 73 129 6.98 0 :02 :59.43
10 25 10 p 1316 69 - 1 1 0 15 157 3.82 0 :00 :08.57
10 25 15 8220 1484 - 2 8 0 2015 207 7.25 2 :42 :47.08
10 25 20 10380 1105 - 2 8 0 1457 243 18.93 5 :00 :00.00

12 32 5 21120 49 215 1 4 0 37 129 7.75 0 :21 :12.29
12 32 10 na 42240 233 485 1 4 0 291 186 8.60 5 :00 :00.00
12 32 15 63360 211 1125 1 4 0 139 247 18.22 5 :00 :00.00
12 32 20 84480 224 1087 1 7 0 79 317 27.44 5 :00 :00.00
12 32 5 6497 84 - 1 4 0 97 129 8.53 0 :17 :26.27
12 32 10 p 13723 421 - 1 4 0 851 182 6.59 5 :00 :00.00
12 32 15 15291 512 - 1 10 6 813 224 9.82 5 :00 :00.00
12 32 20 12114 615 - 1 12 0 823 292 20.55 5 :00 :00.00

14 27 5 na 24570 57 33 0 0 0 41 150 4.67 0 :19 :08.56
14 27 10 49140 512 387 0 0 0 231 226 17.26 5 :00 :00.00
14 27 5 p 4326 53 - 0 0 0 27 150 5.33 0 :07 :44.68
14 27 10 18212 652 - 1 4 0 281 208 10.10 5 :00 :00.00

16 29 5 na 34800 343 316 0 1 0 265 158 13.92 5 :00 :00.00
16 29 10 69600 85 171 0 1 0 45 191 5.76 2 :16 :08.88
16 29 5 p 18949 338 - 0 3 0 119 158 13.92 5 :00 :00.00
16 29 10 13563 80 - 0 3 0 23 191 5.76 0 :17 :14.14

18 30 5 na 45900 68 262 1 3 0 229 211 14.69 5 :00 :00.00
18 30 5 p 23332 43 - 1 3 0 77 231 22.08 5 :00 :00.00

Tab. 4 – Results for real instances for the MCSIPNDs problem

The saturation constraints appear in a small proportion with respect to the cut and arc residual
capacity inequalities. This does not imply that these inequalities are not necessary for this variant
of the problem. On the contrary, they have been quite utile for solving the random instances. Also
we notice that for the multiple variant of the problem, the number of generated cut-cycle and
star-partition inequalities is also not very significant in this case.

Table 4 presents the results obtained for the MCSIPNDs problem for the real instances. We can
remark that in general, the results based on the path formulation, obtained with the Branch-and-
Cut-and-Price algorithm, are better than those based on the node-arc formulation. In fact, several
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instances which have not been solved in the time limit with the latter formulation, have been solved
with the former one, and even in less than 30 minutes for some of them like that with 8 nodes and
20 commodities. Furthermore, for the path formulation based algorithm, the CPU time is much
smaller. Also for most of the instances which could not be solved in the time limit, the gap has
significantly descreased using the path formulation, as for example for the instance with 12 nodes
and 15 commodities, the gap passes from 18,22 to 9,82.

It seems however that the MCSIPND problem in its simple version is easier to solve. In fact, for
the random instances and the node-arc formulation, only 11 among the 54 instances could not be
solved for the MCSIPNDs problem against 17 for the MCSIPNDm problem. The difference is less
important for the path formulation. Here the number of solved instances is almost the same, but
the CPU time needed for the MCSIPNDs problem is generally lower.

We can also remark that the optimal solution for the MCSIPNDm problem has a cost lower
than that of the MCSIPNDs. This is because each feasible solution for the latter problem is also
feasible for the former one.

For several instances presented in the previous tables, we have not obtained an optimal solution.
In order to evaluate the performance of our algorithms in providing provably near-optimal solu-
tions in reasonnable time, we have noted the value of the best feasible solution after each hour of
computation. Table 5 shows the evolution of the current feasible solution for these instances. The
differents columns of this table represent :

|V 1| : the number of nodes of G1,
|F| : the number of sets Fe,
|K| : the number of demands,
Algo : the type of algorithm (na (resp. p) means thatthe used algorithm is based on the

: node-arc (resp. path) formulation.
Pb : the problem (m represents the multiple version and s the simple one)
BS : the value of the best founded solution,
Gap2 : the relative error between the best feasible solution and the best lower bound.

After 1h After 2h After 3h After 4h After 5h

|V 1| |F| |K| Algo Pb BS Gap2 BS Gap2 BS Gap2 BS Gap2 BS Gap2

10 25 15 na m 243 25,91 231 19,07 231 18,46 231 18,46 231 18,46
10 25 15 p m 218 10,66 218 10,10 216 8,54 213 7,04 213 7,04

12 32 10 na m 272 57,23 207 18,29 207 17,61 194 10,23 194 9,60
12 32 10 p m 189 8,00 182 2,82 182 2,82 182 2,25 182 2,25

14 27 10 p m 246 26,15 198 1,02 198 1,02 198 1,02 198 0,51

16 29 5 na m 202 36,49 159 7,43 159 6,00 153 2,00 153 1,32
16 29 5 p m 202 36,49 167 12,84 167 12,84 167 12,08 159 6,71

18 30 5 na m 323 73,66 264 39,68 239 25,13 218 13,54 218 12,95
18 30 5 p m 222 21,98 222 20,65 222 19,35 222 17,46 222 17,46

10 25 15 na s 240 21,21 227 13,50 227 12,94 227 12,94 223 10,95

12 32 10 na s 217 24,71 201 14,20 193 8,43 186 3,91 186 3,91
12 32 10 p s 188 5,62 182 1,68 182 1,11 182 1,11 182 1,11

14 27 10 na s 226 17,10 226 15,90 226 13,57 226 13,00 226 12,44
14 27 10 p s 225 12,50 225 11,94 214 5,94 208 2,46 208 1,96

16 29 5 na s 163 7,95 163 5,84 163 5,16 158 1,28 158 0,64
16 29 5 p s 169 14,19 169 11,92 163 7,24 163 6,54 163 5,84

18 30 5 na s 241 25,52 211 8,21 211 7,11 211 6,57 211 6,03
18 30 5 p s 231 20,94 231 20,31 231 19,69 231 19,69 231 19,07

Tab. 5 – Unsolved instances

The first part of the table concerns the MCSIPNDm problem whereas the second one is related
to the MCSIPNDs one. The lines are presented in pairs, one for the node-arc formulation and one
for the path formulation. When there is only one line, this means that one of the formulation has
permited to find the optimal solution in the time limit.
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We remark that for most of the instances, we have a very near-optimal solution. For example,
for the MCSIPNDs problem and the instance with 16 nodes, the gap is 1,32%. However for harder
instances, the best feasible solution is still distant of the optimal one. For example, the gap for
the instance with 18 nodes is near 15% for the MCSIPNDm problem and 6% (resp. 19%) for the
MCSIPNDs problem for the node-arc formulation (resp. the path formulation).

We can note that, as time elapsed, the gap decreases. Actually we have observed that the best
solution decreases and the global lower bound increases for almost all the instances. A last remark
we can give is that a very good feasible solution could be found in 1 or 2 hours. For example, for
the instance with 12 nodes the gap is 5,62% (resp. 1,68%) after 1 hour (resp. 2 hours) with the path
formulation for the MCSIPNDs problem.

Finally, we present a little real french instance with 10 nodes, |F| = 25 and |K| = 10. Figure 8
presents the optical network and the set of commodities.
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Fig. 8 – A real french instance with 10 nodes, |F| = 25 and 10 commodities

Bordeaux

Paris

Nantes
Poitiers

Caen

Lille

Strasbourg

Lyon
Clermont_Fd

Marseille

2
2

2

MCSIPNDm problem

Lille

Caen

Nantes

Poitiers

Bordeaux

Lyon
Clermont_Fd

Strasbourg

Paris

Marseille

MCSIPNDs problem

Fig. 9 – IP network solutions

31



Figure 9 gives the solutions for the two variants of the problem. The dashed lines represent
the edges with capacity 2.5 Gbits and the solid ones the edges with capacity 10 Gbits. For the
MCSIPNDm problem, the number 2 on some edges indicates that we have installed two links between
the towns, extremities of the edge. The optimal solutions shown in Figure 9 have been obtained
with the Branch-and-Cut-and-Price algorithm based on the path formulation in 43 minutes for the
multiple version and in only 10 seconds for the simple one.

7 Concluding remarks

In this paper we have considered the multilayer survivable network design problem which has
applications to the design of reliable IP-over-optical network. We have considered the capacity
dimensioning of the network. We have proposed two integer programming formulations for each of
the two variants of the problem, simple and multiple. We have identified some valid inequalities, and
described necessary conditions and sufficient conditions for a class of inequalities to define facets.
Using this, we have developed Branch-and-Cut and Branch-and-Cut-and-Price algorithms for the
problems and presented extensive computational results. These ones show that the path formulation
based algorithm performs better than the one based on the node-arc formulation. The experimental
results also show the effectiveness of the capacity demand cut, the cut-cycle and the star-partition
inequalities for the problem.

Other variants of the multilayer network design problem are of interest for telecommunication
operators and merit to be investigated. In particular those in which IP and optical layers should be
treated simultaneously. This is our direction of futur research.

Also a more general variant of the problem, which merits to be studied, is when bounds are
considered on the paths of the IP network. This issue has been treated in the literature in the
monolayer case [12, 15, 22, 23]. An other interesting question would be to consider integer flows. This
concept has also been investigated for the monolayer networks but without considering survivability
[6, 10].
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Appendix : Proof of Theorem 4.9

Proof. We use ideas similar to those developed in [31]. Let us denote inequality (33) by

a1x1 + a2x2 ≥ α, (44)

and let

b1x1 + b2x2 + λf ≥ β, (45)

be a facet defining inequality of MCSIPNDna
m (G,F,K) such that the face defined by (44) is contained

in that defined by (45). Let L = {(x1, x2, f) ∈ MCSIPNDna
m (G,F,K) | a1x1 + a2x2 = α}.

We first construct a feasible solution which satisfies (44) with equality. For each commodity k

such that ok and dk are in W , as G(W ) is F-connected, for all j ∈ {1, . . . , t}, there exists a path
P kj fully contained in Gj(W ), which connects ok and dk. If we install

⌈

ωk

10

⌉

high capacities on each

edge which belongs to at least one path P kj , then we can send a flow of ωk along the path P kj from
ok to dk for each failure j. By adding successively, in a similar way, the necessary capacity for all
commodities, we obtain a feasible dimensioning for the edges of E(W ) according to the commodities
of W . For the edges in E(W ), we similarly associate, for each commodity k such that ok and dk ∈W

and for each j ∈ {1, . . . , t}, a path P
k
j between ok and dk. We install capacities on these paths in a

similar way as in G(W ).

Now, consider an edge uivi of δGi
(W ) such that ui ∈W and vi ∈W .

Let Ii = {j ∈ {1, . . . , t}\{i} |uivi ∈ Fj}. Then for all j ∈ Ii, there exists an edge, say ujvj , in
δ(W ) ∩ Fi such that ujvj 6∈ Fj . In fact, if this is not the case, then there would exist j ∈ Ii such
that δ(W ) ∩ Fi ⊆ δ(W ) ∩ Fj . As by definition of Ii, uivi ∈ Fj\Fi, we would have δ(W ) ∩ Fi ⊂ Fj .
But this is a contradiction with Condition 3) of Theorem 4.8 (see Figure 10).

∈ Fi

dk

ui vi

ok

W W

Qk
i

Q
k

i

dk

ok

W W

Qk
j

∈ Fj , j ∈ Ii

uj vj

Q
k

j

Fig. 10 –

Let k ∈ γ(W ) be a commodity accross the cut. As the graph G(W ) (resp. G(W )) is F-connected,

for all j ∈ {1, . . . , t}\Ii, there exists a path Qkj (resp. Q
k
j ) between ok and ui (resp. vi and dk) in

Gj(W ) (resp. Gj(W )). For j ∈ Ii, by the previous remark, there is an edge ujvj of (δ(W )∩Fi)\Fj .
We may suppose that uj ∈W and vj ∈W . For the commodity k, and for all j ∈ Ii, similarly, there

is a path Qkj (resp. Q
k
j ) between ok and uj (resp. vj and dk) in Gj(W ) (resp. Gj(W )).

Now, we can complete the partial dimensioning already performed in W and W . We install

for commodity k,
⌈

ωk

10

⌉

high capacities on each edge that belongs to at least one path Qkj , Q
k
j ,

j = 1 . . . , t. We then add successively these capacities for each commodity of γ(W ). These new
capacities, added to those already installed in W and W , permit to have a feasible dimensioning
for all the commodities and all the edges of E(W ) ∪ E(W ). This dimensioning of the edges of
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E(W ) ∪ E(W ) can be given as follows,

x1
uv = 0 for all uv ∈ E(W ) ∪ E(W ),

x2
uv =

∑

k | ok, dk ∈W
uv ∈ ∪jP

k
j

⌈ωk

10

⌉

+
∑

k ∈ γ(W )
uv ∈ ∪jQ

k
j

⌈ωk

10

⌉

for all uv ∈ E(W ),

x2
uv =

∑

k | ok, dk ∈W

uv ∈ ∪jP
k
j

⌈ωk

10

⌉

+
∑

k ∈ γ(W )

uv ∈ ∪jQ
k
j

⌈ωk

10

⌉

for all uv ∈ E(W ).

(46)

As DW ≥ 4, for the edges of δ(W ), we can consider the following dimensioning,

x1
ujvj

= DW mod 4 for all j ∈ Ii ∪ {i},

x1
uv = 0 for all uv ∈ δ(W )\ ∪j∈Ii∪{i} {ujvj},

x2
ujvj

=
⌊

DW

4

⌋

for all j ∈ Ii ∪ {i},

x2
uv = 0 for all uv ∈ δ(W )\ ∪j∈Ii∪{i} {ujvj}.

(47)

Also consider the flows on the paths P kj , P
k
j , Q

k
j , Q

k
j , j = 1, . . . , t, given by

f
k,i
uv = ωk

for all k such that ok, dk ∈W (resp. ok, dk ∈W ),

j = 1, . . . , t, uv ∈ P kj , (resp. uv ∈ P
k
j ) and uv traversed from u

to v in P kj (resp. P
k
j ),

f
k,i
uv = ωk for all k ∈ γ(W ) j = 1, . . . , t, uv ∈ Qkj , (resp. uv ∈ Q

k
j )

and uv traversed from u to v in Qkj (resp. Q
k
j ),

f
k,i
uv = ωk for all k ∈ γ+(W ) (resp. γ−(W )),

u = uj (vj), v = vj (uj) j ∈ Ii ∪ {i},

f
k,i
uv = 0 otherwise.

(48)

The solution (x1, x2, f) given by (46), (47) and (48) is feasible for MCSIPNDna
m (G,F,K).

Let pq ∈ E(W ) ∪ E(W ) ∪ (Fi ∩ δ(W )). And let (x1′ , x2′ , f ′) be the solution such that

x1′
uv = x1

uv for all uv 6= pq,

x1′
pq = x1

pq + 1,

x2′ = x2,

f
′

= f.

Clearly, (x1′ , x2′ , f ′) is feasible for MCSIPNDna
m (G,F,K). Furthermore, (x1, x2, f) and (x1′ , x2′ , f ′)

satisfy inequality (44) with equality. In consequences, both solutions satisfy inequality (45) with
equality. This yields b1pq = 0. Similarly, one can show that b2pq = 0. As pq is an arbitrary edge of

E(W )∪E(W )∪ (Fi ∩ δ(W )), we then have b1uv = b2uv = 0 for all uv ∈ E(W )∪E(W )∪ (Fi ∩ δ(W )).

Now, consider the edge uivi (introduced above) and the solution (x̃1, x̃2, f̃) such that

x̃1
uivi

= x1
uivi

+ 4,
x̃1
uv = x1

uv for all uv ∈ E such that uv 6= uivi,

x̃2
uivi

= x2
uivi
− 1,

x̃2
uv = x2

uv for all uv ∈ E such that uv 6= uivi,

f̃ = f.

The solution (x̃1, x̃2, f̃) is defined from (x1, x2, f) by replacing a high capacity on uivi by 4 small
ones. Hence, this solution is feasible. Furthermore, as (x̃1, x̃2, f̃) satisfies (44) with equality, it also
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satisfies (45) with equality. This implies that 4b1uivi
= b2uivi

. As uivi is an arbitrary edge of δGi
(W ),

we then get
b2uv = 4b1uv for all uv ∈ δ(W )\Fi.

Consider again an edge pq ∈ E(W ) ∪ E(W ) ∪ Fi and the solution (x1, x2, f) introduced above.
Let k′ ∈ K be a commodity and j′ ∈ {1, . . . , t} a failure. Consider (x̂1, x̂2, f̂) given by

x̂1 = x1,

x̂2 = x2,

f̂k
′,j′

pq = fk
′,j′

pq + ε,

f̂k
′,j′

qp = fk
′,j′

qp + ε,

f̂k,juv = fk,juv for all uv ∈ E\{pq}, for all k ∈ K, for all j ∈ {1, . . . , t},

where 0 < ε < 1
2 . Note that as the capacity of edge pq is sufficiently big, we have a residual capacity

to carry more flow. In consequences, (x̂1, x̂2, f̂) is feasible. Moreover, this solution satisfies inequality

(44), and hence (45), with equality. As (x1, x2, f) also satisfies (45) with equality, we obtain λk
′,j′

pq ε+

λ
k′,j′

qp ε = 0 implying that λk
′,j′

pq = −λk
′,j′

qp . As pq is an arbitrary edge of E(W ) ∪ E(W ) ∪ Fi, and k′

and j′ are arbitrary in K and {1, . . . , t}, respectively, we obtain

λk,juv = −λk,jvu for all uv ∈ E(W ) ∪ E(W ) ∪ Fi, for all k ∈ K and all j ∈ {1, . . . , t}.

Now consider again the edge uivi of δ(W )\Fi. By Condition 5) of Theorem 4.8, if we consider
the solution (x1, x2, f), as uivi has a sufficiently big capacity, we can add more flow on this edge.

In a similar way we can show that λk
′,j′

uivi = −λk
′,j′

viui . And as uivi is chosen arbitrarly in δGi
(W ), like

k′ and j′ in K and {1, . . . , t}, we obtain

λk,juv = −λk,jvu for all uv ∈ δGi
(W ), for all k ∈ K and all j ∈ {1, . . . , t}.

We have then shown that

λk,iuv = −λk,ivu for all uv ∈ E, for all k ∈ K and all j ∈ {1, . . . , t}. (49)

We now show that
∑

k∈K

∑

uv∈E(λk,juv f
k,j
uv + λ

k,j
vu f

k,j
vu ) is a constant for all failure j = 1, . . . , t, by

showing that the sum of the coefficients, corresponding to any cycle in the network, equals zero.
Let ∆ denote the set of cycles in D = (V,A). Consider a failure j ∈ {1, . . . , t} and a particular

cycle ξ ∈ ∆. Let λk,jξ =
∑

(u,v)∈ξ λ
k,j
uv . We will show that λk,jξ = 0 for all cycle ξ ∈ ∆. Call ξ an

s-intersection cycle with respect to the cut δG(W ) if ξ contains exactly s arcs of δG(W ). Note that
s must be even as ξ is a cycle.

If ξ is a 0-intersection cycle, then ξ is completely contained in W or W . We suppose w.l.o.g.,
that ξ is in W . Let k ∈ K and (x̌1, x̌2, f̌) be the solution given by

x̌1
uv = x1

uv + 1 for all uv ∈ E(W ) such that (u, v) ou (v, u) ∈ ξ,
x̌1
uv = x1

uv for all uv ∈ E(W ) such that (u, v) ou (v, u) 6∈ ξ,
x̌2
uv = x2

uv for all uv ∈ E,

f̌
k,j
uv = f

k,j
uv + 1 for all (u, v) ∈ ξ,

f̌
k,j
uv = f

k,j
uv for all (u, v) 6∈ ξ,

f̌
k,h
uv = f

k,h
uv for all (u, v) ∈ A, for all h ∈ {1, . . . , t}\{j}.

Here, we construct solution (x̌1, x̌2, f̌) from solution (x1, x2, f) by installing a small capacity on all
the edges in ξ and by sending an additional unit of flow on ξ. Solution (x̌1, x̌2, f̌) is still feasible and
satisfies (44) with equality. Hence (x̌1, x̌2, f̌) satisfies (45) with equality, and in consequence we get

∑

uv∈E(W )

b1uvx
1
uv −

∑

uv∈E(W )

b1uvx̌
1
uv +

∑

(u,v)∈ξ

(λk,juv f
k,j
uv − λ

k,j
vu f

k,j
vu ) = 0.
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As b1uv = 0 for all uv ∈ E(W ), we obtain
∑

(u,v)∈ξ −λ
k,j
uv = 0, and then λ

k,j
ξ = 0. As cycle ξ, the

commodity k and the failure j are arbitrary, we have then shown that

λ
k,j
ξ = 0 for all 0-intersection cycle ξ ∈ ∆, for all k ∈ K

and for all j ∈ {1, . . . , t}.
(50)

Now suppose that ξ is a 2-intersection cycle. Assume that (p, p̄) and (q, q̄) are the cutset arcs
belonging to δG(W ) ∩ ξ with p, q ∈W and p̄, q̄ ∈W .
If p = q and p̄ = q̄, then ξ can be decomposed into three cycles : a 0-intersection cycle denoted
by ξ1 contained in W , a 0-intersection cycle denoted by ξ2 contained in W and a cycle formed by
the arcs (p, p̄) and (p̄, p) = (q̄, q). We then have λk,jξ = λ

k,j
ξ1

+ λ
k,j
ξ2

+ λ
k,j
pp̄ + λ

k,j
p̄p . As ξ1 and ξ2 are

0-intersection cycles, λk,jξ1 = λ
k,j
ξ2

= 0 and by (49), we have λk,jpp̄ = −λk,jp̄p . Thus λk,jξ = 0.
Now suppose that pp̄ 6= qq̄ and one of the two edges pp̄ or qq̄ belongs to Fi. We suppose, w.l.o.g.,
that qq̄ ∈ Fi and pp̄ 6∈ Fi. Let pp̄ be the edge which belongs to δGi

(W ). One can construct a feasible
solution (x̆1, x̆2, f̆) in a similar way as (x1, x2, f) (given above for the edge uivi). Remark that

x̆1
pp̄ = DW mod 4 and x̆2

pp̄ =
⌊

DW

4

⌋

. Consider the solution obtained from (x̆1, x̆2, f̆) by installing

a small capacity on all the edges of ξ ∩ (E(W ) ∪ E(W ) ∪ Fi), and by sending ε units of flow on ξ

(for a certain ε > 0). The additional flow is possible since by Condition 5) of Theorem 4.8, there is
a positive residual capacity on the edge pp̄. This new solution is feasible. As both solutions satisfy
(44) with equality and hence (45), we get λk,jξ = 0.

If pp̄ = qq̄ and pp̄, qq̄ 6∈ Fi, we define a solution (ẋ1, ẋ2, ḟ) by considering for the edges of the cut
δGi

(W ) the following values

ẋ1
pp̄ = DW mod 4,

ẋ1
uv = 0 for all uv ∈ δGi

(W ),

ẋ2
pp̄ =

⌊

DW

4

⌋

− 1,

ẋ2
qq̄ = 1,

ẋ2
uv = 0 for all uv ∈ δGi

(W )\{pp̄, qq̄}.

For the dimensioning of E(W ) and E(W ), we suppose that we have installed a sufficient capacity
which permits to carry the flows of the commodities in W and W on the paths fully contained in
G(W ) and G(W ). These capacities can be taken as big as we want. So, by Condition 5) of Theorem
4.8, the commodities of γ(W ) can be routed in such a way that pp̄ and qq̄ contain at least ε (for a
certain ε>0) units of residual capacity. This solution is feasible and satisfies (44) and then (45) with
equality. Using the residual capacity ε on pp̄ and qq̄, one can obtain a new feasible solution from
(ẋ1, ẋ2, ḟ) by adding an additional flow ε along ξ for commodity k, and installing a small capacity
on the edges of ξ not in δGi

(W ). This new solution is also feasible and satisfies (44) and (45) as
equalities. As commodity k ∈ K, the failure j ∈ {1, . . . , t} and the 2-intersection cycle ξ ∈ ∆ are
arbitrary, we have that

λ
k,j
ξ = 0 for all 2-intersection cycle ξ ∈ ∆, for all k ∈ K

and for all j ∈ {1, . . . , t}.
(51)

Now consider an arbitrary s-intersection cycle ξ. Let k be a commodity and j be a failure. Let ξ
be the cycle given by {(s1, s2), (s2, s3), . . . , (sT , s1)} with s1 ∈W . Let (st1 , st2) be the first arc of the
cycle ξ that crosses δ(W ) and (st3 , st4) the first subsequent arc that re-enters set W . Note that cycle

ξ′ = {(st1 , st2), . . . , (st3 , st4), (st4 , st1)} is a 2-intersection cycle. We then have λk,j
ξ′\(st1 ,st4) = λ

k,j
st1st4

.

So, we can replace the path ξ′\(st1 , st4) by the arc (st1 , st4). Repeating this argument, one can

construct a 0-intersection cycle ψ that satisfies λk,jξ = λ
k,j
ψ . As k and j are arbitrary, we obtain that

λ
k,j
ξ = 0 for all cycle ξ ∈ ∆, for all k ∈ K

and for all j ∈ {1, . . . , t}.
(52)
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We have shown that
∑

k∈K

∑

uv∈E(λk,juv f
k,j
uv + λ

k,j
vu f

k,j
vu ) is a constant, say λj, for any failure

j ∈ {1, . . . , t}.

We can now show that b1uv = ρ1 and b2uv = ρ2 for all uv ∈ δGi
(W ). Consider the solution

(x1, x2, f) given in the beginning of the proof, an edge pq ∈ δGi
(W ) such that pq 6= uivi, a commodity

k′ ∈ K and a failure j ∈ {1, . . . , t}. Let P (ui, p) be a path from node ui to p fully contained in W

and P (q, vi) a path from q to vi in W . Consider the solution (ẍ1, ẍ2, f̈) such that

ẍ1
uivi

= x1
uivi
− 1 = DW mod 4− 1,

ẍ1
pq = 1,

ẍ1
uv = x1

uv for all uv ∈ δG(W )\{uivi, pq},
ẍ1
uv = x1

uv + 1 for all (u, v) ∈ P (ui, p) ∪ P (q, vi),

ẍ1
uv = x1

uv for all (u, v) ∈ E(W ) ∪E(W )\(P (ui, p) ∪ P (q, vi)),
ẍ2
uv = x2

uv for all uv ∈ E.

Define the flows as follows.

f̈k
′,j

uv = fk
′,j

uv + 1 for all (u, v) ∈ P (ui, p) ∪ P (q, vi),

f̈k
′,j

uivi
= fk

′,j
uivi
− 1,

f̈k
′,j

pq = 1,

f̈k
′,j

uv = fk
′,j

uv for all uv ∈ E\(P (ui, p) ∪ P (q, vi) ∪ {uivi, pq}),

f̈k,huv = fk,huv for all uv ∈ E, for all k ∈ K\{k′}, for all h ∈ {1, . . . , t}\{j}.

Solutions (x1, x2, f) and (ẍ1, ẍ2, f̈) are feasible and satisfy constraint (44) with equality. In conse-
quence, they also satisfy (45) with equality. This implies that

b1uivi
− b1pq −

∑

uv∈P (ui,p)∪P (q,vi)

ρ1
uv −

∑

(u,v)∈P (ui,p)

λk
′,j
uv −

∑

(u,v)∈P (q,vi)

λk
′,j
uv + λk

′,j
uivi
− λk

′,j
pq = 0.

As b1uv = 0 for all uv ∈ E(W ) ∪ E(w) and by (49) λk
′,j
uivi = −λk

′,j
viui , we have

b1uivi
− b1pq −

∑

(u,v)∈P (ui,p)

λk
′,j
uv − λ

k′,j
pq −

∑

(u,v)∈P (q,vi)

λk
′,j
uv − λ

k′,j
viui

= 0.

As P (ui, p), pq, P (q, vi) and viui form a cycle, we have b1uivi
− b1pq = 0. As pq was chosen arbitrarily,

we obtain b1uv = ρ1 for all uv ∈ δGi
(W ) for ρ1 ∈ IR. Since b2uv = 4b1uv for all uv ∈ δGi

(W ), we have
also b2uv = 4ρ1 for all uv ∈ δGi

(W ).

Thus, inequality (45) is equivalent to

ρ1x1(δGi
(W )) + 4ρ1x2(δGi

(W )) +

t
∑

j=1

λj = λ,

which implies that
ρ1x1(δGi

(W )) + 4ρ1x2(δGi
(W )) = λ′

where λ′ = λ−
∑t

j=1 λj . As the face defined by inequality (45) is not empty, ρ1 6= 0 and we obtain
that

x1(δGi
(W )) + 4x2(δGi

(W )) =
λ′

ρ1
= DW .

�
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