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On the approximability of the Max Edge-Coloring problem

The max edge-coloring problem asks for a proper edge-coloring of an edge-weighted graph minimizing the sum of the weights of the heaviest edges in each color class. This problem arises in optical communication systems and has been well studied during last years. However, no algorithm of approximation ratio 2 -δ, for any constant δ > 0, is known for general or bipartite graphs, while the complexity of the problem on trees remains an open question. In this paper we present new approximation results towards these questions. In fact, we present a PTAS for trees and an 1.74-approximation algorithm for bipartite graphs; we also adapt the last algorithm to one for general graphs of the same, asymptotically, approximation ratio.

Introduction

In several communication systems messages are to be transmitted directly from senders (input ports) to receivers (output ports) through direct connections established by an underlying switching network (e.g., SS/TDMA [START_REF] Gopal | Minimizing the number of switchings in a SS/TDMA system[END_REF], IQ switch architectures [START_REF] Kesselman | Nonpreemptive scheduling of optical switches[END_REF]). Any node of such a system cannot participate in more than one transmissions at the same time, while messages between different pairs of senders and receivers can be transmitted simultaneously. A scheduler establishes successive configurations of the switching network, each one routing a non-conflicting subset of the messages from senders to receivers. Given the transmission time of each message, the transmission time of each configuration equals to the longest message transmitted. The aim is to find a sequence of configurations such that all the messages are transmitted and the total transmission time is minimized.

It is easy to see that this situation corresponds directly to the following generalized coloring problem: Given a graph G = (V, E) and a positive integer weight w(e), for each edge e ∈ E, we seek for a proper edge-coloring of G, M = {M 1 , M 2 , . . . , M k }, where each color class (matching) M i ⊆ E is assigned the weight of the heaviest edge in this class, i.e., w i = max{w(e)|e ∈ M i }, 1 ≤ i ≤ k, and the sum of all color classes' weights, W = ∑ k i=1 w i , is minimized. In fact, senders and/or receivers correspond to the vertices of the graph G, (transmission times of) messages correspond to (weights of) edges of G and configurations correspond to matchings. Although the graph G obtained is originally a weighted directed multi-graph it can be considered as an undirected one, since the directions of its edges do not play any role in the objective function.

The above coloring problem is known as the Max Edge-Coloring (MEC) problem; clearly, for unit edge weights it reduces to the classical edge-coloring problem. The analogous weighted generalization of the classical vertex-coloring problem has been also addressed in the literature as Max (Vertex-)Coloring (MVC) problem [START_REF] Pemmaraju | Buffer minimization using max-coloring[END_REF][START_REF] Pemmaraju | Approximation algorithms for the max-coloring problem[END_REF].

Remark that the MEC problem on a general graph, G, is equivalent to the MVC problem on the line graph, L(G), of G. Thus, the results for the MVC problem on a graph G apply also to the MEC problem on the graph L(G) and vice versa, if both G and L(G) are in the same graph class. Note, however, that this is true for general graphs and chains, but not for the most other special graph classes, including bipartite graphs and trees, since they are not closed under line graph transformation (e.g., the line graph of a bipartite graph is not anymore a bipartite one).

The MEC problem can be also viewed as a parallel batch scheduling problem with conflicts between jobs [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF][START_REF] Finke | Batch processing with interval graph compatibilities between tasks[END_REF]. According to the standard three field notation for scheduling problems, the MEC problem is equivalent to 1 | pbatch, E(G) | C max : Jobs correspond to the edges E(G) of a weighted graph G and edge weights to processing times of jobs. The graph G describes incompatibilities between jobs, i.e., jobs corresponding to adjacent edges cannot be scheduled (resp., colored) in the same batch (resp., by the same color).

Related work.

It is well known that for general graphs it is NP-hard to approximate the classical edge-coloring problem within a factor less than 4/3 [START_REF] Holyer | The NP-completeness of edge-coloring[END_REF]; for bipartite graphs the problem becomes polynomial [START_REF] König | Über graphen und ihre anwendung auf determinantentheorie und mengenlehre[END_REF]. The MEC problem is known to be non approximable within a factor less than 7/6 even for cubic planar bipartite graphs with edge weights w(e) ∈ {1, 2, 3}, unless P=NP [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: Complexity and approximation[END_REF]. It is also NP-complete for complete graphs with bi-valued edge weights [START_REF] Bourgeois | Approximating the maxedge-coloring problem[END_REF]. On the other hand, the MEC problem is known to be polynomial for a few special cases including bipartite graphs with edge weights w(e) ∈ {1, t} [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF], chains [START_REF] Escoffier | Weighted coloring: further complexity and approximability results[END_REF][START_REF] Halldorsson | Batch coloring flat graphs and thin[END_REF][START_REF] Kavitha | Max-coloring paths: Tight bounds and extensions[END_REF], stars of chains [START_REF] Lucarelli | On the max-weight edge coloring problem[END_REF] and bounded degree trees [START_REF] Bourgeois | Approximating the maxedge-coloring problem[END_REF]. It is interesting that the complexity of the MEC problem on trees remains open.

Concerning the approximability of the MEC problem, a natural greedy 2approximation algorithm for general graphs has been proposed in [START_REF] Kesselman | Nonpreemptive scheduling of optical switches[END_REF]. For bipartite graphs of maximum degree ∆ = 3, an algorithm that attains the 7/6 inapproximability bound has been presented in [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: Complexity and approximation[END_REF]. For bipartite graphs of small maximum degrees, algorithms which improve the 2 approximation ratio have been also presented. However, the ratios of these algorithms either exceed 2 [START_REF] Escoffier | Weighted coloring: further complexity and approximability results[END_REF] or tend asymptotically to 2 [START_REF] Lucarelli | On the max-weight edge coloring problem[END_REF][START_REF] Bourgeois | Approximating the maxedge-coloring problem[END_REF] as the maximum degree of the input graph increases. In [START_REF] Bourgeois | Approximating the maxedge-coloring problem[END_REF] has been also presented a 3/2-approximation algorithm for trees, and an asymptotic 4/3-approximation algorithm for general graphs with bi-valued edge weights and arbitrarily large maximum degree ∆.

The MVC problem has been also studied extensively during last years. It is known to be non approximable within a factor less than 8/7 even for planar bipartite graphs, unless P=NP [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF][START_REF] Pemmaraju | Approximation algorithms for the max-coloring problem[END_REF]. This bound is tight for general bipartite graphs as an 8/7-approximation algorithm is also known [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: Complexity and approximation[END_REF][START_REF] Pemmaraju | Approximation algorithms for the max-coloring problem[END_REF]. For the MVC problem on trees a PTAS has been presented in [START_REF] Pemmaraju | Approximation algorithms for the max-coloring problem[END_REF][START_REF] Escoffier | Weighted coloring: further complexity and approximability results[END_REF], while the complexity of this case is open. Other results for the MVC problem on several graph classes have been also presented in [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF][START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: Complexity and approximation[END_REF][START_REF] Pemmaraju | Buffer minimization using max-coloring[END_REF][START_REF] Pemmaraju | Approximation algorithms for the max-coloring problem[END_REF][START_REF] Escoffier | Weighted coloring: further complexity and approximability results[END_REF][START_REF] Epstein | On the max coloring problem[END_REF][START_REF] Kavitha | Max-coloring paths: Tight bounds and extensions[END_REF].

Our results and organization of the paper. The two most interesting open questions about the MEC problem concern the existence of an approximation algorithm of ratio 2 -δ, for any constant δ > 0, for general or bipartite graphs, and the complexity of the problem on trees. In this paper we present substantial improvements towards these questions. In the next section we present a PTAS for the MEC problem on trees; recall that the situation for the MVC problem on trees is the same: a PTAS is known while its complexity remains unknown. In Section 3, we succeed to beat the longstanding 2 approximation ratio for the MEC problem in bipartite graphs by presenting an 1.74-approximation algorithm. In addition, in Section 4, we adapt our algorithm for bipartite graphs to general graphs yielding an approximation ratio which also tends asymptotically to 1.74 as the maximum degree of the input graph increases. Finally, we conclude in Section 5.

Notation. In the following, we consider the MEC problem on an edge-weighted graph

G = (V, E), |V | = n, |E| = m,
where a positive integer weight w(e) is associated with each edge e ∈ E. We denote by 

M = {M 1 , M 2 , . . . , M k } a proper k-edge-coloring of G of weight W = ∑ k i=1 w i , where w i = max{w(e)|e ∈ M i }, 1 ≤ i ≤ k. By M * = {M * 1 , M * 2 , . . . , M * k * }

A PTAS for trees

In [START_REF] Bourgeois | Approximating the maxedge-coloring problem[END_REF] a 2-approximation algorithm (Algorithm Trees) for the MEC problem on trees has been presented. This algorithm in conjunction with the 2approximation algorithm for general graphs [START_REF] Kesselman | Nonpreemptive scheduling of optical switches[END_REF] has led to a 3 2 ratio for trees. In this section we also exploit Algorithm Trees to derive a PTAS.

Next proposition is proven in [START_REF] Bourgeois | Approximating the maxedge-coloring problem[END_REF].

Proposition 1. Algorithm Trees constructs a solution of exactly ∆ matchings in O(|V | • ∆ • log ∆) time.
For the weights of the matchings in this solution it holds that w 1 = w * 1 and

w i ≤ w * i-1 , 2 ≤ i ≤ ∆.
To obtain our scheme we shall use a transformation of our problem to the following list edge-coloring problem.

List Edge-Coloring ( LEC) problem

Instance: A graph G = (V, E), a set of k colors and a list of colors ϕ(e) ⊆ {1, 2, . . . , k} for each e ∈ E. Question: Is there a k-edge-coloring of G such that each edge e is assigned a color in its list ϕ(e)?

The MEC and LEC problems are strongly related: Given an edge-weighted graph G = (V, E), consider a combination of k edges' weights

w 1 ≥ w 2 ≥ • • • ≥
w k and answer to the following LEC problem on G: is there a k-edge-coloring of G such that each edge e ∈ E is assigned a color in ϕ(e) = {i : w(e) ≤ w i , 1 ≤ i ≤ k}? Then, a "yes" answer to this question corresponds to a feasible solution for the MEC problem of weight W = ∑ k i=1 w i . There are O(|E| k ) combinations of weights to be considered and an optimal solution to the MEC problem corresponds to the combination where W is minimized.

It is known that the LEC problem can be solved in O(|E| • ∆ 3.5 ) time for trees [START_REF] De Werra | Restrictions and preassignments in preemptive open shop scheduling[END_REF], while it becomes NP-complete for bipartite graphs even for three colors (k = 3) [START_REF] Kubale | Some results concerning the complexity of restricted colorings of graphs[END_REF].

Therefore, the next proposition follows.

Proposition 2. For a fixed number of matchings k the MEC problem on trees is polynomial.

Our scheme splits a tree G = (V, E), into subgraphs G[E 1,j ] and G[E j+1,m ] induced by the j heaviest and the n -j lightest edges of G, respectively (by convention, we consider G[E 1,0 ] as an empty subgraph). Our scheme depends on a parameter p such that all the edges of G of weights w * 1 , w Proof. Consider the iteration j, j ≤ m, of the algorithm where the weight of the heaviest edge in G[E j+1,m ] equals to the weight of the i-th matching of an optimal solution, i.e. w(e j+1 ) = w * i , 1 ≤ i ≤ p. The edges of G[E 1,j ] are a subset of those appeared in the i -1 heaviest matchings of the optimal solution. Thus, an optimal solution for G[E 1,j ] is of weight

OP T 1,j ≤ w * 1 + w * 2 + . . . + w * i-1 .
The edges of G[E j+1,m ] are a superset of those appeared in the k * -(i -1) lightest matchings of the optimal solution. The extra edges of G[E j+1,m ] are of weight at most w * i and appear in an optimal solution into at most i-1 matchings. Thus, an optimal solution for G[E j+1,m ] is of weight

OP T j+1,m ≤ w * i + w * i+1 + . . . + w * k * + (i -1) • w * i = i • w * i + w * i+1 + . . . + w * k * .
By Proposition 1, Algorithm Trees returns a solution for

G[E j+1,m ] of weight W j+1,m ≤ OP T j+1,m + w * i -w * ∆ ≤ i • w * i + w * i+1 + . . . + w * k * + w * i ≤ (i + 1) • w * i + w * i+1 + . . . + w * k * .
Therefore, the solution found in this iteration j for the whole graph G is of weight

W i = OP T 1,j + W j+1,m ≤ w * 1 + w * 2 + . . . + w * i-1 + (i + 1) • w * i + w * i+1 + . . . + w * k * .
As the algorithm returns the best among the solutions found, we have p bounds on the weight W of this best solution, i.e.,

W i ≤ w * 1 + w * 2 + . . . + w * i-1 + (i + 1) • w * i + w * i+1 + . . . + w * k * , 1 ≤ i ≤ p.
To derive our ratio we denote by c ji , 1 ≤ i, j ≤ p, the coefficient of the weight w * j in the i-th bound on W and we find the solution of the system of linear equations C • x T = 1 T . Using the standard Gaussian elimination method, we get the following solution:

x i = 1 i • (H p + 1) , 1 ≤ i ≤ p.
By multiplying both sides of the i-th, 1 ≤ i ≤ p, inequality by x i and adding up all of them we have

( p ∑ i=1 1 i • (H p + 1) ) •W ≤ OP T , that is W OP T ≤ H p + 1 H p = 1 + 1 H p .
Algorithm Scheme(p) iterates |E| times. In each iteration: (i) an optimal solution, if any, with at most p-1 matchings for G[E 1,j ] is found by Proposition 2 in ). Consequently, we have a PTAS for the MEC problem on trees, that is an approximation ratio of 1+ 1 Hp = 1+ϵ within time O

O(|E| p-1 •|E|•∆ 3.
( |E| ( |V | • ∆ • log ∆ + |E| p • ∆ 3.5 )) . ⊓ ⊔

Beating the 2-approximation ratio for bipartite graphs

A promising idea in order to create an approximation algorithm for the MEC problem on bipartite graphs is to repeatedly partition the input graph into a number of edge induced subgraphs and then to find a solution for each of them independently. In fact, this is the idea behind the known approximation algorithms of ratios less than 2 for the MEC problem on bipartite graph [3, 7, 2], as well as the 8/7-approximation algorithm for the MVC problem on bipartite graphs [START_REF] De Werra | Weighted coloring on planar, bipartite and split graphs: Complexity and approximation[END_REF][START_REF] Pemmaraju | Approximation algorithms for the max-coloring problem[END_REF]. However all known algorithms for the MEC problem that follow this idea achieve ratios which either exceed 2 or tend asymptotically to 2 as the maximum degree of the input graph increases. In this section we exploit the same idea and we are able to show an 1.74-approximation ratio for the MEC problem on bipartite graphs. Consider an ordering ⟨E⟩ = ⟨e 1 , e 2 , . . . , e m ⟩ of the edges of G. Let us denote by (p, q), 0

≤ p < q ≤ m, a partition of G into subgraphs G[E 1,p ], G[E p+1,q ]
and G[E q+1,m ]; by convention, we define E 1,0 = ∅ and E 0,q = E 1,q . By ∆ 1,q we denote the maximum degree of the subgraph G[E 1,q ]. For a partition (p, q) of G, we define a critical set of edges

A ⊆ E p+1,q , such that each vertex u ∈ V of degree d 1,q (u) > ∆ 1,p has degree d 1,q (u) -∆ 1,p ≤ d A (u) ≤ ∆ 1,q -∆ 1,p .
The proposed algorithm relies on the existence of such a critical set of edges A: a solution for the subgraph G[E 1,q ] is found by concatenating a ∆ 1,p -coloring solution for the subgraph G[E 1,q \ A] and a (∆ 1,q -∆ 1,p )-coloring solution for the subgraph G[A], if A exists, and by a ∆ 1,q -coloring of the subgraph G[E 1,q ], otherwise. For each partition (p, q), the algorithm computes a solution for the input graph G by concatenating a solution for G[E 1,q ] and a ∆-coloring solution for G[E q+1,m ]. The algorithm computes also a ∆-coloring solution for the input graph and returns the best among them.

The following lemma shows that the check in Line 4 of Algorithm Bipartite can be done in polynomial time.

Lemma 1. For a partition (p, q) of a graph G = (V, E), a critical set of edges A, if any, can be found in

O(|V | 3 ) time. Proof. A (g, f )-factor of a graph G is a spanning subgraph F such that g(u) ≤ d F (u) ≤ f (u), for all u ∈ V . Recall that A ⊆ E p+1,q and consider the subgraph G[E p+1,q ]. For each vertex u of G[E p+1,q ] we define g(u) = max{0, d 1,q (u)-∆ 1,p } and f (u) = ∆ 1,q -∆ 1,p .
Then, there exists a critical set of edges A ⊆ E p+1,q if and only if there exists a (g, f )-factor in G[E p+1,q ]. It is known that such a factor, if any, can be found in O(|V | 3 ) time [START_REF] Anstee | An algorithmic proof of Tutte's f -factor theorem[END_REF].

⊓ ⊔ Theorem 2. Algorithm Bipartite achieves an 1.74-approximation ratio for the MEC problem on bipartite graphs.

Algorithm Bipartite 1: Find a ∆-coloring solution for G; 2: for p = 0 to m -1 do 3: for q = p + 1 to m do 4:

Find, if any, a critical set of edges A in G[Ep+1,q]; 5:

if A exists then 6:

Find a ∆1,p-coloring solution for G[E1,q \ A]; 7:

Find a (∆1,q -∆1,p)-coloring solution for G[A]; 8: else 9:

Find a ∆1,q-coloring solution for G[E1,q]; 10:

Find a ∆-coloring solution for G[Eq+1,m]; 11:

Find a solution for G by concatenating the solutions found either in Lines 6,7 or in Line 9 with the one found in Line 10; 12: Return the best among the solutions found in Lines 1 and 11;

Proof. The solution obtained by a ∆-coloring of the input graph computed in Line 1 of the algorithm is of weight

W 1 ≤ ∆ • w * 1 . Consider the partition (p, q) of G where w(e p+1 ) = w * ⌈ i 2 ⌉ and w(e q+1 ) = w * i , for 2 ≤ i ≤ ∆ (recall that w * 1 ≥ w * 2 ≥ • • • ≥ w * k * and k * ≥ ∆).
In such an iteration, all the edges in E 1,p belong to

⌈ i 2 ⌉ -1 ≥ ∆ 1,
p matchings of an optimal solution M * , and all the edges in E 1,q belong to i-1 ≥ ∆ 1,q colors of an optimal solution M * .

If ∆ 1,q = ∆ 1,p then the set A does not exist. Hence, a ∆ 1,q -coloring of G[E 1,q ] yields a solution of weight at most

(⌈ i 2 ⌉ -1 ) • w * 1 for this subgraph. If ∆ 1,q > ∆ 1,p then a critical set of edges A exists. Indeed, in this case the matchings M * ⌈ i 2 ⌉ , M * ⌈ i 2 ⌉+1
, . . . , M * i-1 of M * always contain some edges from E p+1,q , for otherwise all the edges in E 1,q belong to ⌈ i 2 ⌉ -1 matchings of M * , a contradiction; these edges of E p+1,q could be a critical set of edges A for the partition (p, q). Thus, a ∆ 1,p -coloring solution of G[E 1,q \ A] and a (∆ 1,q -∆ 1,p )coloring solution for G[A] yield a solution for the subgraph

G[E 1,q ] of weight at most ∆ 1,p • w * 1 + (∆ 1,q -∆ 1,p ) • w * ⌈ i 2 ⌉ ≤ (⌈ i 2 ⌉ -1 ) • w * 1 + ⌊ i 2 ⌋ • w * ⌈ i 2 ⌉
, since

∆ 1,p ≤ ⌈ i 2 ⌉ -1, ∆ 1,q ≤ i -1 and w * 1 ≥ w * ⌈ i 2 ⌉
.

Finally, a ∆-coloring solution for G[E q+1,m ] is of weight at most ∆ • w * i . Hence, for such a partition (p, q) the algorithm finds a solution for the whole input graph of weight

W i ≤ (⌈ i 2 ⌉ -1 ) • w * 1 + ⌊ i 2 ⌋ • w * ⌈ i 2 ⌉ + ∆ • w * i , 2 ≤ i ≤ ∆.
As in the case of trees, the algorithm returns the best among the solutions found. Hence, we have ∆ bounds on the weight W of this best solution, i.e.,

W 1 ≤ ∆ • w * 1 , if i = 1, and 
W i ≤ (⌈ i 2 ⌉ -1 ) • w * 1 + ⌊ i 2 ⌋ • w * ⌈ i 2 ⌉ + ∆ • w * i , if 2 ≤ i ≤ ∆.
Solving again the system of linear equations C•x T = 1 T , where c ji , 1 ≤ i, j ≤ ∆, is the coefficient of the weight w * j in the i-th bound on W , we get the following solution for the case where the maximum degree of the graph is a power of 2:

xi =                ⌊ log ∆ i ⌋ ∑ j=0   - ( -1 ∆ ) j+1 2 j ∑ y=1   j ∏ z=1 ( 2 z-1 (i -1) + ⌈ y 2 j-z+1 - 1 2 ⌉)     , if ∆ ≥ i ≥ 2 1 ∆   1 -x2 - ∆ ∑ j=3 (⌈ j 2 ⌉ -1 ) xj   , if i = 1.
For the case where the maximum degree of the input graph is not a power of 2 the solution of the system becomes more complicated:

xi = ⌊ log ∆ i ⌋ ∑ j=0   - ( -1 ∆ ) j+1 2 j ∑ y=1   j ∏ z=1 ( 2 z-1 (i -1) + ⌈ y 2 j-z+1 - 1 2 ⌉)     - ( -1 ∆ ) ⌊ log ∆ i ⌋ +2  ∆-i+1- ∑ ⌊ log ∆ i ⌋ r=0 ((i-1)2 r )   ∑ y=1     ⌊ log ∆ i ⌋ +1 ∏ z=1 ( 2 z-1 (i -1) + ⌈ y 2 ⌊ log ∆ i ⌋ +2-z - 1 2 
⌉)    
while x 1 is the same as in the previous case.

For both cases, it holds that

W OP T ≤ 1 ∑ ∆ i=1 x i
. Using Mathematica, we computed the above ratio for quite large values of ∆, and it is found to tend to 1.74 (see Table 1 in our concluding section).

⊓ ⊔

It is an interesting question is whether a close formula for this ratio can be computed.

An adaptation for general graphs

The idea of splitting the input graph into three edge induced subgraphs and creating a ∆-coloring solution for each of them can be also exploited for general graphs. However, in this case, it is NP-complete to find, if any, a ∆-coloring solution of the input graph [START_REF] Holyer | The NP-completeness of edge-coloring[END_REF]. Instead of this, a (∆ + 1)-coloring solution can be found in polynomial time [START_REF] Gabow | Algorithms for edge-coloring graphs[END_REF]. Note that Lemma 1 holds for general graphs, and hence a critical set of edges A, if any, can be found in polynomial time. Theorem 3. There is an asymptotic 1.74-approximation ratio for the MEC problem on general graphs.

Proof. The analysis is almost the same as in the bipartite case. Considering the partition (p, q) where w(e p+1 ) = w * ⌈ i 2 ⌉

and w(e q+1 ) = w * i ; the difference is that if the set A exists then at most (i) a

⌈ i 2 ⌉ -coloring solution is created for G[E 1,q \A], (ii) a (⌊ i 2 ⌋ + 1 ) -coloring solution is created for G[A], and (iii) a (∆ + 1)-coloring solution is created for G[E q+1,m ].
Therefore, as in the previous case we have ∆ bounds on the weight W of this best solution, i.e.,

W 1 ≤ (∆ + 1) • w * 1 , if i = 1, W 2 ≤ w * 1 + (∆ + 1) • w * 2 , if i = 2, W 3 ≤ w * 1 + w * 2 + (∆ + 1) • w * 3 , if i = 3, W 4 ≤ w * 1 + 3w * 2 + (∆ + 1) • w * 4 , if i = 4, and 
W i ≤ ⌈ i 2 ⌉ • w * 1 + (⌊ i 2 ⌋ + 1 ) • w * ⌈ i 2 ⌉ + (∆ + 1) • w * i , if 5 ≤ i ≤ ∆.
Note that, for i = 2, 3 or 4, the subgraph G[E 1,q \ A] is of maximum degree at most one, and hence an optimal solution of one matching is created in this case. Analogous remark can be done for the subgraph G[A] for i = 3.

Solving the adapted system of linear equations as in the proof of Theorem 2, we find a solution x i , 1 ≤ i ≤ ∆, such that

W OP T ≤ 1 ∑ ∆ i=1 x i
. For the case where the maximum degree of the graph is a power of 2, this solution is:

xi =                    ∑ ⌊ log ∆ i ⌋ j=0
( -

( -1 ∆+1 ) j+1 ∑ 2 j y=1 ( ∏ j z=1 ( 2 z-1 (i -1) + ⌈ y 2 j-z+1 + 1 2 ⌉)) ) , if ∆ ≥ i ≥ 5 1-4x 7 -5x 8 ∆+1 , if i = 4 1-3x 5 -4x 6 ∆+1 , if i = 3 1-x 3 -3x 4 ∆+1 , if i = 2 1 ∆+1 ( 1 -x2 -x3 -x4 - ∑ ∆ j=5 ⌈ j 2 ⌉ xj ) , if i = 1.
Using again Mathematica we computed this ratio which tends asymptotically to 1.74 as ∆ increases (see Table 1 

below).

⊓ ⊔

Conclusions

We presented new results towards two open questions for the MEC problem; its complexity on trees, and the existence of an approximation algorithm for general and bipartite graphs of ratio 2 -δ, for any constant δ. We decrease the approximability gaps for both questions by presenting a PTAS for trees (improving the known 3/2 approximation ratio), and an 1.74-approximation algorithm for bipartite and general graphs (see Table 1). To explain the behavior of our approximation ratios it is worth to observe that the ratio for bipartite graphs increases with ∆, while for general graphs decreases with ∆. This is because we use (∆ + 1)-colorings for general graphs, instead of ∆-colorings for bipartite graphs. Recall that the standard ∆+1 ∆ -approximation ratio for the classical edge-coloring problem (implied by Vizing's Theorem) also decreases with ∆.
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  5 ) time and (ii) Algorithm Trees of complexity O(|V |•∆•log ∆) is called for G[E j+1,m ]. Choosing p such that ϵ = 1 Hp we get p = O(2 1 ϵ

  We obtain a solution for the whole graph by concatenating an optimal solution of at most p -1 colors for G 1,j , if there is one, and the solution obtained by Algorithm Trees for G[E j+1,m ]. Algorithm Scheme(p) is a PTAS for the MEC problem on trees.

	5:	Find an optimal solution for G[E1,j] with at most p -1 matchings;
	6:	Run Algorithm Trees for G[Ej+1,m];
	7:	Concatenate the two solutions found in Lines 5 and 6;
	8: Return the best solution found;
	Theorem 1.

* 2 , . . . , w * p-1 are in a subgraph G[E 1,j ]. Algorithm Scheme(p) 1: Let ⟨E⟩ = ⟨e1, e2, . . . em⟩; 2: for j = 0 to m do 3: Split the graph into two edge induced subgraphs: -G[E1,j] induced by edges e1, e2, . . . , ej -G[Ej+1,n] induced by edges ej+1, ej+2, . . . , em 4: if there is a solution for G[E1,j] with at most p -1 matchings then

Table 1 .

 1 Bipartite graphs 1.60188 1.71809 1.73409 1.73612 1.73637 1.73640 General graphs 1.99605 1.78855 1.74345 1.73730 1.73652 1.73642 Approximation ratios for the MEC problem on general and bipartite graphs for different values of ∆.

	∆	2 3	2 6	2 9	2 12	2 15	2 18
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