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Abstract  

In an upstream supply chain dedicated to the mass production of customized products, decentralized 

management can be an efficient and effective method in a steady state in which stochastic 

characteristics of customers’ demands remain stable. However, this is possible only if all echelons 

that precede the final assembly line use periodic replenishment policies that restrain the stockout risk 

to a low predetermined probability. The safety stocks’ levels are more difficult to define for 

alternative or optional parts, as well as the components they use, whose demands are weighted sums 

of random variables, affected by several random factors and organizational constraints. The factors 

and constraints to consider are not the same for supplied and produced components. The random 

demand of a component depends on the demand of alternative or optional parts mounted in the final 

product, through a double transformation involving the bill of materials explosion, which is at the 

origin of the weighted sum of random variables, and time lags. In the steady state, the knowledge of 

the probability distribution of that random variable allows for the determination of safety stocks that 

decouple the management of upstream supply chains. Progressive changes in the steady state require 

periodic and progressive adaptations of the safety stocks that do not directly depend on the final 

demand knowledge. 

Keywords: supply chain coordination, information sharing, upstream supply chain, bullwhip effect, 

periodic review policy, order penetration point 

1. Introduction 

In mass production systems of customized products that use a build-to-order supply chain (BTO-

SC; Anderson and Pine, 1997; Gunasekarana and Ngaib, 2005, 2009), differentiation results from the 

combination of n optional or alternative components. These components come from n different sets 

and are assembled on n different workstations in an assembly line. The upstream supply chain (USC) 

thus consists of units that contribute to the production of the final assembly line. The various links of 

the chain connect through flows of products and information. In addition, production decisions made 

by the last production link (i.e., the assembly line) determine the production of the USC.  

Two obstacles prevent centralized control of the USC by assembly lines: Many units belong to 

independent companies, and a link might belong to several supply chains (e.g., supply chains 
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monitored by Ford and General Motors have many common links). The behavior of the chain, and 

thus its global performance, depends on the information and product exchanges that take place among 

the links, as well as the control rules used to make provisioning and production decisions. 

 The BTO-SC is characterized by slow changes in the level and structure of final demand. In this 

context, USC echelons may use periodic policies, with rules that assume steady state and are 

periodically revised, ensuring decision autonomy and avoiding the propagation of disturbances. This 

independence implies safety stocks with properly defined levels to guarantee against a given stockout 

risk (effectiveness) at the lowest cost (efficiency). This article examines provisioning and production 

decisions in a BTO-SC that deals with optional or alternative components and the various parts those 

components require. We combine results from supply chain literature to suggest efficient rules for 

monitoring the provisioning or production of optional or alternative parts and their components. Not 

only is this global scope relatively new, but in comparison with existing literature, our approach offers 

three key specificities as well.  

Prior research suggests several reasons to maintain safety stock in a supply chain, namely, to 

mitigate stockout risks due to random variations of demand, delivery lead times, quality problems, or 

forecast errors, which also determine the necessary risk to account for in supply or production orders. 

Hundreds of analytical models combine different hypotheses regarding demand characteristics and 

behavior, pricing, provisioning, and physical or financial constraints; in general, they produce 

expected cost functions and offer analytical solutions based on optimal stockout probabilities that 

depend on the cost structure. Simulation models can often find good solutions when models are too 

complex to yield analytical solutions. However, for the type of USC we study, the costs a stockout 

induces, which triggers the stoppage of assembly lines,  are so high that the use of an analytical model 

based on some expected cost function is ineffective. Instead, we suggest basing the provisioning 

policy of optional or alternative parts (and their components) on periodic replenishment rules that 

depend on an arbitrary, very low stockout probability; the order-up-to level defines the safety stock. 

The demand of an optional or alternative part (or one of its components) is a weighted sum of random 

variables due to the bill of materials (BOM) explosion and is affected by a combination of several 

random factors (e.g., probability of use, variable lead time, quality problems) and logistics constraints 

(batch size, transport capacity limitation) or organizational constraints. Determination of an optional 

or alternative part is tractable through the use of the Monte Carlo approach. 

In addition, the pernicious effects of decisions based on local information are well known for the 

downstream supply chain, especially for low-cost, standardized, mass products. They propagate 

oscillations of increasing amplitude along the supply chain (Forrester, 1958), creating the bullwhip 

effect (BWE; Lee et al., 2004). Several causes of the BWE are listed in Lee et al.’s (1997) classic 

article and extended in other articles, and Gearya et al. (2006) point out the main issues of the BWE. 

Several articles have tried to quantify the BWE, though rarely in the real world (Hanssens, 1998) and 

usually in a hypothetical context (Ouyang and Li, 2010; Springer and Kim, 2010). In general, the 
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supply chain is limited to a set of two linked nodes or sometimes to a serial network; several articles 

also discuss a general network (Ouyang and Li, 2010; Sucky, 2009) but then rarely extend it to the 

first-tier suppliers of assembly lines (plant level) or further, even in macro-economic studies (Cachon, 

2007). In most cases, research solely considers supply chain distribution, focusing on the mass 

production of customized products. Furthermore, prior research relies on two main modeling 

approaches—analytical (e.g., Lee et al., 1997) and simulation (e.g., Sucky, 2009)—to suggest 

solutions to mitigate the BWE, generally through information sharing. In contrast, we consider the 

USC from a general network perspective, using an analytical approach; we are not interested in 

measuring the BWE or suggesting solutions to avoid it. In the context of the automotive industry, 

which we study, BWE is observable, but its mechanisms are relatively unknown. Because of their 

high selling prices, cars are subject to individual tracking; thus, the amplification effects observed in 

the distribution networks of low-cost, mass products are unlikely to occur. Upstream, production aims 

to meet the demands of a single customer, the final assembly line. Without reliable information, 

autonomous USC plants are likely to overreact to stock shortages and the presence of excessive 

inventories, which should yield increasing fluctuations along the USC even as the daily production of 

the final assembly line remains stable. Therefore, the daily consumption of optional or alternative 

components varies, but their randomness may be poorly estimated in provisioning decisions. Even 

commercial actions (e.g., rebates, incentives, limited series) by the company that owns the final 

assembly line can generate disturbances along the USC. We show why the transmission of 

appropriate information to each echelon enables the avoidance of BWE, if properly used, and allows 

decentralized management. 

Finally, information sharing is the last point we use to position our article. Firms can share raw 

information, such as sales histories, orders, inventory positions, and deliveries, or they can share 

processed information related to planned or forecast demand (Ryu et al., 2009). Different forms of 

information sharing are useful for decreasing costs and risks in short-term decision making (Chandra 

et al., 2007). The propagation of demand also means that many companies can improve the 

performance of their supply chain by treating the value of information as an important issue. Most 

research classifies the shared information problems according to the structure of the supply chain, the 

decision level, the production information model, and the improvement of a supply chain’s 

performance. 

Accordingly, most articles focus on sharing information in a two-level supply chain structure—

that is, between producers and distributers—to improve order preparation through an automatic 

reduction of costs and a decrease of stock-out. This configuration ignores the problem of capacity 

allocation and the phenomenon of shared resources. Regarding the production information model, 

various approaches note that a system can use a build-to-stock strategy in a traditional supply chain, 

but this literature still leaves gaps regarding the repercussions for a BTO-SC if the value of 

information pertains strongly to the positioning of the order penetration point (OPP) or if the products 
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in the USC are not the same. Sharing information and coordinating flows make it possible to improve 

the performance of a supply chain, as well as the source, nature, potential, and localization of 

information—topics that remain vague in existing literature. For example, Cachon and Fisher (2000) 

claim that the operational benefit of sharing information and coordination can span from 0% to 35% 

of the total costs. This disparity relates to the various structures of the chain, assuming that operations 

vary from one chain to another, and the problems considered. Most research focuses on a build-to-

stock strategy and assumes stationary and stochastic demand, as well as an infinite planning horizon. 

Cachon and Fisher (2000) also study the value of information in a supply chain with one supplier, N 

identical retailers, and independent and identically distributed demands. With a moving average 

demand forecast method, Chen et al. (2000) reduce the BWE by centralizing the demand information. 

In modeling the value of information sharing, most studies assume that the supplier has full 

knowledge of the underlying demand model and the order policy used by the retailer, an unrealistic 

assumption for a BTO-SC. As we show subsequently, for the USC, the shared information is not raw 

data but rather the result of a double transformation. 

We begin by investigating a steady state of periodic provisioning policies in the supply chain and 

then considering the conditions in which it is possible to use information to adapt steady-state 

policies, preserve their performance, and detect the transformations of the demand structure. Because 

ignoring such rules may disturb the functioning of the USC, decentralized management in the supply 

chain requires information sharing and the use of consistent management rules across various links. 

In Section 2, we define those rules in the steady state, for alternative or optional components and 

their parts, taking into account the randomness of exogenous factors and the incidence of 

organizational parameters. In Section 3, we discuss adaptation of those rules when the steady-state 

assumptions do not hold. Some disturbances in the BTO-SC are generated as a result of decisions 

made by the company that owns the final assembly line; thus, we explain why information to define 

the correct provisioning or production rules for a given echelon of the USC is not raw data about final 

demand but rather a result of a double transformation. We also provide solutions to some 

implementation problems. In the conclusion section, we emphasize that specific information sharing 

in a BTO-SC, which guarantees decision autonomy and performance, requires effective cooperation 

across USC echelons. 

2. Conditions of decision independence of USC units in a steady state 

In the steady state, daily production by the BTO-SC is constant, and the structure of demand is 

stable. In this context, periodic policies can monitor production and supply at each stage of the USC. 

Appropriate safety stocks guarantee the independence of decisions in these stages. A general analysis 

of USC safety stocks shows some shared characteristics and the need to distinguish safety stocks of 

supplied components from those of produced components. 
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2.1. General analysis of safety stock needs in the steady state 

First, we introduce reasons to create safety stocks. Second, we consider the characteristics of the 

distribution to calibrate the safety stock and specify the factors that influence it. Third, we reveal the 

relationship between safety stocks and stockout probability. Fourth, we study the analytical 

relationship between safety stocks and expected stock before delivery. The appendix presents a 

summary of notations used. 

2.1.1. Location and justification for safety stocks 

A replenishment policy includes safety stocks to address unknown demand. The stock might 

include products ordered to meet the needs of a production (or distribution) unit, as well as those 

manufactured by a production unit when that unit cannot build to order completely. A basic periodic 

replenishment policy places a periodic order equal to the difference between its order-up-to level R 

and the inventory position observed at the time of the order. The order interval is θ, and R depends on 

the target stockout probability α before the delivery, which might be given by economic calculations. 

Safety stock equals the difference between R and the average demand over the same period. Safety 

stock also appears in replenishment policies of the type “order quantity q – reorder point r,” in which 

r behaves like R. High value of α can lead to negative safety stock, which is meaningless from an 

operational point of view. 

In periodic replenishment policies, the safety stock definition depends on the order-up-to level R. 

Inventory models use cost functions to propose analytical optimal relations to determine R, which 

always corresponds to the percentile of the demand distribution associated with an optimal value of 

the stockout probability α, which in turn depends on the cost structure in the cost function. In general, 

for members of the USC, unsatisfied demand is delayed, and α is very low. In that case, two 

observations emerge: For the supplier, the ordered quantity, which corresponds to a sum of random 

demand, is a random variable that reflects the demands its customer must satisfy. This property is not 

valid if some supplied parts are rejected for quality reasons; it is then necessary to add the number of 

rejected components to demand since the last order. 

With a relevant calibration of safety stock in the various stages, a supply chain can operate without 

significant fluctuations. The quality of the calibration mainly depends on the propagation of 

appropriate information from downstream to upstream. We analyze the safety stocks of stage B in the 

sub-network A → B → C in a supply chain. Stage B might hold two kinds of safety stocks because of 

its upstream and downstream relationships.  

First, production safety stocks include the components i produced by B to be sold to its customer 

(stage C) when the OPP of C in its production system does not allow B to build to order completely. 

These safety stocks are held by the supplier. We assume that customer C transmits an order of qit 
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components i to its supplier B at the beginning of day t. The delivery occurs at the beginning of day 

iLR α , and the lead time is λi ( i iDλ ≤ ). The next order is placed at the beginning of day it θ+ , after 

which supplier B has i iD λ−  days to fulfill the order. If this duration is lower than the manufacturing 

lead time Fi of component i, the supplier fills the order by taking the needed quantities from its stocks. 

The process depends on both the random characteristics of customer demand and the accepted 

stockout risk. In the opposite case ( i i iD Fλ− > ), B can build to order. If the interval i iD λ−  is greater 

than the order interval iθ , C uses the information from its production schedule beyond its immediate 

needs. The anticipation of a requirement enables B to move from a build-to-stock to a build-to-order 

production system. Furthermore, it allows supplier A, producing for B, to build to order. This 

propagation increases effectiveness (fewer stockouts) and efficiency (less safety stock) at the same 

time. However, this assertion cannot hold if product quality is not guaranteed.  
Second, provisioning safety stocks relate to component j acquired from a supplier (A) to be used in 

production by B. These stocks are held by the customer (here, B), in contrast with the preceding case. 

The order qjt of the component j sent by B to its supplier A at the beginning of day t is delivered at the 

beginning of day jDt +  with a delivery lead time λj ( jj D≤λ ). When B sends A an order, B has 

already defined the production program for using component j up until the beginning of day jPt + . If 

the planning horizon Pj is higher than or equal to the due date time Dj, the order corresponds exactly 

to the forecast consumption, and no safety stock should be held. Otherwise, if ( )j jD P> , safety stock 

is necessary if the order is based entirely on statistical knowledge of needs ( j j jD P θ− ≥ ) or if it relies 

partly on firm demand and partly on statistical knowledge of needs during the period (
jj jD P θ− < ).  

Several factors combine to influence the determination of the probability distribution of demand 

for one period. It requires the use of a Monte Carlo simulation to calculate the distribution 

empirically. An alternative component i always has the same probability pi of being included in a 

product. Therefore, demand for that component is a random variable that comprises three sources of 

variation: (1) the size of the production set to consider, or the product of daily production n by the 

number L of production days, where L can be certain or random (a priori, L can be random only for 

the supplier’s components); (2) in the steady state, where the demand to satisfy XiL is defined for L days, 

which follows a binomial distribution B (nL, pi); and (3) if a delivered product has a positive probability 

πi of being defective, XiL demand has little chance of being satisfied entirely, so the distribution must 

include the quality impact. Therefore, we consider four elementary cases. 

Case 1 (constant number L of days of demand to cover, guaranteed quality). The binomial 

distribution is not continuous, nor is its cumulative distribution. The definition of a percentile RiLα 

implies a convention: We retain the lowest value of RiLα, such that demand XiL has a probability lower 

than α of being exceeded. 
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Case 2. If L is random and quality is guaranteed, demand XiL follows a binomial distribution 

B (nL, pi). The number of trials is a random variable, so the determination of this probability 

distribution is analytically complex. It can be achieved empirically with the Monte Carlo method. If L 

is discrete, these distributions present a multimodal pattern that becomes more accentuated as the 

probability pi increases. 

Cases 3 and 4. L is deterministic or random, but quality is not guaranteed, so a delivered 

component is defective with probability πi. To meet XiL demand, it is necessary to obtain an extra 

quantity ziL and make XiL + ziL components available. The number of defective parts in this case 

follows the binomial distribution B (XiL + ziL, πi). The ziL quantity is an occurrence of the random 

variable ZiL, which follows the negative binomial distribution NB (XiL, πi), whose cumulative 

probability P(ZiL ≤ ziL) corresponds with the probability of a maximum of ziL defective parts in a batch 

of XiL + ziL parts. Thus, it is necessary to use the probability distribution of the number of parts 

available, YiL = XiL + ZiL, to determine the value of the percentile αiLY  that, with a probability α, 

cannot cover the demand, taking into account the three sources of random factors. 

In addition, demand can be the sum of demands from several “customers,” each of which 

represents one of these four cases. The probability distribution of that compounded demand is more 

complex, because demand for a component c is the weighted sum of independent demands: the part 

i′ , which belongs to a subset Ec of alternative parts mounted in a car assembly line, can include cia ′  
units of component c because of the mechanism of the BOM explosion, which is well known in 

material requirements planning (MRP). For example, gears provided to replenish stock are used in the 

production line of gearboxes mounted on the car assembly line. Demand ci ci ciX a V′ ′ ′= ⋅  for 

component c of an alternative part i′  derives from ciV ′ , which follows a binomial distribution 

B  ( cin L ′⋅ ; ip ′ ), where ciL ′  is the number of production days to consider when defining the demand 

of component c by alternative part i′  in the determination of the replenishment policy of component c. 

The probability distribution of the total demand 
cc ciiX X ′′∈= ∑ E  can be obtained through simulation. 

If ,cia a i′ ′= ∀  and ,ciL L i′ ′= ∀ , then cX  follows the binomial distribution B  ( n L⋅ ; c ii p ′′∈∑ E ). 

Demand for component c may come from several assembly lines l that have a daily production nl; in  

line l, alternative part li′ , which belongs to a subset E
cl of alternative parts that include component c, 

uses 
lcia ′  units of component c, and 

lciL ′  is the number of production days to consider when defining 

the demand of component c by alternative part li′ . Demand 
l l lci ci ciX a V′ ′ ′= ⋅  for component c of an 

alternative part li′  derives from the 
lciV ′  demands, which follow the binomial distribution 

B  (
ll cin L ′⋅ ;

lip ′ ). Then, the probability distribution of total demand 
ll clc cil iX X ′′∈= =∑ ∑ E  

l ll cl ci cil i a V′ ′′∈ ⋅∑ ∑ E is obtained through simulation. In both cases, if a problem of quality arises for 
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component c, we use the distribution of c c cY X Z= + , where Zc follows a negative binomial 

distribution BN  ( cX , πc). Again, a simulation is mandatory. We analyze this pegging mechanism in 

detail in Section 3.  

Table 1 numerically illustrates the four base cases and the case of compound demand, using data 

from the automotive industry. Here, n = 962, pi = 54%, L is fixed to 12 or 1 or is left random (discrete 

uniform DU [10, 14]), and α = 0.01%; for compound demand, 1 24 6X V V= ⋅ + ⋅ , where V1 ~ B  (962L, 

0.54) and V2 ~ B   (962.L, 0.05), L = 1 or L ~ DU  (10, 14), and π = 0% or 1% (in which case, Y 

replaces X). Thus, we can obtain the order-up-to level Ri and safety stock SSi using the Monte Carlo 

method, which is the only way to obtain a solution, except for case 1. These results, which we use 

hereinafter, show the impact of the increase of randomness due to the adjunction of random factors on the 

required safety stock. 

Table 1. Numerical determinations of Ri and SSi., with α = 0.01% 

  Case 1 Case 2 Case 3 Case 4 Compound Demand 
L 12 DU  (10, 14) 12 DU  (10, 14) 1 DU  (10, 14) 

π 0% 0% 1% 1% 0% 1% 
 iLY  6233.8 6233.8 6296.7 6296.7 2366.5 28685.1 
( )iLYσ   53.5 736.5 54.7 744 73.9 486.9 
Ri 6433 7461 6500 7539 2644 30143 
SSi 199.2 1227.2 203.3 1242.3 22.5 1457.9 

In general, safety stock varies in the same direction as the coefficient of variation (ratio of the 

standard deviation of the demand distribution to its average) but opposite to the direction of accepted 

risk. Safety stock relations can be established when the order-up-to level is defined to meet the needs 

of an alternative or optional component in a BTS-SC in the steady state. We consider case 1 in which 

demand follows a binomial distribution B (nL, pi). In some conditions, especially when nLpi has a 

sufficiently high value, an approximation of this distribution can be given by the normal distribution 

N  ( nLppnLp iii )1(, − ). The definition of the standard normal variable tα is associated with a stockout 

probability α, so the percentile αiLR  relates to tα  according to the expected value of the demand 

distribution, and its standard deviation is )1( iiiiL pnLptnLpR −+= αα . The safety stock, 

iiLiL nLpRSS −= αα , is then defined by )1( iiiL pnLptSS −= αα . Many industrial companies use the 

concept of a safety coefficient to calculate safety stock. This safety coefficient refers to a constant to 

multiply with the demand average to calculate safety stock. We can express it as a function of the 

coefficient of variation, or iii nLpnLpp /)1( − = )/()1( ii nLpp− . The value of this safety coefficient 

is )/()1( ii nLppt −α , which leads to Equation 1 
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)
1

1()1(
i

i
iiiiiL nLp

p
tnLppnLptnLpR

−
+=−+= αα ; )1( iiiL pnLptSS −= αα . [1] 

However, many companies cannot use the safety coefficient of an alternative component as a 

constant. That is, its use depends on the required risk protection, the size of the set affected by risk, 

and the probability of use of the considered alternative component. 

If the probability of stockout before delivery is low, the expected value of the component shortage 

Is( αiLR ) also is low. Therefore, the safety stock approaches the expected value of residual stock 

before delivery. In general, the expectation Ir( αiLR ) of residual stock at the end of a period with 

demand XiL is given by Equation 2: 

)(I)(E)(I sr ααα iLiLiLiL RXRR +−= . [2] 

The order-up-to level αiLR  must meet demand XiL, and Equation 2 is valid, regardless of the 

probability distribution of XL. When the stockout probability is negligible, Is( αiLR ) is close to 0, 

which can be proved easily when an analytical relation of the expected value of the component 

shortage exists (e.g., normal or Poisson distribution). The average residual stock before delivery 

Ir( αiLR ) is close to the safety stock )(E LiL XR −α . The average residual stock and average stockout 

vary in opposite directions and generate, respectively, carrying costs and stockout costs for the 

company. For example, with the data from case 1, when α = 0.01%, R1Lα = 6433, Is(R1Lα) = 0.001, and 

Ir(R1Lα) = 199.24. 

2.2. Safety stock of supplied components 

Determination of the safety stocks of supplied components may depend on logistic constraints 

(e.g., batch size, limited transport capacity), which makes the definition of the rules of periodic 

replenishment policies more complicated. Before analyzing those cases, we examine the rules to use 

in a simple case in which the supply covers, without logistic constraint, a stochastic demand or a mix 

of stochastic and deterministic demand. 

The order qjt for component j sent by B to A at the beginning of day t gets delivered at the 

beginning of day jDt + , where the due date is Dj and the lead time is λj ( jj D≤λ ). The inventory 

position IPjt at the beginning of day t is the sum of the on-hand inventory observed Sjt, the kj expected 

deliveries, and backorders. If the stockout probability is low, we can ignore the impact of unsatisfied 

demand (backorders or lost sales). No expected delivery exists ( 0)jk =  if the periodic replenishment 

review period is longer than the due date time (
jj Dθ > ); otherwise, this number is positive and can 

be noted as )/max(arg jjj DKKk θ≤= . The inventory position when ordering is 

∑ = −+= jk
h htjjj qSIP 1 , θ . If the planning horizon Pj of B is less than or equal to the due date time Dj 
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negotiated with supplier A ( jj DP ≤ ), the order is based on statistical knowledge of anticipated 

demand. Customer B has no interest in negotiating a due date superior to the lead time, because doing 

so, with the same stockout risk, increases safety stock. When jj DP > , if jjj DP −>θ , the sent order 

can be based partially on known demand. If jjj DP −≤θ , the order is determined by known 

requirements, and no safety stock is needed.  

If no batch constraint needs to be taken into account when determining the order to send, supply is 

unit based. Batch-based supply is more complicated to define. In both cases, transport capacity 

limitations should be taken into account. In all cases, we assume that the accepted stockout risk α is 

predetermined and very low. 

2.2.1. Unit-based supplies: Stochastic demand 

The probability distribution is defined for demand j over the period ( )j jθ λ+ , so it follows the law 

B ( )( ),j j jn pθ λ+ . If the normal approximation is possible, we use the distribution 

N ( )( ) , ( ) (1 )j j j j j j jn p n p pθ λ θ λ+ + − . In this context, we can adapt Equation 1 to define the 

order-up-to level and safety stock: 

, , ( ) ( ) (1 )
j jj j j j j j j jR n p t n p pθ λ α αθ λ θ λ+ = + + + − ; , , ( ) (1 )

j jj j j j jSS t n p pθ λ α α θ λ+ = + −
.
  [3] 

If the lead time is random or quality is not guaranteed, we need a distribution generated by the Monte 

Carlo method to determine the order-up-to level associated with risk α. For example, assume that 

θ = 2,  λ  ∼ DU (8, 12)→ θ λ+ ∼ DU (10, 14), n = 962, pi = 54%, and π = 1%; then, for α = 0.01%, Ri 

= 7539 (see Table 1). 

From a supply chain control perspective, two important observations emerge. 

• If all alternative components assembled on the same workstation of end customer C are supplied 

by B, the total daily demand of alternative components is constant (n) because of its multinomial 

distribution. Therefore, the quantities ordered periodically equal θn. Plant B may need alternative 

components j for its production, but if the components are all provided by the same supplier, the 

property of the constant total requirement remains valid. A supply of alternative components 

shared across several suppliers instead induces a periodic random total demand for each. This 

periodic load fluctuation may make the capacity commitment difficult for the supplier and induce 

additional costs. 

• Supplier B might supply C with only a subset of what it needs, which creates a random amount of 

parts ordered from that supplier. In the same way, B can supply other clients with the same parts, 

which increases the variability of the demand to be satisfied by B. We cannot determine the 

demand distribution of component j used by different customers of B analytically, but we can 
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solve it using Monte Carlo methods. Simulation is essential for cases 2, 3, and 4 and for the case of 

compound demand. Moreover, with a quality problem, the generation of the random variable Z 

must be based on the sum of the demands generated for these customers. 

2.2.2. Unit-based supplies: Stochastic and deterministic demands 

We now consider the situation defined by a planning horizon jP  for customer B, which exceeds 

the due date time jD  negotiated with supplier A of less than jθ  days ( 0j j jP Dθ > − > ). The due 

date time jD  is constant and can be equal to lead time jλ . We assume that there is no quality 

problem. When an order is placed at the beginning of day t, to be delivered at the beginning of day 

jt D+  to fill the needs of days jt D+  to 1j jt D θ+ + − , B knows with certainty its requirements for 

periods jt D+  to 1jt P+ − , which are the needs of j jP D−  days. The order sent on day t is the sum 

of (1) a known quantity 1j

j

h t P
jhh t D x= + −

= +∑ , equal to the demand of j jP D−  days, after delivery at the 

end of day jt D+ , and (2) a quantity jtq′  equal to the difference between an order-up-to level 

determined to meet a random demand with risk α and the inventory position. This demand is defined 

for a period of h days whose demands are unknown. Let 1 arg max( ( ) / )j j jK K K D θ θ= ≤ + be the 

number of replenishment cycles included in the decision horizon j jD θ+ . Then, h cannot exceed 

1( ( ))j j j jD K P Dθ+ − − and does not obtain this value if the requirement for day t was known when the 

order was sent to cover that demand as the requirement of the previous day; rather, it obtains this value if 

3 2K K> , with 2 arg min( ( 1) / )j jK K K D θ= ≥ +  and 3 arg min( / )j jK K K P θ= ≥ . Then, 

2( )j jP K θ− ⋅ is subtracted from 1( ( ))j j j jD K P Dθ+ − − . The order to send at the beginning of day t is 

the sum of the following: 

• 1j

j

h t P
jhh t D x= + −

= +∑ , which corresponds to the demands of the ( )j jP D− days following the delivery; 

• jtq′ , or the difference between the order-up-to level jhR α  and the inventory position tIP′ at the 

beginning of day t; jhR α , or the percentile defined for risk α of the random variable jX  B 

( , )jnh p , with 1 3 2 2( ) ( )( )j j j j j jh D K P D K K P Kθ θ= + − − − − − ⋅       ; and tIP′ , which is an 

inventory position that does not take into account all the firm orders known when ordering. 

jX B  ( , )jnh p  with 1 3 2 2( ) ( )( )j j j j j jh D K P D K K P Kθ θ= + − − − − − ⋅       , where 

1 arg max( ( ) / )j j jK K K D θ θ= ≤ + , 2 arg min( ( 1) / )j jK K K D θ= ≥ + , 

and 3 arg min( / )j jK K K P θ= ≥         [4] 
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For example, for component 1j = , with 1 6θ = , 1 11D = , and 1 13P = , we obtain 1 2K = , 2 2K = , 

3 3K = , and [ ] [ ]11 6 2(13 11) (3 2)(13 2 6) 12h = + − − − − − ⋅ = . With 1X B (12 962,0.54)⋅ , we obtain 

1,12,0.01% 6433R = (see Table 1). For example, an order placed at the beginning of day 51t =  will be 

delivered at the beginning of day 51 11 62t = + = and must fill the needs of 6 days (days 62 to 

51 11 6 1 67+ + − = ). At the beginning of day 51t = , the demands of days 51 to 63 ( 51 13 1)= + − are 

known; however, although the needs of days 62 and 63 are also known exactly, the needs of days 64 

to 67 are only known in probability. The expected delivery at the beginning of day 56, triggered by 

the order sent at the beginning of day 45, involves the knowledge of demand of days 56 to 57; the past 

delivery sent at the beginning of day 50 involves the knowledge of demand of days 50 to 51. Thus, 

the demand of 11 6 17+ =  days (from days 51 to 67) is covered with deliveries made at the beginning 

of days 50, 56, and 62 and is triggered by orders made at the beginning of days 39, 45, and 51 that 

applied the exact knowledge of the demand of 5 days (51, 56, 57, 62, and 63). The stochastic demand 

to consider now is the 17 5 12− =  days’ demand. We assume that when the order is defined at the 

beginning of day 51, the following information is known: (1) the inventory position is 3,555 units; (2) 

the order delivered on the previous day included the knowledge of the demand of day 50 (487); (3) 

the delivery of 3,109 units, expected at the beginning of day 56, includes the known demands of days 

56 and 57 (492 and 540 units); and (4) the known demands of days 62 and 63 are 506 and 515 units. 

Then, the order is { }(506 515) (6433 2593 3109 487 492 540 ) 3271+ + − + − − − = units. 

 If we exclude the possibility of lost sales, jtq′  equals the sum of observed demand on the last 

( )( )j j jP Dθ − −  days before day t, 1
j j j

h t
jhh t P D xθ

= −
= − + −∑ . In Equation 5, we summarize the 

determination of the order to send in the steady state, with a mix of stochastic and deterministic 

demand: 

1 1j

j j j j

h t P h t
jt jh jhh t D h t P Dq x xθ

= + − = −
= + = − + −= +∑ ∑  with 0j j jP Dθ > − >

. [5] 

To take quality into account (case 3), we must use the simulation to obtain the probability 

distribution and thereby determine the percentile. To define variable jZ , we assume that the quality 

problem exists for all orders and sum random demand together with firm orders. By doing that, the 

distribution to use changes at every decision. A less efficient but good solution can be used instead: in 

a steady state, these firm orders are random variables that follow a binomial law with the same 

probability used to address the random needs accounted for in the order. In the Monte Caro 

simulation, jZ  uses outcomes from the distribution B ( )( ),j j jn D pθ+ , and Equation 6 becomes the 

following: 

j j jY X Z= + , where jX  given by [4], jZ   BN   ( ,j jU π ) and jU B ( )( ),j j jn D pθ+
.
 [6] 
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In the previous example, if 1 1%π =  instead of 0%, the order-up-to level become 6603. 

Next, we assume that the lead time jλ  is random and that the quality of the delivered items is 

guaranteed (case 2). If the maximum value of jλ does not exceed jD , considering the randomness of 

jλ  is useless. Otherwise, it is preferable to discard the due date and replace jD  with jλ . However, 

the randomness of jλ  involves the randomness of 1 3 2 2( ) ( )( )j j j jK P D K K P K θ − + − − ⋅  , which is 

the number of firm orders known when ordering. This prevents any analytical solution from defining 

the order as the sum of jtq′
 
and firm orders beyond jλ , whose number is random. An operational 

solution is to ignore the information given by the firm orders and use the solution previously 

discussed in Section 2.2.1. 

2.2.3. Batch-based supplies 

External supply often depends on batch constraints. Each order sent may be a multiple of the number 

κ of units used in transport, as models of stock determination note. In stochastic inventory models, the 

analytic solution is characterized by a double inequality for the cumulative probability of two successive 

discrete values, multiples of κ. They enclose an optimal target probability, depending on the structure of 

the costs used in the objective function of the model. Because inventory models are too simplistic to 

cope with the encountered complexity in an USC, it is preferable to use provisioning rules that  

guarantee a low stockout probability α. If the order sent corresponds to the greatest multiple of κ, 

respecting the condition of a stockout probability inferior to α (i.e., 

.arg min( ( ) / )K K R PSj jκ κ≥ − ), the protection against stockout risk is excessive. If the order sent 

corresponds to the smallest multiple κ, leading to a stockout probability superior to α (i.e., 

.arg max( ( ) / )K K R PSj jκ κ≤ − ), the protection against stockout risk is insufficient. The multiple 

to choose depends on an accepted reasonable risk β, greater than α and sometimes incurred because 

of batch limitations. From case 1, we assume that the transport container contains κ = 18 units. With 

α = 0.01%, we find jR = 6433. If we accept risk β = 0.015%, then P(Xi > jR β ) ≤ 0.015% gives jR β  

= 6427. For example, with PSj = 6242, the quantity to order without batch constraint is 

6433 6242 191q′ = − = ; the batch constraint leads us to order either 180 or 198 units. In the first case, 

the implicit order-up-to level is decreased by 191 180 11− = , which yields a stockout risk higher than 

β (0.021%), and thus 198 units are to be ordered. If ( ) .arg max( ( ) / )j jR PS K K R PSj jκ κ− − ≤ −  is 

less than j jR R β−  (e.g., 6), the choice of .arg max( ( ) / )K K R PSj jκ κ≤ −  leads to a risk that is not 

greater than β. That is, 
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.arg max( ( ) / ) , ( ) .arg max( ( ) / )j j j j jq K K R PS if R PS K K R PS R Rj j j j βκ κ κ κ= ≤ − − − ≤ − ≤ −
 

else .arg min( ( ) / )jq K K R PSj jκ κ= ≥ −  [7] 

2.2.4. Incurred risk and transport capacity limitations 

The means of transport usually have limited capacity, G. The ordered quantity cannot exceed this 

limit ( ( , )j jMax R PS G→ −  without batch constraints). Therefore, the incurred stockout risk is higher 

than desired, unless there is virtually no chance that demand exceeds this capacity. In this case, 

transport may be less efficient. To preserve the target risk level α, it is necessary to increase the order-

up-to level, which we can do easily with a dichotomous method. If n = 962, jp  = 54%, θ = 2, λ = 10, 

and α = 0.01%, we find jR = 6433 (see Table 1). If G = 1045, a simulation of this periodic 

replenishment policy (with backorders) for 50 million iterations leads to a risk of 0.576% and a 

stockout average of 0.228. To keep α = 0.01%, it is necessary to fix jR  to 6598. The safety stock 

then increases from 199.2 to 364.2. This simulation widens the scope of the analysis from a local 

optimization to a more global one that includes transport, carrying, set-up, and stockout costs. A batch 

limitation is more complicated to take into account but very tractable. The transport capacity 

limitation is necessarily a multiple of packaging size, especially in the case of homogeneous products. 

2.3. Safety stock of produced components 

We next focus on the production of a product i by unit B, in response to demand from customer C. 

In this context, we assume that the lead time iλ  between the start of production and the component’s 

appearance in stock of plant B is constant. The lead time corresponds either to cycle time, if a set of 

different components is launched in production, or to production time, if only one component is 

launched. Customer C sends B its orders for i at the beginning of the day, every iθ  days. The order 

received at the beginning of day t must be sent at the end of day it D+ . With a lead time iλ , B has 

i iD λ−  days to produce and send the order ( i iD λ≥ ). Component i gets integrated into the production 

cycle of H days. The production of component i finishes iF  days after the beginning of the cycle. If 

this cycle includes only component i, it is obvious that iH F= , and there is no reason to synchronize 

deliveries (all iθ  days) or launches in production (all H days). We first consider a build-to-stock 

production, then a build-to-order production, and finally a combined production process. 

2.3.1. Build-to-stock production 

The rules used for build-to-stock production depend on the values taken by the production cycle 

and the replenishment cycle, as well as the idea that the production decision depends on one or several 
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components. First, we assume either that the production cycle H is shorter than the replenishment 

cycle iθ  ( iH θ→ ≤ ) and that the order from customer C is immediately executable ( iiD λ− = 0) or 

that the time remaining before delivery is less than the replenishment cycle iθ  ( i i iD λ θ→ − ≤ ). The 

distribution to determine the order-up-to level is the binomial distribution B ( ,i in pθ ). In a steady 

state, the quantity that B launches into production is equal to the last quantity sent to C; it is a random 

variable. However, if the supplier produces all alternative references assembled on the workstation of 

the customer assembly line, ordered at the same time ( ,i iθ θ→ = ∀ ), the sum of ordered quantities is 

constant ( nθ ) because demand for alternative components follows a multinomial distribution. 

Second, if iH θ>  and the time remaining before delivery is less than the production cycle 

( )i iD Hλ− < , we can distinguish two cases depending on the number of products manufactured in 

the production cycle. If product i is the only one to be manufactured in this production cycle, iH F= . 

When the order is sent at the beginning of day t to be delivered on day 1t H+ − , the inventory 

position itIP  of component i, increased by the quantity launched it it itq R IP= − , should meet demand 

until the end of the next production cycle, on day 2t H+ . The number of deliveries during a period of 

2H days must be between 1 max( 2 / )i iarg K K Hη θ= <  and 2 min( 2 / )i iarg K K Hη θ= > . For 

example, with H = 5 and iθ = 4, the number of deliveries is either 2 or 3. If 2H is a multiple of iθ , the 

number of deliveries during a 2H-days period is constant. The distribution to determine the order-up-

to level is binomial B ( inηθ , pi), with 1η η=  or 2η η= . It can often be approximated by 

N ( , 2 (1 )i i in n p pηθ ηθ − ). For example, if B receives orders every four days from C ( 4)iθ = and Fi 

= five days, the distributions are B ( 962 2 4,0.54⋅ ⋅ ) and B ( 962 3 4,0.54⋅ ⋅ ). When α = 0.01%, the 

order-up-to level is 4,318 (two deliveries) or 6,433 (three deliveries). A lack of synchronization 

between cycles H and θ leads to periodic variation in the production. The quantity to be launched in 

production by B equals the sum of quantities previously shipped to C only if the order-up-to level 

used for the production launch is the same as that used previously. The sum of the quantities launched 

varies strongly when the number of deliveries since the previous launch changes (as a result of change 

in η). This sum equals n η θ⋅ ⋅  only if the order-up-to levels have not changed since the previous 

launch and B produces all alternative components.  

If several components are launched and are to be produced successively during the same 

production cycle ( ,i iθ θ→ = ∀ ), an order sent at the beginning of day t increases the inventory 

position IPit of component i by the quantity launched in production it it itq R IP= − , to be delivered at 

the beginning of day t H+ . It should meet demand until the next delivery, at the beginning of day 

it H F+ + . The number of deliveries during ( )iH F+  days must be between 
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1 arg max( ( ) / )i iK K H Fν θ= < +  and 2 arg min( ( ) / )i iK K H Fν θ= > + . If 4θ = , 2iF = , and 

5H = , the number of deliveries is either one or two. If ( )iH F+  is a multiple of θ , the number of 

deliveries over iH F+  days is constant. The distribution for determining the order-up-to level is 

binomial, B ( , in pνθ ), with 1ν ν=  or 2ν ν= . The distribution can be approximated by 

N  ( ), 2 (1 )i in n p pνθ νθ −  in many cases. Our previous remarks about the variability of production 

remain valid. In our example, the distributions are laws, B ( 962 2 4,0.54⋅ ⋅ ) and B ( 962 1 4,0.54⋅ ⋅ ), 

which lead to order-up-to levels for α = 0.01% of 4,318 (two deliveries) or 2,193 (one delivery), 

causing oscillations in the USC. 

2.3.2. Build-to-order production 

Now assume that the replenishment cycle iθ is not lower than the production cycle ( )iH θ→ ≤  

and is greater than the supplier anticipation ( )i i iD λ θ→ − > . Production can be made to order, and a 

production launch involves no more than one delivery. The maximum number of canceled 

consecutive launches is arg min( ( ) / )i iK K D Hλ> − . For example, if H = 5, 12iθ = , and 

( ) 14i iD λ− = , the maximum number of null consecutive launches is 2. If iH θ>  and if supplier 

anticipation is at least twice the production cycle ( ( ) 2i iD Hλ→ − ≥ ), production also can be made to 

order. In this context, it is possible to launch a production quantity that can be delivered during the 

following production cycle, as well as one or more subsequent deliveries if anticipation is sufficient. 

However, it is preferable to smooth the load and launch only deliveries for the following production 

cycle. Again, the number of deliveries to consider can vary between two production cycles: at least 1 

and no more than arg min( ( ) / )i i iK K D Hλ θ≥ − − . If H = 5, 3iθ = , and 11i iD λ− = , no more than 

the quantity of two successive deliveries should be launched. 

The irregularity of the number of launches and the quantities launched leads to disorganization. 

However, this can be eliminated if the production cycle equals the periodic replenishment review 

period but remains less than supplier anticipation ( ( )i i iD λ θ→ − > ). Quantities vary from order to 

order because they correspond to quantities consumed, whose distribution is binomial. However, if 

the supplier produces all alternative components for the customer’s assembly line, the sum of ordered 

quantities is constant (nθ). If this supplier has multiple customers for all or some produced 

components, the condition extends to each customer. 

2.3.3. Mixed production 

Previously, we showed that (1) if ( iH θ≤ ), production must be built to stock if ( )i i iD λ θ− ≤  and 

made to order otherwise ( )i i iD λ θ− > , and (2) if iH θ> , production can be built to order if 
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( ) 2i iD Hλ− ≥ . If iH θ>  and ( ) 2i iH D Hλ< − < , production may be a combination of built to order 

and built to stock. The analysis of these possible configurations is similar to that for build-to-stock 

production, except that only µ deliveries to the customer on ( )i iD λ−  days after the production 

launch of component i on day t are known. They can be covered by a build-to-order production. The 

number µ is either 1 arg max( ( ) / )i i iK K Dµ λ θ= < −  or 2 arg min( ( ) / )i i iK K Dµ λ θ= > − . 

Therefore, the difference, which could be null, between η and µ corresponds to deliveries that can be 

covered by a build-to-stock production. We assume that ( ) 7i iD λ− = , 4iθ = , and 

5H = 1 2( 1, 2)µ µ→ = = . The inventory position updates with a decision to integrate known firm 

orders from the customer and deliveries for later orders. In this example, if both a production cycle 

and a replenishment cycle start at the beginning of day 1 and if a  production order is delivered on day 

1, quantities launched in production at the beginning of day 1 must cover an unknown order (day 8 → 

build-to-stock); quantities launched in production cycle 2 (day 6) must cover an unknown order (day 

12 → build-to-order); and quantities launched in production cycle 3 (day 11) are partly made-to-order 

(firm order of day 16) and partly made-to-stock (unknown order of day 20). 

3. Restoring steady-state performance in a changing environment 

If managers of upstream USC links can adapt their decision rules quickly using appropriate 

information transmitted from the final assembly line, steady-state performance, in terms of efficiency 

and effectiveness in a decentralized management of USC plants, can be maintained even if the 

environment changes. We explain why this information is the result of a double transformation that 

relies on mechanisms associated with the BOM explosion and time lags. The latter pertains to the 

growing delay of moving upstream in the supply chain, that is, between the date of production of a 

component by one link and its integration into the end product in the final assembly line. Without this 

double transformation, the information transmitted is meaningless. In the steady state, the time lag 

mechanism (which we describe subsequently) does not play an important role, because when the 

decision rules have been defined using appropriate information, there is no reason to change them. If 

every link receives appropriate information and uses it to control stockouts, disturbances in the supply 

chain should be rare, and the managerial independence of each link of the USC can be guaranteed. 

Therefore, we move on to check various implementation problems.  

3.1. Double transformation of information  

We begin by determining the information required by each link of the USC, according to the 

steady-state assumption, to establish production and replenishment rules that will allow for both 

management independence and smooth USC functioning. Such rules also indicate the initial 

calibration of the steady state of the USC. We then show that knowledge of current or previous 
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changes enables the adaptation of monitoring rules to maintain steady-state performance. This point 

leads to a conceptualization of an extended OPP that completes the OPP. 

3.1.1. Mandatory use of planning BOM to define information to send upstream  

Different forms of information sharing are useful for decreasing costs and risks in short-term 

decision making (Chandra et al., 2007). Firms can share raw information, such as sales histories, 

orders, inventory positions, and deliveries, or they can share processed information related to planned 

or forecast demand (Ryu et al., 2009). The latter might be the output of a collaborative process that 

represents a first step toward the centralized management of the supply chain. 

The value of shared information depends on not only its possible but also its effective uses, which 

aim to share cost savings across the supply chain. Even in the steady state, transmitting detailed 

information about daily production or end-user demand to upstream echelons is useless: Products 

exchanged between links in the USC are not the same, unlike in downstream echelons, because of the 

classic mechanism of BOM explosion. 

Consider the mechanism of requirement along the USC. We assume, in a first stage, that all the 

components are produced to stock and the steady-state assumption holds (we remove these 

restrictions later). Demand for a component is pulled by one of the alternative parts mounted in a 

workstation used in the final assembly line; for example, the same piston might be found in various 

motors on the car assembly line. 

The planning BOM describes related options or modules that constitute an average end item. 

Applied to a set of R alternative components r that might be mounted in a given station of the 

assembly line (e.g., motors), the planning BOM coefficients pr ( 0 1, 1r rrp p< < =∑ ) represent the 

steady-state probabilities of a multinomial distribution, in which the number of trials n equals the 

daily production of cars. These alternative components belong to the first level of the BOM. The daily 

demand 1rX  of the alternative component r follows the binomial distribution B ( , rn p ), because in n 

trials, the event “alternative component r is mounted” gets tested against the event “component r is 

not mounted.” Component r may include 0>rsa  units of component s (e.g., piston set) in the second 

level. The daily demand 2rsX  of component s, as induced by the daily requirement 1rX , is 1rs ra X⋅ . 

If component s is used by several alternative components sRr ∈′ , the total demand 2sX  is as follows: 

2 2 1s ss r s r s rr R r RX X a X′ ′ ′′ ′∈ ∈= = ⋅∑ ∑ .
 [8] 

Knowledge of the distribution of 2sX  is necessary to define the appropriate order-up-to level of 

component s based on the required stockout risk and its safety stock. The distribution of the sum of 

weighted binomial variables can be defined easily using a Monte Carlo simulation. Gross 

requirements are random variables, not fixed values, as in the MRP computation of planned orders.  
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In turn, the component s of the second level (e.g., a given piston set) uses ( 0)sub >  components u 

from the third level, though it may not be the only one ( )uSs ∈′→ . The previous reasoning applies 

again, after we link component u to component r: Demand 3uX  is a weighted sum of the subset of 

demands of components from the first level: 

3 3 2 1u u u su s u s u s s u r s rs S s S s S r RX X b X b a X
′′ ′ ′ ′ ′ ′ ′′ ′ ′ ′∈ ∈ ∈ ∈= = ⋅ = ⋅∑ ∑ ∑ ∑ .

 [9] 

Again, its distribution can be defined only with a Monte Carlo simulation.  

To illustrate, we consider the following example: For a given set of six alternative motors (r = 1, 

…, 6) that can be mounted in a workstation of a car assembly line, the motors’ planning BOM is {M1 

54%; M2 13%; M3 4%; M4 22%; M5 5%; M6 2%}. The line production is 962 cars per day 

( 962=→ n ). The daily requirement X1r of the alternative component r follows the binomial 

distribution B (962; pr), such that X1,1 ∼ B (962; 54%) for motor 1 and X1,5 ∼ B  (962; 5%) for motor 

5. In the steady state, with a risk of 0.01%, the safety stocks of motors 1 and 5 are 57.5 and 26.9, 

respectively. If, according to the BOM, only motors M1 and M5 include the piston set P1 (s = 1) and 

M1 needs 4 piston sets while M5 needs 6 piston sets (a1,1 = 4; a1,5 = 6), the daily requirement for piston 

set P1 is 5,11,11,2 64 XXX += , which is an even discrete variable that starts from 4 for positive values 

2,1(X = 0, 4, 6, 8, …, because 1,1X  and 1,1X  are discrete nonnegative values). Using the Monte Carlo 

simulation, we find a reorder point of 2,644 (risk = 0.01%) and a demand average of 2,366.5; the 

safety stock of piston sets is 277.5. If only piston sets P1 and P3 include the piston head H1, which is 

component (u = 1) of the third level, and P3 is mounted only in motors M2 and M6, the daily 

requirement of piston set P3 is 6,12,13,2 44 XXX += . With b1,1 = b1,3 = 1, the daily requirement of H1 is 

a sum of four weighted binomial variables 

3,1 1,1 1,5 1,2 1,6 1,1 1,5 1,2 1,61 (4 6 ) 1 (4 4 ) 4 6 4 4X X X X X X X X X= ⋅ + + ⋅ + = + + + , where X1,1 ∼ B (962; 54%), 

X1,5 ∼ B (962; 5%), X1,2 ∼B (962; 13%), and X1,6 ∼ B (962; 2%). Again using Monte Carlo 

simulation, we can show that in the steady state, the average demand for piston heads H1 is 2,944 and 

the safety stock is 326. 

3.1.2. Mandatory use of time-lag mechanisms for a nonpersistent steady state 

The steady state never lasts more than a few weeks, but environmental changes are often slow 

enough to suggest that a real-world scenario will be defined by a succession of slightly different 

steady states. From one state to the next, changes pertain to the level of production and the structure 

of demand for each set of alternative components. Consider a component launched in production at 

time t in a USC echelon and integrated in a vehicle at time t + δ.  

To make effective decisions at time t, the echelon needs appropriate information for time t + δ, 

such that δ represents the information lag. This lag plays a similar role to the lead time lag in the MRP 
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but spans across the wider perimeter of the USC. In addition, in contrast with the MRP system, we 

assume we are beyond the OPP (δ > OPP) and, thus, beyond the MRP frozen horizon. Therefore, the 

mechanism we described in the previous section must be adapted. To simplify the mechanism 

description, we assume that component productions are launched every day for all components 

produced in the USC; the replacement of that assumption is easy but yields a more complex 

formulation. The demand 1rtX  of the alternative component r of the first level in day t, to launch in 

production that day, follows the binomial distribution B ( 1 , 1 ,;
r rr t r tn pδ δ+ + ), because those 

components will be integrated into a vehicle at time t + δr. Demand 2stX  of the alternative 

component s of the second level for day t, as used by several alternative components sRr ∈′ , is a 

weighted sum of a subset of the daily production of components in the first level, using the 

information lags r sδ ′ , which may differ. Then, Equation 10 replaces Equation 8: 

2 2 1 , r ss sst r st r s r tr R r RX X a X δ ′′ ′ ′′ ′ +∈ ∈= = ⋅∑ ∑ .
 [10] 

Component s of the second level uses component u of the third level ( )uSs ∈′→ . After linking 

component u to component r, demand 3utX  is again a weighted sum of a subset of daily production of 

components in the first level, with information lags r uδ ′  that may differ. Then, Equation 11 replaces 

Equation 9: 

3 3 2 , 1 ,r u r s r uu u u sut s ut s u s t s u r s r ts S s S s S r RX X b X b a Xδ δ δ′ ′ ′ ′′′ ′ ′ ′ ′ ′ ′′ ′ ′ ′+ − +∈ ∈ ∈ ∈= = ⋅ = ⋅∑ ∑ ∑ ∑ .
 [11] 

Again, the distributions can be defined easily using a Monte Carlo simulation. 

We adapt our previous example to introduce the current day t. Motors 1 and 5 are characterized by 

information lags of 2 and 3 days, respectively (→ motors 1 and 5 produced on day t are mounted in 

the assembly line on days 2t +  and 3t + , respectively). We assume that the multinomial distribution 

and production level do not change during the first two days and that, thereafter, daily production 

decreases from 962 to 605, and the motors’ planning BOM become {M1 49%; M2 10%; M3 3%; M4 

25%; M5 11%; M6 2%}. With this information, we can determine that the production of M1 and M5 on 

day t reflects the requirement of the assembly line for days 2t + and 3t + : 2,1,1 +tX  ∼ B (962; 54%) 

and 1,5, 3tX + ∼ B (605; 11%). With a risk of 0.1%, the safety stock is still 47 for M1 and 34.5 for M5. 

If, for the production of piston sets H1, the delay between the planned order and delivery is two days, 

the part of the production of day t sent to produce M1 will be set by a car using M1 four days later 

(information lag); the other part is sent to produce M5 five days later. Demand for piston set P1 on day 

t is 5,5,14,1,1,1,2 64 ++ += ttt XXX , where 1,1, 4tX +  ∼ B (605; 49%) and 1,5, 5tX + ∼ B (605; 11%). Using 

the Monte Carlo simulation, we calculate that the safety stock of piston sets is 190.8 for that 

production day (average demand of 2477.2). 
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If the information lags for M2 and M6 that include piston P3 are two days and one day, 

respectively, demand for piston P3 on day t is 2,3, 1,2, 2 1,6, 14 4t t tX X X+ += + . Using the same delay 

between the planned order of H1 and its delivery (two days), the demand for piston heads H1 used by 

P3 to be mounted in motors M2 and M6 is 2,3, 1,2, 4 1,6, 31 4 1 4t t tX X X+ += ⋅ + ⋅ . Then the daily requirement 

for piston head H1 is 

3,1, 1,1, 4 1,5, 5 1,2, 4 1,6, 31(4 6 ) 1(4 4 )t t t t tX X X X X+ + + += + + + 1,1, 4 1,2, 4 1,5, 5 1,6, 34 4 6 4t t t tX X X X+ + + += + + + . Again 

using the Monte Carlo simulation, we can show that in the steady state, the average demand for piston 

heads H1 is 1875.5 and the safety stock is 282.5.  

In turn, we emphasize three important operational consequences. First, the final assembly line, 

which is the BTO-SC leader, drives information sharing because the relevance of the information 

depends on the reliability of the volume and structure forecasts, as well as the anticipated impacts of 

pricing actions and launches of limited series. Beyond a certain horizon, information reliability 

weakens and decreases interest in information sharing among units that are farther away in the USC. 

To counter this effect, the unit should increase the probabilities of demand for alternative components 

and the production level. The loss of efficiency is the price to pay to achieve a certain effectiveness, 

knowing that the stockout risk is not really under control. 

Second, information sharing involves minimal cooperation among the USC enterprises because the 

lag δ between the production of a component and its inclusion in the car in the final assembly line 

equals the sum of the intermediate lags observed between each pair of echelons in the path that links 

the final assembly line to the echelon that produces the component. The reliability of the information 

related to intermediate lags transmitted to the BTO-SC leader also influences the relevance of 

information sharing and, thus, the decentralization of decisions. Furthermore, because the value of 

shared information depends on its effective use, all members of the USC must “play the game”; if 

they do not, uncontrollable disturbances cannot be avoided. 

Third, to improve the chances of controlling the whole USC, information lags should be weak. 

Savings from a distant provision process may be balanced by a loss of global coordination of the 

USC. 

3.1.3. Impact of the OPP 

The OPP defines the frontier between production to stock and production to order. It has been used 

since 1920 but was formalized in the 1950s (Alderson, 1950). Olhager and Östlung (1990) discuss the 

use of push and pull systems relative to the position of the OPP, arguing that pull systems necessarily 

apply upstream, whereas push systems involve downstream operations; this approach could differ in 

the supply chain, depending on whether the vision is global or local (Giard and Mendy, 2008). 

The concept of an information lag of a component j is to approximate the OPPj of the unit that 

produces that component. In our industrial context, the OPPj and information lag are defined to start 
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from the final assembly line. As we showed, the BOM explosion and lead-time mechanisms create a 

requirement that the component j must be the sum of requirements pulled by a subset of alternative 

components r′  used in the final assembly line and whose information lags r jδ ′  may differ. Existing 

OPP literature does not consider the possibility of multiple pegging paths between the production of a 

component j and its inclusion in a final product, which involves different time intervals (expressed as 

multiples of the unit period). Thus, we define OPPj as the greatest time interval compatible with a 

build-to-order production of component j, which may be produced partly to stock and partly to order. 

• If no information lags r jδ ′  exceed the OPPj, component j is built to order, and the requirement for 

component j is a weighted sum of scheduled productions of alternative components r′ . Then, the 

demands of Equations 8–11 are fixed.  

• If all information lags r jδ ′  exceed the OPPj, component j is built to stock; all the demands of 

Equations 8–11 are random, and a safety stock builds up, according to the mechanisms we 

described previously.  

• In all other cases, production is partly to order and partly to stock. Safety stock reflects the 

requirements when information lags exceed the OPPj. 

The OPPj of the unit that produces component j depends mainly on the lead time for that component 

and those of its parent components; it also depends on the length of the production schedule of the 

final assembly line, which depends on firm orders sent by the downstream supply chain. The 

backward displacement of the OPPj, as induced by a longer schedule or decreased lead times, allows 

for the possibility of increasing the proportion of production to order, which may improve 

effectiveness and efficiency. 

3.1.4. Extended OPP 

If all information lags r jδ ′  exceed OPPj, component j is built to stock in the steady state. In the 

real world, however, managers of the final assembly line make forecasts about the evolution of final 

demand and its structure. The reliability of these forecasts decreases when the period is more distant. 

Beyond a certain time horizon, reliability grows too weak to allow the use of such forecasts. If some 

information lags r jδ ′  go beyond that horizon, no scientific approach can support the provisioning 

rules of component j, and stockout risk is not under control. We consider the frontier as extended 

OPPj; therefore, to aggregate a given component j produced by an echelon of the USC in the product 

built to order in the final assembly line (or several final assembly lines), we can distinguish four 

cases:  

1. ( )jr j
r

Max OPPδ ′
′

≤ ⇒  component j is built to order. 
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2. ( ) ( )j jr jr j
r r

OPP Min Max EOPPδ δ′ ′
′ ′

< ≤ ≤ ⇒  component j is built to stock, with stockout risk 

under control. 

3. ( ) ( )jr j jr j
r r

Min OPP Max EOPPδ δ′ ′
′ ′

≤ < ≤ ⇒  component j is partly built to stock, with stockout 

risk under control, and partly built to order.  

4. ( )jr j
r

Max EOPPδ ′
′

> ⇒  component j is built to stock without grounded knowledge of the 

incurred stockout risk. 

3.2. Implementation  

To achieve desired performance, firms must detect changes before making adaptations. The 

necessary changes to consider include commercial actions (e.g., pricing, limited series) and 

production or logistic actions (e.g., delivery frequencies, container sizes). Such actions should be 

communicated to managers in charge of supply chain monitoring. Other changes require detection 

devices. 

Commercial actions, such as discounts or limited series offers, can affect the level and structure 

of demand. Therefore, it is necessary to conduct preliminary studies of these actions to gather 

information about the sales forecasts for limited edition and assumptions about the level of 

cannibalization. The changes are observable in the structure of requests for alternative components 

(i.e., weighted average of structures for series of sold products).  

For production and logistics actions, three actions are pertinent. First, actions could involve 

necessary adjustments of the production capacity to face the evolution of demand. For example, 

adding or reducing shifts working in the final assembly line has a direct impact on component 

demands. Anticipation of these changes is beyond the scope of this article, but the adjustment 

decisions should be made weeks in advance to enable appropriate staff management. Second, some 

actions pertain to transportation. For example, changes in the periodicity and duration of transports 

among links should be taken into consideration because they modify the probability distributions used 

to define the order-up-to levels. Third, in relation to transport containers, any modification in the size 

of specific containers must be known in advance because it may affect safety stocks. 

Regarding the detection of changes in the demand structure, in our preceding discussion, we 

based the solution on an implicit assumption of a steady state. Challenging this assumption does not 

pose a problem if the change pertains to the global production level: Order-up-to levels adapt to the 

new steady-state characteristics and cause an increase or a reduction of the safety stock, varying in the 

same direction as the level of production. The change in demand structure also can be taken into 

account through single exponential smoothing. We assume that the time series is locally stationary 

and let ˆ jtp  and jtp  denote the estimated probability of including the alternative component j in a car 

at time t and the associated observed percentage, respectively. Estimated jtp̂  can be calculated as 
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1ˆ)1(ˆ −−+⋅= jtjtjt ppp γγ . If the same smoothing technique is used for all alternative references, we 

have =−+⋅= ∑∑∑ −j jtj jtj jt ppp 1ˆ)1(ˆ γγ 11)1(1ˆ)1( 1 =⋅−+⋅=−+ ∑∑ − γγγγ j jtj jt pp . The choice of 

the smoothing parameter γ implies a choice between high values (which allow faster adaptation to 

possible modifications of the structure of demand but imply overreactions to random variations) and 

low values (which mitigate the impact of random variations but take more time to detect changes). 

The slow evolution of the demand structure favors a low coefficient, though it also can be determined 

by minimizing previous forecast errors ( 2ˆ( )jt jtt t p p′′< −∑ ) or some adaptive control of the 

smoothing parameter. Similar to all weighted moving averages, exponential smoothing suffers the 

disadvantage of generating oscillations because of the auto-correlation phenomenon (i.e., the Slutsky-

Yule effect). Such oscillations generate positive biases in the case of an excessive estimate of pi and 

negative biases otherwise. A negative bias increases the risk of stockouts and leads to an increase in 

the current estimate, according to the known variance of the Slutsky-Yule error. In the case of positive 

bias, it means acceptance of overprotection. The analysis of the confidence interval of the daily 

requirements for part j may lead to the rejection of a hypothesis of oscillations generated only by the 

Slustky-Yule effect. For example, the impact of the production of a limited series may require that the 

time series be corrected before forecasting. Most of the time, however, it is induced by schedule 

constraints that introduce deviations between the daily demand structure and the daily consumption 

by the assembly line, in which case it is preferable to use the forecast error deviation 

2
2 ˆ( ) / ( 1)t

jt jtt p p t′ ′′= − −∑  to define an upper limit of itp̂  estimates. 

After the changes are detected, some adaptation of the monitoring rules must be implemented. 

Modifying the parameters of replenishment policies does not demand any particular comments. 

However, some changes influence other monitoring rules used in the production to order of 

alternative components when safety stocks are necessary. This requirement may happen if alternative 

components are produced by batch or if alternative components are transported by batch in containers 

without sharing possibilities. 

The first case deals with a unit that can produce at most 1n  batches of different alternative 

components between two shipments, with a time interval equal to the production cycle. Then, the 

maximal diversity the system can produce between two shipments is 1n . If the order arrives before a 

new cycle starts, production may be to order. If the diversity of the alternative component is greater 

than 1n  and/or the requirement of a component is not a multiple of the batch size, safety stocks of 

alternative components are necessary to avoid stockout scenarios. Different rules can apply to define 

their sizes and monitor production (e.g., kanban system, order-up-to level periodic policy). Usually 

their parameters should be modified when the environment changes, which is not the case with the 

synchronous production method proposed by Giard and Mendy (2008) and benchmarked in the 
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automotive industry. The efficiency and effectiveness of that method are superior to usual monitoring 

rules, in that it avoids stockouts and decreases safety stocks, even in the face of quality problems 

during the production process. Moreover, this new approach triggers the immediate adaptation of 

parameters to any variation in the demand structure, unlike most other approaches. 

In the second case, transportation-related constraints may influence the amount of alternative 

components to order. We are particularly interested in a rule that demands that the ordered quantity be 

a multiple of the container size. With a build-to-stock system, this constraint is easy to take into 

account, as we showed previously. With a build-to-order system, the constraint implies that the 

sequence of alternative components preferred by the final assembly line will differ from the one that 

results from orders that must respect container constraints. Thus, the assembly rank of an alternative 

component differs from its entrance rank in stock. This rank change leads inevitably to stockouts if 

the consumption rank occurs before the entrance rank. To avoid a situation in which the assembly line 

needs a component before it is available, safety stocks must bear every alternative component, and 

their levels can be defined by simulation (Camisullis and Giard, 2008). Thus, changes in the level of 

production and structure of demand imply a recalibration of safety stocks. 

4. Conclusion 

This article focuses on the provision of alternative or optional parts mounted in the final assembly 

line of a BTO-SC and on the provision of all their components produced in the upper echelons. If the 

USC is monitored by periodic replenishment policies, appropriate safety stocks of supplied or 

produced components allow, in the steady state, efficient autonomous decisions among the USC 

echelons. These policies require appropriate safety stocks, whose levels are more difficult to define 

for alternative or optional parts—and the components they use—whose demand is a weighted sum of 

random variables, affected by a combination of several random factors (e.g., the probability of use, 

the variable lead time, quality problems) and by logistics and organizational constraints. The factors 

and constraints to consider are not the same for supplied and produced components that can be partly 

built to order and affected by the lack of synchronization between the customers’ orders cycles and 

the production cycle. The random demand of a supplied or produced component depends on the 

demand of alternative or optional parts mounted in the final product. In the steady state, the 

knowledge of the probability distribution of that random variable allows for the determination of a 

safety stock that practically prevents any stockouts. When the main characteristics of the steady state 

change significantly, the provisioning rules must be adapted. Some changes are triggered by 

commercial action of the BTO-SC leader. To maintain steady-state performance and decentralization 

of decisions, the BTO-SC leader must send appropriate information upstream. This information 

differs from one echelon to another; it results from a double transformation process involving BOM 

explosions and time lags. This transmission of pertinent information is a necessary but not sufficient 

condition of autonomy and performance: All the echelons must use the transmitted information to 
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keep the local stockout risk at the protection level required for the USC.  Then, the different links of 

the USC can be managed independently without any coordination in decision making.  The 

progressive changes in the steady state require periodic and progressive adaptations of the safety 

stocks; these adaptations last a period equal to the sum of time lags until the final assembly, before 

receipt of the new policies.  Doing that keeps the performance of the steady state. Therefore, the 

information to share in the USC is not the final demand, as previous research dealing with the BWE 

claims. To avoid disturbances, modifications of steady-state characteristics must be detected in time, 

and some monitoring devices can do this. This research is supported by a leading European 

automotive company, and the results we obtain benchmark its economical interest and the possibility 

of implementation. It would be worthwhile for future research to adapt this approach to the general 

case of MRP for large series, without assuming a specific production made on an assembly line.  

 

Appendix: Summary of Notations 

Parameters 

θ, θi, θj 

α 

tα 

β 

γ 

Di, Dj 

Fi 

Pj 

J 

n 

κ 

G 

H 

pi, pr 

πi, πj 

Replenishment cycle  

Target stock-out probability (stockout risk) 

Standard normal variable value for risk α 

Stockout maximum accepted risk 

Smoothing parameter 

“Due date” time of component i, j 

Production time of component i 

Planning horizon of component j 

Number of alternative components 

Daily production of the final assembly line 

Packaging unit used in transport 

Transport capacity 

 Production cycle time 

Probability of component i,r to be mounted in a final product on the assembly line 

Defective probability of component i, j 

Decision variables  

RiLα 

qit, qjt 

Order-up-to level for component i, on L days, with risk α 

Order for component i or supplied j at the beginning of day t 

Random variables 

λi, λj Lead time of component i, j (fixed or random variable) 
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L 

XiL 

ZiL 

YiL 

IPjt 

Sjt 

kj 

Number of days of demand to cover (fixed or random variable) 

Number of component i required on L days 

Number of components i held to cope with quality issues on L days 

Number of component i on L days to provide, coping with quality issues 

Inventory position of component j at the beginning of day t 

On-hand inventory of component j at the beginning of day t 

Number of expected orders for component j 

Expected values 

Is(RiLα) 

E(XiL) 

Ir(RiLα) 

SSiLα 

Expected stockout 

Expected demand of component i on L days 

Expected residual stock 

Safety stock for component i 
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