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Coupling between hyperbolic and diffusive systems:

a port-Hamiltonian formulation †
Yann Le Gorrec1,∗ and Denis Matignon2,∗

Abstract— The aim of this paper is to study a conservative
wave equation coupled to a diffusion equation. This coupled
system naturally arises in musical acoustics when viscous and
thermal effects at the wall of the duct of a wind instrument
are taken into account. The resulting equation, known as
Webster-Lokshin model, has variable coefficients in space, and
a fractional derivative in time. This equation can be recast into
the port Hamiltonian framework by using the diffusive repre-
sentation of the fractional derivative in time and a multiscale
state space representation. The port-Hamiltonian formalism
proves adequate to reformulate this coupled system, and could
enable another well-posedness analysis, using classical results
from port-Hamiltonian systems theory.

Keywords: Energy storage, port-Hamiltonian systems,

partial differential equations, fractional derivatives, diffusive

representation.

I. INTRODUCTION

The dissipative model which describes acoustic waves

traveling in a duct with viscothermal losses at the lateral

walls is a wave equation with spatially-varying coefficients,

which involves fractional-order integrals and derivatives with

respect to time [Polak(1991)]. This model is first rewritten

in a coupled form; then the fractional integrals and deriva-

tives are written in their so-called diffusive representation;

essentially, the fractional-order time kernel in the integral is

represented by its Laplace transform.

The main idea of the present work is to put the

Webster-Lokshin fractional PDE into the infinite dimensional

port-Hamiltonian framework [van der Schaft et al.(2002)],

[Le Gorrec et al.(2005)], in order to take advantage of this

setting. Port Hamiltonian framework has shown to be very

powerful to prove the existence and the well posedness of

solutions and to prove the stability of infinite dimensional

systems [Zwart et al.(2010)], [Villegas et al.(2009)]. To do

so, a preliminary work is necessary, that is using diffusive

representations of both fractional integrals and derivatives in

order to imagine the ad hoc Hamiltonian formulation as a

multiscale coupling of two port Hamiltonian systems. This
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work has to be related to the multiscale coupling proposed in

[Baaiu et al.(2009)]. The coupling between conservative and

dissipative subsystems is then easily tackled in this setting;

but for the PDE, as usual, some care must be taken with the

functional setting.

The outline of the paper is as follows: section § II starts

with some background on port-Hamiltonian systems, both in

finite dimension and infinite dimension, with an emphasis on

the modelling of damping, see II-A; some specific damping

models are then examined in § II-B: fractional integrals and

derivatives are defined first, and diffusive representations are

introduced in order to replace these fractional operators by

input-output representations, and state-space representation,

which prove compatible with first order dynamical systems.

In order to set up a Hamiltonian formulation of both these

operators, a finite-dimensional toy-model is studied in depth

in § III: ad hoc discrete energies are being defined, skew-

symmetric and symmetric structural matrices J and R are

identified, and the standard port-Hamiltonian structure of

dissipative systems is recovered. Finally, the fully infinite-

dimensional case is presented in § IV: the Webster-Lokshin

model is recast in the setting of infinite-dimensional port-

Hamiltonian systems with dissipation. The paper ends in § V

with many perspectives of this ongoing work.

II. SOME BACKGROUND ON PORT HAMILTONIAN

SYSTEMS AND DIFFUSIVE SYSTEMS

A. Port Hamiltonian systems

1) The finite dimensional case: Port Hamiltonian sys-

tems (PHS) [van der Schaft and Maschke(2004)] have been

widely used in modelling and control of mechanical and

electromechanical systems, see also [Duindam et al.(2009)].

It has first been defined from Dirac structures (arising from

the use of power conjugate variables and the skew symme-

try of the interconnection structure) in the case of power

preserving systems. In the case of systems with dissipation,

PHS are defined by:

{
Ẋ = (J(X) − R(X)) ∂XH(X) + g(X)u(t)
y = g(X)T ∂XH(X)

where X ∈ R
n, H(X) is the Hamiltonian function usually

chosen as the total energy of the system, ∂XH(X) is the

vector of driving forces, J(X) = −J(X)T and R(X) =
R(X)T ≥ 0 which may depend on the state vector X specify

the interconnection matrix and the dissipation matrix of the

system respectively, and g(X) is the matrix of smooth input

mapping functions. The energy balance associated to this



system is:

dH
dt

= (∂XH)
T ∂X

∂t
= yT u(t)− (∂XH(X))

T
R (∂XH(X))︸ ︷︷ ︸

d≥0

In the case of linear systems the energy can be written as

a quadratic form H(X) = 1
2XT LX where L is symmetric

positive definite and is related to the physical parameters of

the system.

Example 1 (Mass spring system). We consider the simple

mass spring system example. A spring on a support (we

do not consider the gravity force) is fixed at one end and

attached to a load at the other end. A force F (t) is applied

to the load. From Newton’s second law:

mẍ = −κx + F (1)

where x(t) is the relative position of the load, m the mass of

the load, F the applied force, and κ the stiffness of the spring.

Let’s now consider the position q = x and the momentum

p = mẋ (i.e. the energy variables) as state variables X(t) =(
q(t) p(t)

)T
. The energy of the system is given by the

sum of the elastic potential energy and the kinetic energy :

H(q, p) =
1

2

(
κq2 +

p2

m

)
=

1

2

(
q p

) (
κ 0
0 1

m

)

︸ ︷︷ ︸
L>0

(
q

p

)

System (1) can be written as a port-Hamiltonian system:
(

q̇

ṗ

)
=

(
0 1
−1 0

)

︸ ︷︷ ︸
J

(
κ 0
0 1

m

) (
q

p

)

︸ ︷︷ ︸
∂XH(X)=LX

+

(
0
1

)

︸ ︷︷ ︸
g(x)

F

y =
(

0 1
) (

κ 0
0 1

m

) (
q

p

)
= ẋ

(2)

In this case the energy is preserved and the skew symmetry

of the interconnection structure implies that the internal

variation of the energy comes from the power exchanged

with the environment. It is a direct consequence of the energy

balance:
dH(X)

dt
=

∂H(X)

∂X

T
dX

dt
= Fẋ

When viscous damping with constant coefficient ε is consid-

ered, equation (1) becomes:

mẍ = −κx − εẋ + F (3)

leading to:
(

q

p

)
=

(
0 1
−1 −ε

)

︸ ︷︷ ︸
J−R

(
κ 0
0 1

m

) (
q

p

)

︸ ︷︷ ︸
∂XH(X)=LX

+

(
0
1

)

︸ ︷︷ ︸
g(X)

F

y =
(

0 1
) (

κ 0
0 1

m

) (
q

p

)
= ẋ

(4)

We can note that the dissipation is expressed through the

positivity of the R term, leading to the balance equation:

dH(X)

dt
= Fẋ − εẋ2

2) Infinite dimensional port-Hamiltonian systems: Port

Hamiltonian systems have been extended to the case of

distributed parameter systems and more specifically in

the case of power conservative linear systems defined on

one dimensional spatial domain (z ∈ [a, b]) by using

real Hilbert spaces in [Le Gorrec et al.(2005)] and in the

case of system with dissipation in [Villegas et al.(2006)],

[Le Gorrec et al.(2006)]. In this later case the associate PDE

is of the form:

Ẋ(z, t) = (J (X) −R(X))LzX(z, t), (5)

with J (X) a formally skew symmetric differential operator

of order N and X(z, t) ∈ HN ((a, b); Rn), R = GSG∗ a

formally skew symmetric differential operator of degree less

or equal to N , S and Lz two coercive operators that may

depend on z. The total energy of the system is defined as

H(X) =
1

2
X(z, t)TLzX(z, t) (6)

The definition of infinite dimensional port-Hamiltonian

systems is fundamentally linked to the definition of the port

variables, derived in the power conservative case (R(X) =
0) from the skew symmetry of the operator in the case of

open systems, and from which the Dirac structure is defined.

In the case of systems of the form (5) i.e. with dissipation,

the overall differential operator is not skew symmetric. Yet,

a Dirac structure can be associated with the interconnection

structure (that is skew symmetric) defined by the extended

skew symmetric operator Je as follows:
(

Ẋ(z, t)
fs

)
=

(
J G

−G∗ 0

)

︸ ︷︷ ︸
Je

(
LX(z, t)

es

)
(7)

and the closure relation:

es = Sfs

which is equivalent to (5). From a geometrical point of view

(5) can be written:
(

f

fs

)
= Je

(
e

es

)
⇔ fe = Jeee

More precisely the Dirac structure can be defined as follows.

Definition 1. Let consider that ee ∈ Ee and fe ∈ Fe with

values at the boundary e∂ ∈ E∂ = R
nN and f∂ ∈ F∂ =

R
nN where Ee and Fe are real Hilbert spaces. A Dirac

structure D on the bond space B = E × E∂ × F × F∂ is a

subspace of B which is maximally isotropic with respect to

the canonical symmetrical pairing (with b, b̃ ∈ B)

〈b, b̃〉+ = 〈(ee, f̃e)〉 + 〈(ẽe, fe)〉
−〈(ẽ∂ , f∂)〉 − 〈(e∂ , f̃∂)〉

i.e.,

D⊥ = D
A constructive definition of the boundary port variables in

the case of operators of the form (N = 1):

J = P1
∂

∂z
+ P0, and G = G1

∂

∂z
+ G0, Pi, Gi ∈ R

n



with P0 = −PT
0 , P1 = PT

1 can be found in

[Villegas et al.(2006)], [Jacob et al.(2012)] and is recalled in

Definition 2.

Definition 2. Let r be the rank of P̃1 =

(
P1 G1

−GT
1 0

)

and M be an n × r matrix, whose columns are linearly

independent and span the range of P̃1. Let define: Q =
MT P1M and MQ = (MT M)−1MT (Note that if P1 is

full rank M = I).

The boundary port variables associated with the differen-

tial operator Je are the vectors e∂ , f∂ ∈ R
n, defined by

(
f∂

e∂

)
= Rext

(
MQee(b)
MQee(a)

)
, (8)

where Rext is defined by:

Rext =
1√
2

(
Q −Q

I I

)
(9)

Remark 1. In one space dimension, functions belonging

to H1((a, b); Rn) are necessarily continuous, thus using

pointwise values at the boundary, such as ee(a) and ee(b)
in (8) definitely makes sense.

In higher space dimensions though, the trace operator must

be used to define variables at boundary of the spatial domain.

Then, it is possible to derive the Dirac structure associated

with (7).

Theorem 1. [Villegas et al.(2006)]Let H1((a, b); Rn) de-

note the Sobolev space of weakly differentiable functions on

the interval (a, b). The subspace DJe
defined as

DJe
=








fe

f∂

ee

e∂




∣∣∣ ee ∈ H1((a, b); Rn) × H1((a, b); Rn),

fe = Jeee,

(
f∂

e∂

)
= Rext

(
MQee(b)
MQee(a)

)}

(10)

is a Dirac structure.

The definition of a port-Hamiltonian system derives di-

rectly from the definition of Dirac structure.

Definition 3. An infinite-dimensional port-Hamiltonian sys-

tem with dissipation is defined by:

(ẋ, fs, f∂ , δxH(x), es, e∂) ∈ DJe

where es = Sfs with S > 0 and δxH(x) the variational

derivative of H(x).

Remark 2. If P1 is full rank and G1 = 0 then

M =

(
In

0

)
and MQ =

(
In 0

)

B. Diffusive systems

Some damping models involve fractional derivatives with

respect to the time variable: these causal linear operators can

be defined in many ways, and we first give a recap of the

definitions in the time domain, first of fractional integrals of

order β, then of fractional derivatives of order α, see e.g.

[Matignon(2009a)].

1) Fractional integrals and derivatives: Let β ∈ (0, 1),
and set1 hβ(t) := 1

Γ(β) tβ−1 for t > 0 only; then, hβ ∈
L1

loc(R
+). For any T > 0, let u ∈ L2(0, T ), and define

Iβu := hβ ⋆ u or, more explicitely:

Iβu(t) =

∫ t

0

1

Γ(β)
τβ−1 u(t − τ) dτ .

This is the Riemann-Liouville fractional integral of order β ∈
(0, 1) of u: it is causal, and belongs to L2(0, T ) also. In terms

of causal Laplace transform, Hβ(s) = s−β in ℜe(s) > 0;

hence, the interpretation of the fractional integral is a causal

low-pass filter, with a gain of −6 β dB per octave.

The fractional derivative is the inverse of the fractional

integral, but some technicalities are to be found in this case.

Let α ∈ (0, 1), and for any T > 0, let u ∈ H1(0, T ), (that

is u ∈ L2(0, T ), u has a weak derivative say u̇ which does

belong to L2(0, T )), and define Dαu = I1−αDu := h1−α⋆u̇

or, more explicitely:

Dαu(t) =

∫ t

0

1

Γ(1 − α)
τ−α u̇(t − τ) dτ .

This is the fractional derivative of order α ∈ (0, 1) of u:

it is causal, and belongs to L2(0, T ). In terms of causal

Laplace transform, H̃α(s) = s+α in ℜe(s) > 0; hence, the

interpretation of the fractional derivative is a causal high-pass

filter, with a gain of +6α dB per octave.

In the next sections, we shall make a link between

these fractional operators, and ordinary differential equations

(ODEs), or just convolution by families of decaying exponen-

tials: beginning by an easy numerical identity, we are able to

derive functional identities for the kernel hβ and its Laplace

transform Hβ , in the time-domain and the frequency-domain

respectively; these are being used to define input-output

representations, and even state-space realizations which will

be of great help in the sequel; part of this presentation is

borrowed from [Matignon(2009b)].

2) An Elementary Approach: Consider the numerical

identity, valid for δ > 1:
∫ ∞

0

dx

1 + xδ
=

π
δ

sin(π
δ )

.

Letting s ∈ R
+
∗ and substituting x = ( ξ

s )
1
δ in the above

numerical identity, we get:
∫ ∞

0

sin(π
δ )

π

1

ξ1− 1
δ

1

s + ξ
dξ =

1

s1− 1
δ

Finally, performing an analytic continuation from R
+∗ to

C \ R
− for both sides of the above identity in the complex

1Γ(β) is a function of β



variable s, and letting β := 1 − 1
δ ∈ (0, 1), we get the

functional identity:

Hβ : C \ R
− → C

s 7→
∫ ∞

0

µβ(ξ)
1

s + ξ
dξ =

1

sβ
, (11)

with density µβ(ξ) = sin(β π)
π ξ−β .

Applying an inverse Laplace transform to both sides gives:

hβ : R
+ → R

t 7→
∫ ∞

0

µβ(ξ) e−ξ t dξ =
1

Γ(β)
tβ−1 . (12)

3) Input-output Representations: Let u and y := Iβu be

the input and output of the causal fractional integral of order

β. Using the integral representations above, together with

Fubini’s theorem, we get:

y(t) =

∫ ∞

0

µβ(ξ) [eξ ⋆ u](t) dξ ,

with eξ(t) := e−ξ t, and [eξ ⋆ u](t) =
∫ t

0
e−ξ (t−τ) u(τ) dτ .

Now for fractional derivative of order α ∈ (0, 1), we have

ỹ = Dαu = D[I1−αu], and a careful computation shows

that:

ỹ(t) =

∫ ∞

0

µ1−α(ξ) [u − ξ eξ ⋆ u](t) dξ .

4) State Space Representation: In both input-output rep-

resentations above, introducing a state, say ϕ(ξ, .) which

realizes the classical convolution ϕ(ξ, .) := [eξ⋆u](t) leads to

the following diffusive realizations, in the sense of systems

theory:

∂tϕ(ξ, t) = −ξ ϕ(ξ, t) + u(t), ϕ(ξ, 0) = 0 , (13)

y(t) =

∫ ∞

0

µβ(ξ) ϕ(ξ, t) dξ ; (14)

and

∂tϕ̃(ξ, t) = −ξ ϕ̃(ξ, t) + u(t), ϕ̃(ξ, 0) = 0 , (15)

ỹ(t) =

∫ ∞

0

µ1−α(ξ) [u(t) − ξ ϕ̃(ξ, t)] dξ . (16)

These are first and extended diffusive realizations, respec-

tively. The slight difference between (13)-(14) and (15)-(16),

marked by the ˜ notation, lies in the underlying functional

spaces in which these equations make sense: ϕ belongs to

Hβ := {ϕ s.t.
∫ ∞
0

µβ(ξ)|ϕ|2 dξ < ∞}, whereas ϕ̃ belongs

to H̃α := {ϕ̃ s.t.
∫ ∞
0

µ1−α(ξ)|ϕ̃|2 ξ dξ < ∞}, see e.g.

[Haddar et al.(2008), ch. 2], or [Matignon et al.(2013b].

III. A TOY MODEL.

In this section, we first consider a classical mechanical

oscillator with fluid damping in § III-A, then we use the

velocity as input of two different types of damping models: a

low-pass diffusive subsystem (such as a discretized fractional

integral) in § III-B, or a high-pass diffusive subsystem (such

as a discretized fractional derivative) in § III-C.

A. Mass spring system with damping

We start with the port-Hamiltonian formulation of the sin-

gle finite dimensional harmonic oscillator. Dynamic equation

is usually written in the form:

mẍ + εẋ + κx = 0 (17)

where x(t) ∈ R and m, ε, κ are positive constants. By using

as state variables the energy variables (ı.e. the position and

the momentum) and defining the Hamiltonian H0 as the total

energy of the system, i.e.:

X :=

[
q = x,

p = mẋ

]
and H0(X) =

1

2m
p2 +

1

2
κx2 ;

it is possible to rewrite (17) in the form of a port-Hamiltonian

system:

d

dt
X =

[
0 1
−1 −ε

]
∂XH0(X) = (J − Rε) ∂XH0(X) .

where ∂XH0(X) =

[
κx = κx

1
mp = ẋ = v

]
and:

J =

[
0 1
−1 0

]
and Rε =

[
0 0
0 ε

]

J is full rank n = 2 and skew-symmetric , whereas Rε is

symmetric positive (ε > 0), with rank equal to 1, thus not

positive definite.

B. Coupling with a low-pass diffusive system

The damping model is now given by the coupling with

another dynamical system, the input of which is the velocity

v := ẋ, and the output of which is y, a positive linear

combination of first-order low-pass subsytems, as follows:

mẍ + y + κx = 0, with y =

K∑

k=1

µkϕk

where ϕ̇k = −ξk ϕk + v, for 1 ≤ k ≤ K .

Hence, with HΦ := 1
2

∑K
k=1 µk ϕ2

k, and ∂ϕk
HΦ = µk ϕk,

the total system can be described by an extended state X =
(x, p,Φ) and a total Hamiltonian H := H0 + HΦ.

d

dt
X =




0 1 0
−1 0 −1

T

0 1 −diag( ξk

µk
)


 ∂XH(X) = (J−R) ∂XH(X) .

In this case, matrices of size (2 + K) × (2 + K) are given

by:

J =




0 1 0
−1 0 −1

T

0 1 0


 and R =




0 0 0
0 0 0

0 0 diag( ξk

µk
)


 .

It can easily be checked that J is skew-symmetric with rank

2 only, and R is symmetric positive (ξk > 0, µk > 0), but

not positive definite (its rank is K); its structure is simply

diagonal.



Remark 3. Note that the relation between v and y, with

transfer function HK(s) =
∑K

k=1 µk
1

s+ξk
, comes from a

possible discretization of a diffusive system, the general

structure of which would be given by the following transfer

function, namely:

G(s) =

∫ ∞

0

µβ(ξ)
1

s + ξ
dξ .

As particular and noteworthy case, if µβ(ξ) = sin(βπ)
π ξ−β ,

then Gβ(s) = 1
sβ is recovered, which is nothing but the

fractional integral of order β ∈ (0, 1), a low-pass filter.

C. Coupling with a high-pass diffusive system

The damping model is now given by the coupling with

another dynamical system, the input of which is the velocity

v := ẋ, and the output of which is ỹ, a positive linear

combination of first-order high-pass subsytems, with a feed-

through term, d :=
∑L

l=1 νl, as follows:

mẍ + ỹ + κx = 0, with ỹ =

L∑

l=1

νl
˙̃ϕl

where ˙̃ϕl = −ξl ϕ̃l + v, for 1 ≤ l ≤ L .

Hence, with H
eΦ := 1

2

∑L
l=1 νl ξl ϕ̃

2
l , and ∂

eϕl
H

eΦ =
νl ξl ϕ̃l, the total system can be described by an extended

state X = (x, p, Φ̃) and a total Hamiltonian H := H0 +H
eΦ.

d

dt
X =




0 1 0
−1 −d 1

T

0 1 −diag( 1
νl

)


 ∂XH(X) = (J−R) ∂XH(X) .

In this case, matrices of size (2+L)× (2+L) are given by:

J =




0 1 0
−1 0 0
0 0 0


 et R =




0 0 0

0
∑L

l=1 νl −1
T

0 −1 diag( 1
νl

)




It can easily be checked that J is skew-symmetric with rank

2 only, and R is symmetric positive (ξl > 0, νl > 0), but not

positive definite (its rank is at most L); its structure is not

that simple, but a block computation shows that XT R X =
∑L

l=1

(√
νl p − 1√

νl
ϕ̃l

)2

≥ 0.

Remark 4. Note that the relation between v and ỹ, with

transfer function G̃L(s) =
∑L

k=1 νl
s

s+ξl
, comes from a

possible discretization of a diffusive system, the general

structure of which would be given by the following transfer

function, namely:

G̃(s) =

∫ ∞

0

ν(ξ)
s

s + ξ
dξ .

As particular and noteworthy case, if να(ξ) = sin(απ)
π ξα−1,

then Gα(s) = sα is recovered, which is nothing but the

fractional derivative of order α ∈ (0, 1), a high-pass filter.

IV. A HAMILTONIAN FORMULATION FOR

WEBSTER-LOKSHIN MODEL

Let now consider the Webster-Lokshin (cf. [Polak(1991)],

[Hélie et al.(2006)]) equation in PHS format. It is given in

the usual PDE form2:

∂2
t w +

(
εz ∂

1/2
t + ηz ∂

−1/2
t

)
∂tw − 1

r2
z

∂z

(
r2
z∂zw

)
= 0 .

(18)

where

w = w(t, z)

Here, coefficient εz > 0 is conversely proportional to the

radius rz , and the proportionality constants involved are

linked to the square roots of lv and lh, that are the char-

acteristic lengths of viscous and thermal effects, respectively

[Polak(1991)]. Also coefficient ηz > 0 appears in higher

order developpements, in an asymptotic analysis procedure

[Kergomard et al.(2013)].

Using the diffusive representation of § II-B, Equation (18)

can be written:

∂2
t w + (εz ỹ + ηz y) − 1

r2
z

∂z

(
r2
z∂zw

)
= 0 . (19)

With, for the fractional integral

y =

∫ ∞

0

µξϕ dξ , ϕ = ϕ(t, z, ξ)

where

∂tϕ = −ξϕ + ∂tw ,

and, for the fractional derivative

ỹ =

∫ ∞

0

ν(ξ)∂tϕ̃ dξ =

∫ ∞

0

(−ν(ξ)ξϕ̃ + ν(ξ)∂tw) dξ .

(20)

with

∂tϕ̃ = −ξϕ̃ + ∂tw . ϕ̃ = ϕ̃(t, z, ξ)

We choose as state variables the energy variables:

x1 = ∂zw(t, z), x2 = r2
z∂tw(t, z),

x3 = ϕ(t, z, ξ), x4 = ϕ̃(t, z, ξ),

with

• x1, x2 ∈ L2((a, b); R),
• x3 ∈ L2((a, b);Hµ), with functional space Hµ defined

by Hµ :
∫ ∞
0

µ(ξ)x3
2(ξ, .) dξ < ∞,

• x4 ∈ L2((a, b); H̃ν), with functional space H̃ν defined

by H̃ν :
∫ ∞
0

ξ ν(ξ) x4
2(ξ, .) dξ < ∞

The Hamiltonian function H(x1, x2, x3, x4) can then be

expressed as:

H =
1

2

∫ b

a

(
r2
zx2

1 +
1

r2
z

x2
2 + r2

zηz

∫ ∞

0

µx2
3 dξ + r2

zεz

∫ ∞

0

ν ξx2
4 dξ

)
d

In order to define the co-energy variables, we need to define

the variational derivative of the Hamiltonian.

2Indexes z and ξ mean that the parameters depend on the spatial
coordinate z or the coordinate ξ respectively.



Definition 4 (Variational derivative of smooth multiscale

function). Consider a functional of x = [x1(z), x1(z, ξ)]
T

:

H[x] = H[x1(z), x2(z, ξ)]

=
∫ b

a

(
H1 (x1(z)) +

∫ +∞
0

H2 (x2(z, ξ)) dξ
)

dz

(21)

where H1 and H2 are smooth functions. The multiscale

variational derivative of the functional H, denoted by δH
δx or

δxH is defined as:

δH
δx

=

( δH
δx1
δH
δx2

)

such that:

H[x + ǫδx] = H[x]+

ǫ

∫ b

a

(
δH
δx1

δx1 +

∫ +∞

0

δH
δx2

δx2dξ

)
dz + O(ǫ2)

for every ǫ ∈ R and vector of smooth real functions δx(z)
such that x + ǫδx satisfies the same boundary conditions as

x.

In the case of the Webster-Lokshin model the co-energy

variables are then defined by:

e1 = δx1
H = r2

z∂zw, e2 = δx2
H = ∂tw,

e3 = δx3
H = r2

zηz µξ ϕ, e4 = δx4
H = r2

zεz νξ ξ ϕ̃.

Equation (19) is then ”formally” equivalent to:



ẋ1

ẋ2

ẋ3

ẋ4


 =

(
A11 A12

A21 A22

)



r2

z∂zw
∂tw

r2

zηzµξϕ

r2

zεzνξξ eϕ


 (22)

where 8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

A11 =

0
@

0 ∂z

∂z −

Z ∞

0

r
2

zεzνξ . dξ

1
A

A12 =

„
0 0

−
R∞
0

. dξ
R∞
0

. dξ

«

A21 =

„
0 1
0 1

«

A22 =

 
− ξ

r2
zηzµξ

0

0 − 1

r2
zεzνξ

!

Remark 5. In equation (22), we split the integral of equa-

tion (20) into two terms that are not well defined, in fact one

must understand the term
∫ ∞
0

(ξϕ̃(t, z, ξ)−∂tw(t, z)) ν(ξ) dξ

as non separable. Indeed, one could be tempted to split this

term into
(∫ ∞

0

ξ νξ ϕ̃(t, z, ξ) dξ

)
−

(∫ ∞

0

νξ dξ

)
∂tw(t, z)

i.e. of the classical form y(t, z) = C ϕ̃ + D ∂tw; but at

least for the fractional operators for which νξ ∝ ξ−α, D =
−

∫ ∞
0

νξ dξ = −∞!

From a geometrical point of view, the dynamical system

(22) can be then written in the form:

f = (J −R) e (23)

with e ∈ E = H1([a, b], R)×H1([a, b], R)×L2([a, b],H)×
L2([a, b], H̃), f ∈ F = L2([a, b], R) × L2([a, b], R) ×
L2([a, b],H)×L2([a, b], H̃) and operators J and R defined

as follows:

J =

(
J11 J12

−J ∗
12 0

)
,

where

J11 =

(
0 ∂z

∂z 0

)
, J12 =

(
0 0

−
∫ ∞
0

.dξ 0

)

J ∗
12 =

(
0 −1
0 0

)

and

R =

(
R11 R12

R∗
12 R22

)

where

R11 =

„

0 0
0

R ∞
0

r2
zεzν(ξ) . dξ

«

R12 =

„

0 0
0 −

R ∞
0

. dξ

«

R∗
12 =

„

0 0
0 −1

«

R22 =

0

@

ξ

r2
zηzµξ

0

0 1

r2
zεzνξ

1

A

Remark 5 applies to the second line of operator R.

The bond space B defined as B = E ×F is equipped with

the natural power product:

〈(e1, e2, e3, e4), (f1, f2, f3, f4)〉 =
∫ b

a

(
e1f1 + e2f2 +

∫ ∞

0

(e3f3 + e4f4) dξ

)
dz . (24)

Lemma 1. J is formally skew-symmetric and R is symmet-

ric positive i.e.:

J = −J ∗ and R = R∗,R ≥ 0

Proof: Let’s first consider the skew-symmetry of J :

〈e′,J e〉 = 〈
`

e′
1 e′

2 e′
3 e′

4

´

,

„

J11 J12

−J ∗
12 0

«

0

B

@

e1

e2

e3

e4

1

C

A
〉

=
R

b
a

`

e′
1∂ze2 + e′

2∂ze1 − e′
2

R ∞
0

e3dξ +
R ∞
0

e′
3e2dξ

´

dz

=
R

b
a

`

−∂ze′
1e2 − ∂ze′

2e1 +
R ∞
0

e′
3e2dξ − e′

2

R ∞
0

e3dξ
´

dz
= 〈−J e′, e〉 .

The adjoint operator of J is equal to −J and then J is
formally skew-symmetric. In a similar way, one can prove
that R is symmetric i.e.

〈e′,Re〉 = 〈
`

e′
1 e′

2 e′
3 e′

4

´

,

„

R11 R12

R∗
12 R22

«

0

B

@

e1

e2

e3

e4

1

C

A
〉

=
R

b
a

„

e′
2

R

0
+∞r2

zεzνe2dξ − e′
2

R ∞
0

e4dξ +
R

+∞
0

„

e′
3

ξe3

r2
zηzµξ

−e′
4e2 + e′

4
1

r2
zεzνξ

e4dξ

««

dz

= 〈Re′, e〉 .

Moreover, the positivity of R can be proved as follows:

〈e,Re〉 =
R

b
a

R

+∞
0

„

e2r2
zεzνξe2 − e2e4 + e3

ξe3

r2
zηzµξ

− e4e2 + e4
1

r2
zεzνξ

e4

«

dξd

=
R

b
a

R

+∞
0

„

ξ

r2
zηz µξ

e2
3 + (rz

√
εzνe2 − 1

rz
√

εzν
e4)

2dξ

«

dz ≥ 0 .

Of course, R is not even positive definite, thus never

coercive.

System (23) can be written in the form of an extended

system with closure equation related to the dissipation by



using the extended operator Je with

(
f

fs

)
= Je

(
e

es

)

with es = Sfs, where:

Je =




0 ∂z 0 0 0 0 0
∂z 0 −

∫ ∞
0

.dξ 0 −
∫ ∞
0

.dξ 0 0
0 1 0 0 0 −1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0




,

and

S =




r2
zεzνξ 0 1

0 ξ
r2

zηzµξ
0

1 0 1
r2

zεzνξ


 ,

with es ∈ Es = H1([a, b], R)×L2([a, b],H)×L2([a, b], H̃),
fs ∈ Fs = L2([a, b], R) × L2([a, b],H) × L2([a, b], H̃).

One can check that Je is formally skew-symmetric and S

symmetric positive i.e. :

J ∗
e = −Je and S = S∗ ≥ 0

We now consider systems with non zero boundary flow.

One can naturally extend the effort and the flow spaces to

include the boundary, by defining:

E = Ee × R
2 = E × Es × R

2

F = Fe × R
2 = F × Fs × R

2

We define a symmetric pairing from the power product by:

〈(ee, e∂ , fe, f∂), (ẽe, ẽ∂ , f̃e, f̃∂)〉+ = 〈(ee, f̃e)〉 + 〈(ẽe, fe)〉
−〈(ẽ∂ , f∂)〉 − 〈(e∂ , f̃∂)〉

(25)

with (ee, e∂ , fe, f∂) and (ẽe, ẽ∂ , f̃e, f̃∂) ∈ B = E × F .

In order to define a Dirac structure we need to define

appropriate boundary port variables with respect to the

considered differential operator and symmetric pairing. In

[Villegas et al.(2006)] a parametrization of boundary port

variables is given in the case of non full rank linear dif-

ferential operators. This parametrization can be adapted to

our case study as follows:

Definition 5. Considering the following parametrization of

Je:

Je = P1∂z + P0

with

P1 =

(
Σ2 02,5

05,2 05,5

)
,

P0 =




0 0 0 0 0 0 0
0 0 −

∫ ∞
0

.dξ 0 −
∫ ∞
0

.dξ 0 0
0 1 0 0 0 −1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0




with Σ2 =

(
0 1
1 0

)
, the boundary port variables as-

sociated with the differential operator Je are the vectors
f∂ , e∂ ∈ R

2 given by:
„

f∂

e∂

«
= 1√

2

„
Σ2 −Σ2

I2 I2

«

„
I2 02,5 02,2 02,5

02,2 02,5 I2 02,5

«„
ee(b)
ee(a)

«

The definition of the boundary port variables gives rise to

the definition of the associated Dirac structure.

Theorem 2. The subspace DJe
of B defined as:

DJe =

8
><
>:

0
B@

fe

f∂

ee

e∂

1
CA |fe = J ee and

„
f∂

e∂

«
= 1√

2

„
Σ2 02,5 −Σ2 02,5

I2 02,5 I2 02,5

«„
ee(b)
ee(a)

«ff

is a Dirac structure with respect to the product (25).

Proof: We used the parametrization proposed in

[Villegas et al.(2006)] to define some boundary port vari-

ables such that the symmetric pairing (25) is non degenerate

and DJe
is a Dirac structure, i.e.

DJe
= D⊥

Je

Such parametrization arises from the integration by part of

the skew differential operator, the projection of the image

space and the definition of the inner product.

V. PERSPECTIVES

In order to develop this research theme in the near future,

the following tracks could be investigated, either on the

physical side, the theoretical side, or even the numerical side:

1) work out the derivation of the physical model itself:

see e.g. [Bruneau et al.(1989)], [Polak(1991)] and also

reference works on thermodynamics in a port Hamilto-

nian framework, to understand if a better formulation

could be possible: in this case, a better formulation

would mean closer to elementary physical principles.

2) try to develop an asymptotic analysis approach to

formulate the model of [Polak(1991)], and see to what

extent some port-Hamiltonian setting can be compat-

ible with this asymptotic analysis (in which case the

small parameter would be the diffusive coefficient η or

ε in the constant case)?

3) possibly examine other examples of physical models

with fractional derivatives, to see to what extent they

can be recast in the framework developped in this

paper: coupling between a conservative system and

a diffusive system. One model of interest could be

the Biot and Johnson-Koplik-Dashen (JKD) models for

waves in porous media, see e.g. [Blanc et al.(2013)]

and references therein.

4) investigate the numerics: a first approach has been

proposed in [Haddar et al.(2010)] and fully detailed

in [Haddar et al.(2008), chap. 3], but another way of

addressing the numerics could be first to apply a



Finite Element Method (FEM) respecting the geomet-

rical structure of the Hamiltonian formulation, as in

[Moulla et al. (2012)], second to use the Finite Dif-

ference Method (FDM) adapted to fractional dynam-

ics, such as in [Deü et al.(2010)]. Moreover, for the

treatment of the time-domain part, advantage should

be taken from so-called symplectic methods for Hamil-

tonian systems, first when no dissipation is present, see

e.g. [Leimkuhler et al.(2004)], and recently used with

dissipation in [Hu et al. (2013)].

5) analyse the asymptotic stability, see e.g.

[Villegas et al.(2006)] for the principles, but a

lack of compactness of the resolvent operator

prevents the use of standard techniques; hence, for

fractional systems, special care must be taken, see

[Matignon et al.(2005)] for a fractional ODE on a

single mode, or even more so for the fractional PDE,

as presented first in [Matignon(2006)], and finally in

[Matignon et al.(2013a)].

6) look carefully at the domains of the operators,

in particular with the fractional derivative, where

two parts cannot be treated separately, as seen

in the functional analytic framework developped in

[Haddar et al.(2008), chap. 2]: this reminds of the

so-called non separable C&D observation operators

developped in some operator theoretic frameworks.

This theoretical point, put forward in Remark 5, must

be tackled seriously.

VI. CONCLUSION

In this paper, we propose a port-Hamiltonian formulation

of systems arising from the coupling of a wave equation

with a diffusion equation related to acoustic phenomena. The

considered diffusion equation contains a fractional derivative

in time and physical coefficients variable in space. First

we consider the finite dimensional approximation of the

integral and fractional derivatives. It is based on a diffusive

representation of integral and fractional derivatives. In a

second instance, we consider the Webster-Lokshin equation

that is made up by the coupling of the wave equation and the

aforementionned diffusion term. From the definition of the

energy variables, Hamiltonian function and power conjugate

flow and effort vectors, we propose the definition of some

appropriate boundary port variables in order to define a Dirac

structure. This Dirac structure allows to connect the internal

energetic behavior of the system with the power flow at the

boundary. This first work on the geometrical formulation

of such system will open to the use of functional analysis

tools that have been previously derived in the context of

differential systems with dissipation in [Zwart et al.(2011)].

Nevertheless a particular care will have to be taken on

the characterization of functional spaces, particularly in the

case of the diffusion function for which the domain is not

separable, as already taken care of in [Haddar et al.(2008)].
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