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SUMMARY

PRDM9, a histone lysine methyltransferase, is a key
determinant of the localization of meiotic recombina-
tion hot spots in humans andmice and the only verte-
brate protein known to be involved in hybrid sterility.
Here, we report the crystal structure of the PRDM9
methyltransferase domain in complex with a histone
H3 peptide dimethylated on lysine 4 (H3K4me2) and
S-adenosylhomocysteine (AdoHcy), which provides
insights into the methyltransferase activity of PRDM
proteins. We show that the genuine substrate of
PRDM9 is histone H3 lysine 4 (H3K4) and that the
enzyme possesses mono-, di-, and trimethylation
activities. We also determined the crystal structure
of PRDM9 in its autoinhibited state, which revealed
a rearrangement of the substrate and cofactor bind-
ing sites by a concerted action of the pre-SET and
post-SET domains, providing important insights
into the regulatory mechanisms of histone lysine
methyltransferase activity.
INTRODUCTION

In humans, the PRDM family consists of 17 proteins that play

important roles in a wide range of development processes,

including stem cell identity maintenance or cell differentiation

and their deregulation results in various cancers (Hohenauer

andMoore, 2012). PRDMproteins are characterized by the pres-

ence of an N-terminal PR (PRDI-BF1 and RIZ1 homology)

domain followed bymultiple zinc fingers which confer DNA bind-

ing activity. PRDM2, -3, -8, -9, and -16 were shown to possess

histone methyltransferase activity, whereas some other mem-

bers were suggested to recruit histone-modifying enzymes

(Eom et al., 2009; Hayashi et al., 2005; Hohenauer and Moore,

2012; Pinheiro et al., 2012). PR domains are only distantly related

to the classical SET methyltransferase domains. The key signa-
ture motifs of SET domains are poorly conserved in the PRDM

family, and the available crystal structures systematically lack

bound substrate and cofactor. Thus, it remains unclear how

the catalytic mechanism of PRDM proteins relates to that of

SET domains (Hohenauer and Moore, 2012).

PRDM9 is the only member of the family (apart from its

paralog PRDM7 in human) to contain a domain related to

Krüppel-associated box (KRAB) often present in transcription

repressors (Birtle and Ponting, 2006) but has been shown to

catalyze methylation of H3K4me2 to H3K4me3 (Hayashi et al.,

2005), a modification typically enriched at transcription start

sites (Barski et al., 2007). PRDM9 may actually not be involved

in transcription regulation but is a key factor in specifying the

sites of meiotic recombination in mouse and human (Baudat

et al., 2010; Myers et al., 2010; Parvanov et al., 2010). This func-

tion is mediated by the DNA binding specificity of its zinc finger

array, and it has been proposed that PRDM9 binds to specific

sites in the genome of oocytes and spermatocytes, where its

methyltransferase activity leads to a local enrichment of

H3K4me3 and recruits the meiotic recombination machinery

(Grey et al., 2011). Whereas the importance of H3K4me3 cata-

lyzed by Set1 in the activity of meiotic recombination sites was

recently demonstrated in S. cerevisiae (Acquaviva et al., 2013;

Sommermeyer et al., 2013), in mammals, the role of H3K4me3

in this process remains unclear. Furthermore, PRDM9 is

involved in hybrid sterility, a function potentially linked to its

role in recombination (Mihola et al., 2009). Here, we present

crystal structures of its catalytic domain in an autoinhibited state

and in complex with the H3K4me2 substrate peptide, providing

insights into the substrate specificity, catalytic mechanism, and

regulation of PRDM proteins.

RESULTS AND DISCUSSION

Structure of the PRDM9 PR/SET Domain in Complex
with the H3K4me2 and AdoHcy
The structure of the PR/SET domain of mouse PRDM9

(mPRDM9) methyltransferase (residues 198–368) in complex

with histone H3K4me2 peptide and AdoHcy (a methylation
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Figure 1. Crystal Structures of the Catalytic

Domain of PRDM9

(A) Schematic representation of the domain

structure of mouse PRDM9.

(B) Ribbon diagram of the mPRDM9 PR/SET

domain in complex with H3K4me2 peptide and

AdoHcy. The SET domain (residues 245–358) is

shown in blue, pre-SET domain in green, and

truncated post-SET (post-SET*) in yellow. The

H3K4me2 peptide (in red) binds between strand b8

and helix a2.

(C) Structure of the catalytic domain of hPRDM9 in

its unbound form colored as in (B). Helix a2 is

oriented in the opposite direction blocking the

substrate binding cleft. The structure contains an

additional Zn finger within its post-SET domain.

(D) Details of H3K4me2 peptide recognition by

mPRDM9. Only hydrogen bonds formed by pep-

tide side chains are shown.

(E) The environment of H3K4me2 ε-amino group in

the mPRDM9 catalytic site. Ala332 corresponds to

F/Y switch residue Y305 in SETD7 (Del Rizzo et al.,

2010).

See also Figure S1.
reaction product) was determined by X-ray crystallography (Fig-

ure 1). The asymmetric unit contains two mPRDM9 molecules:

one in a ternary complex with the H3 peptide and AdoHcy (Fig-

ure 1B) and one in its unbound form (Figures S1A and S1B).

Overall, the mPRDM9 PR/SET domain topology corresponds

to other SET domains, with the conserved central SET domain

fold (Figures 2A, 2B, and S2) flanked by pre-SET and post-SET

regions. The pre-SET domain spans residues 198–244 and forms

a Zn finger that is connected to the SET domain with a long linker

(residues 222–244). The construct used contains only a short

post-SET region fragment (residues 359–368; referred to as

post-SET*) that is only folded in the presence of AdoHcy and

the peptide (Figure S1B).

Although the two SET domain signature motifs (NHS/CxxPN

and ELxF/YDY; x being any amino acid; Qian and Zhou, 2006)

are not well conserved in the PRDM family, the AdoHcy is bound

by mPRDM9 in a conventional way (Figures 2C and 2D),

indicating that only Asn320 of the NHS/CxxPN motif (320-

NCARDDEEQN in mPRDM9) is necessary for cofactor binding.

Surprisingly, in PRDM3, -8, and -16 that were shown to possess
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methyltransferase activity (Eom et al.,

2009; Hohenauer and Moore, 2012;

Pinheiro et al., 2012), this invariant aspar-

agine is replaced by an arginine or gluta-

mine residue (Figure 2C). These proteins,

thus, do not seem to have the potential of

binding AdoHcy in the way that is highly

conserved among SET-domain-contain-

ing methyltransferases and PRDM9. It

is not clear whether arginine or gluta-

mine residues can functionally substitute

for Asn320. In PRDM4, for which the

methyltransferase activity has not been

reported, we could show that the corre-
sponding arginine residue can block the AdoHcy binding site

(Figure 2E).

The H3K4me2 peptide binds to PRDM9 in a cleft between

strand b8 and helix a2 similar to other SET domains (Figures

1D and 1E). Electron density was interpretable for residues 1–

7. In addition to backbone interactions with strand b8 and helix

a2, the peptide also makes several side chain contacts with

PRDM9 that might determine its specific recognition (Figure 1D).

These include a hydrogen bond between Gln5 and the post-SET

Glu360 and Thr3 interaction with backbone carbonyl of Ala287.

Arg2 stacks against Tyr361 and makes a hydrogen bond with

AdoHcy.

Substrate Specificity and the Active Site of PRDM9
PRDM9was proposed to methylate H3K4me2, but not H3K4 nor

H3K4me1 (Hayashi et al., 2005). We analyzed the ability of

mPRDM9 (198–368) to bind unmodified H3K4 and H3K4me2

peptides by isothermal titration calorimetry and could show

that mPRDM9 binds the two peptides with dissociation con-

stants of 102 mM and 43 mM, respectively (Figures S3A and



Figure 2. AdoHcy Binding by PRDM

Proteins

(A) Comparison of the core SET domain of PRDM9

(residues 245–358) with residues 215–336 of

SETD7 (PDB code 1O9S; root-mean-square

deviation of 1.83 Å for 98 Ca atoms).

(B) Superposition of the core SET domain of

PRDM9 onto MLL1 residues 3830–3945 (PDB

code 2W5Z; root-mean-square deviation of 1.6 Å

for 96 Ca atoms).

(C) Sequence alignment of PRDM proteins

covering the two SET domain consensus regions

(in red). Identical residues are in green boxes.

Residues corresponding to PRDM9 Asn320

(AdoHcy binding) and Tyr357 (active site), invariant

in other SET domains, are highlighted by a red

frame.

(D) Details of AdoHcy binding by PRDM9. The

AdoHcy interacts with Asn320, main chain atoms

of the AGLG motif (Gly257, Gly259), Tyr 291 of the

I-SET, and Tyr361 and Leu365 of the post-SET

helix a2.

(E) Arg491 in PRDM4 (PDB code 3DB5) corre-

sponding to PRDM9 Asn320 blocks the AdoHcy

binding site.

See also Figure S2.
S3B). Additionally, MALDI-TOF mass spectrometry analysis

revealed that mPRDM9 canmono-, di-, and trimethylate unmod-

ified H3K4 peptide (Figures 3A and 3B). Finally, in a coupled fluo-

rescent methylation assay, both H3K4 and H3K4me2 peptides

were efficiently methylated by mPRDM9 (198–368), whereas

H4K20 peptide was not (Figure 3C). The activity on H3K4 was

lower but still significant, probably reflecting the lower binding

affinity (Figure 3C). Together, these results clearly show that

unmodified H3K4 is a genuine substrate of mPRDM9 and that

mPRDM9 possesses mono-, di-, and trimethylation activities.

To exploremorewidely the substrate specificity of PRDM9, we

tested the activity of mPRDM9 (198–368) on an array of 379
Cell Reports 5, 13–20
distinct peptides corresponding to

different regions of H2A, H2B, H3, and

H4 with various modifications (Fig-

ure S3C; Table S1). Significant methyl-

transferase activity was detected on

H3 (1–19) peptides, confirming H3K4

(me0, -1, and -2) to be efficient substrates

of PRDM9 (Figure 3D). Arg2 methylation

had no significant effect on the H3K4

methylation within H3 (1–19) peptides

carrying K9me3 modification (Figure 3D).

Surprisingly, PRDM9 can also methylate

H3K9 (me0, -1, and, -2) substrates (Fig-

ure 3D) and potentially H3K36 based on

the signal observed on the H3 (26–45)

peptide (Figure S3C). Although no enrich-

ment for H3K9me3 could be detected at a

mouse meiotic recombination site bound

by PRDM9 (Buard et al., 2009), additional

assays for substrate specificities in vitro
and in vivo could certainly be interesting. Other SET domain

methyltransferases, such as Ash1 from D. melanogaster, do

display activities on various substrates which may be regulated

in vivo (Beisel et al., 2002).

H3K4me2 is located in the channel formed by Trp293, Tyr357,

and Tyr361. In the active site, the H3K4me2 ε-amino group

is surrounded by three conserved tyrosine residues: Tyr357,

Tyr276, and Tyr341 (Figure 1E). Invariant tyrosines correspond-

ing to Tyr357 have been proposed to be directly involved in

catalysis (Smith and Denu, 2009). We show that the Y357F

mutation completely abolished the in vitro activity of mPRDM9

(Figures 3E and S3C). Similarly, Y276F and Y341F mutants
, October 17, 2013 ª2013 The Authors 15



Figure 3. Substrate Specificity of mPRDM9

(A and B) MALDI-TOF mass spectrometry analysis of the H3K4 peptide methylation by PRDM9 (198–368) is shown. Whereas H3K4 peptide incubated in

the absence of mPRDM9 is not methylated (A), after incubation with mPRDM9 (198–368), single, double, and triple methylation could be detected (B). a.u.,

arbitrary units.

(C) Coupled fluorescent methylation assay. H3K4 and H3K4me2 peptides are efficiently methylated bymPRDM9. Nomethylation is observed for H4K20 peptide.

(D) mPRDM9methyltransferase activity on histone H3 peptides. Top panel showsmethylation of H3 (1–19) peptide. Middle panel showsmethylation of H3 (1–19)

R8me2s/K9me3 peptides with various levels of K4 methylation and of K4me1/R8me2s/K9me3 peptide with indicated R2modifications. The bottom panel shows

R2me2s/R8me2s/K4me3 peptides with various levels of K9 methylation. No methylation is detected on H3 (1–19) K4me3/K9me3 peptides.

(E) Mutagenesis of key catalytic residues. Y357F, Y276F, and Y341F mutations abolish the methyltransferase activity of mPRDM9 (198–368).

(F) hPRDM9 (195–415) can methylate the H3K4 peptide. Themethylation activity is�4.4 times lower than for hPRDM9 (198–368). Mutations of Asp199 of the pre-

SET domain and Lys374 of the post-SET domain, disrupting the pre-SET/post-SET-inhibitory interaction result in a higher methyltransferase activity (1.6 times

higher for D199Y and 2.4 times higher for D199Y, K374D). The methyltransferase activity was calculated using linear portion of the curves between minute 7 and

15. Gel filtration and thermal shift measurement of melting temperature confirmed the structural integrity of these mutants (data not shown).

See also Figure S3.
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Figure 4. Conformational Changes of the

PRDM9 Active Site

(A) Superposition of mPRDM9 (198–368) and

hPRDM9 (195–415) structures. The post-SET

domains are highlighted in yellow and brown,

respectively. Proposed hinge regions are shown.

(B) Details of the interaction between the pre-SET

and post-SET domain of hPRDM9. Gly370 forms a

hydrogen bond with Asp199. The side chain of

Lys374, which is surrounded by Tyr202, Phe211,

and Trp373, binds to backbone carbonyl of

Asp199. Lys375 makes a salt bridge with Glu196.

(C) Glu360 and Tyr361 participate in the substrate

and cofactor binding in mPRDM9. Coloring cor-

responds to Figure 1B.

(D) Glu360 stabilizes the autoinhibitory conforma-

tion of hPRDM9 by a salt bridge with Arg342, and

Tyr361 blocks the substrate binding cleft. The

catalytic Tyr357 is also displaced.

See also Figure S4.
were inactive in methylation assay using the H3K4 peptide (Fig-

ure 3E). Surprisingly, Tyr276 was previously reported to be

dispensable for methyltransferase activity on H3 (Hayashi

et al., 2005). The integrity of the mutated proteins was verified

by gel filtration and thermal shift measurement of melting tem-

perature (Y276F decreased thermal stability of PRDM9 by 5�C;
data not shown). Interestingly, Tyr357 is not conserved in

PRDM3 and PRDM16 (Figure 2C). Thus, these PRDM proteins

are either not truly activemethyltransferases or they use different

catalytic residues than those conserved in PRDM9 and all other

SET domains. Tyr341 helps coordinate a water molecule in the

active site (Figure 1E). In our structure, one of the methyl groups

of the H3K4me2 would clash with the modeled position of the S-

adenosyl methionine (AdoMet) donor methyl. Thus, we interpret

our structure as being in a product conformation. Before the final

methylation reaction, the lysine would need to be rotated within

the catalytic site, possibly to position the clashing methyl group

into that occupied by the active site water, as suggested for

SETD7 (Del Rizzo et al., 2010). In zebrafish, both Tyr276 and

Tyr341 are substituted with phenylalanine (Figure S4A), possibly

indicating altered catalytic activity. Gly278 was suggested to be

a key residue for the activity of mPRDM9 (Hayashi et al., 2005).

The structure reveals that Gly278 is located just upstream of

strand b7 forming a b sheet with b8 and b9 and is not in proximity

to the substrate or cofactor binding site (11 Å from the H3K4me2
Cell Reports 5, 13–20
ε-amino group). Thus, this residue is

unlikely to have a direct effect on catalysis

but appears to be important for structural

integrity of the domain because a G278A

mutant cannot be expressed in soluble

form in bacteria (data not shown).

Structure of the Autoinhibited
PRDM9 PR/SET Domain
The post-SET domain is disordered in the

unbound mPRDM9 molecule in the crys-

tal (Figure S1B). Similarly, the post-SET
domains of DIM-5 or MLL1 become fully folded only in the pres-

ence of the AdoHcy/AdoMet cofactor and substrate (Southall

et al., 2009; Zhang et al., 2002). To better understand the role

of the post-SET domain, we produced crystals of a larger frag-

ment of mouse PRDM9 that, however, only diffracted to a low

resolution. We were, however, able to solve the structure of

human PRDM9 fragment spanning residues 195–415 (hPRDM9;

90% sequence identity with mPRDM9; Figure 1C). Compared to

mPRDM9 (198–368), this fragment includes a slightly longer pre-

SET region and an extended post-SET domain including a Zn

finger, which the structure shows loosely associates with the

SET domain via Glu326 and Arg345. Despite the presence of

the substrate peptide and AdoHcy in the crystallization solution,

hPRDM9 (195–415) crystallized in an unbound form. Unexpect-

edly, the hPRDM9 structure reveals that, in the absence of the

substrate and cofactor, the post-SET region is ordered but

undergoes a conformational change and binds across the SET

domain, blocking the peptide binding cleft (Figure 4A). Conse-

quently, also the AdoHcy binding site becomes incomplete sug-

gesting that this is an autoinhibitory conformation. This position

of the post-SET domain is stabilized by several interactions with

the pre-SET domain Zn finger (Figures 4A and 4B). The last res-

idue in the same position between the two structures is Val355.

The following residues that form helix a2 (residues 359–364) in

the ligand bound structure are rotated by �180� around Val355
, October 17, 2013 ª2013 The Authors 17



(Figure 4A). The new helix a2 is then formed by residues 362–367

packing against strands b8 and b11. Glu360 and Trp356 make

backbone hydrogen bonds with Leu332 and Gln334 of b11.

Glu360, which is involved in the substrate recognition in the com-

plex structure, makes a salt bridge interaction with Arg342,

whereas Tyr361 that forms the substrate lysine binding channel

in the complex blocks the peptide binding cleft forming a

hydrogen bond with Leu294 (Figures 4C and 4D). The following

helix a3 packs against the pre-SET domain as shown in Fig-

ure 4B. We tested whether hPRDM9 (195–415) maintains meth-

yltransferase activity and find that it is reduced from that of

hPRDM9 (198–368) but still significant (Figure 3F). Thus, it seems

that the presence of AdoMet and the peptide substrate is suffi-

cient to overcome the inhibition and trigger hPRDM9methylation

activity. Additionally, we could show that mutations predicted to

disrupt the inhibitory interaction between the pre-SET and post-

SET domains (D199Y and K374D) increased the activity of

hPRDM9 (195–415; Figure 3F). We propose that PRDM9 resi-

dues 355–356 and the linker between helix a3 and the post-

SET Zn finger function as hinge regions that enable translocation

of the helix a2 between the active conformation where Glu360

and Tyr361 participate in substrate lysine and cofactor binding

and an inhibitory conformation stabilized by Glu360, where

Tyr361 blocks the substrate binding site (Figure 4A). It remains

to be established whether the transition between the stable

rather than disordered conformation of the post-SET domain

and its active state is regulated by other factors or posttransla-

tional modifications during meiosis. This is a unique example

of a complete rearrangement of the substrate and cofactor bind-

ing sites of a histone lysine methyltransferase by a concerted

action of the pre-SET and post-SET domains.

EXPERIMENTAL PROCEDURES

Expression, Purification, and Crystallization

A His-tag fusion of mouse PRDM9 (residues 198–368) was expressed in E. coli

BL21Star (DE3) from pProEXHTb vector. The protein was first purified by affin-

ity chromatography using Ni2+ resin. After His-tag cleavage with tobacco etch

virus (TEV) protease, the protein was further purified by a second Ni2+ column

and size-exclusion chromatography. Pure PRDM9 was concentrated with

2 mM AdoHCy and 2 mM H3K4me2 peptide (ARTKme2QTARK-Y; Y added

to facilitate quantification) to 9 mg/ml in a buffer containing 20 mM Tris, pH

7.0, 150mMNaCl, and 5mM b-mercaptoethanol. The best-diffracting crystals

grew within 3 days at 5�C in a solution containing 0.2 M ammonium sulfate;

0.1 M Bis-Tris, pH 5.5; and 25% w/v polyethylene glycol (PEG) 3350. For

data collection at 100 K, crystals were snap frozen in liquid nitrogen with a

solution containing mother liquor and 30% (v/v) glycerol.

hPRDM9 (residues 195–415) was expressed as a His-tag fusion in E. coli

BL21 (DE3) V2R-pRARE from pET28-MHL vector. Harvested cells were resus-

pended in phosphate-buffered saline, supplemented with 250mMNaCl, 5mM

imidazole, 3 mM b-mercaptoethanol, 5% glycerol, 0.1% 3-[(3-cholamido-

propyl)dimethylammonio]-1-propanesulfonate, and 1 mM phenylmethanesul-

fonylfluoride. After affinity purification on 5 ml HiTrap Chelating column (GE

Healthcare), the protein was further purified by size-exclusion chromatog-

raphy. After TEV protease cleavage, hPRDM9 was purified to homogeneity

by ion-exchange chromatography on Source 30Q column (10 3 10) (GE

Healthcare). Pure hPRDM9 protein (8 mg/ml) was crystallized in a solution

containing 23% PEG 3350; 0.2 M ammonium acetate; and 0.1 M BisTris,

pH 5.5. The crystal was frozen in liquid nitrogen using 15% ethylene glycol

as cryoprotectant.

hPRDM4 (residues 390–540) was expressed as a His-tag fusion in E. coli

BL21 (DE3) Codon Plus RIL (Stratagene) from pET28a-LIC vector. The overex-
18 Cell Reports 5, 13–20, October 17, 2013 ª2013 The Authors
pressed protein was purified as described above for hPRDM9. Purified

PRDM4 (10 mg/ml) was crystallized using hanging drop vapor diffusion

method at 20�C by mixing 1.5 ml of the protein solution with 1.5 ml of the reser-

voir solution containing 23% PEG 3350; 0.2 M ammonium acetate; and 0.1 M

BisTris, pH 6.5. The crystal was frozen in liquid nitrogen using Paratone-N as

cryoprotectant.

Data Collection and Structure Determination

Crystals of mPRDM9 (198–368) belong to the space group P212121 with unit

cell dimensions a = 55.7 Å, b = 78.2 Å, and c = 107.6 Å. The asymmetric unit

contains two PRDM9molecules and has a solvent content of 60%. A complete

native data set was collected to a resolution of 2.3 Å on beamline ID29 at the

European Synchrotron Radiation Facility (ESRF). The data were processed

using XDS (Kabsch, 2010). The structure was solved by molecular replace-

ment with PHASER (McCoy et al., 2005) using the structure of PRDM11 (Pro-

tein Data Bank [PDB] code 3RAY; 44% sequence identity) as a search model.

Using prime-and-switch density modification of program RESOLVE (Terwil-

liger, 2000) enabled to us to obtain a clearly interpretable map. The structure

was built in COOT (Emsley and Cowtan, 2004) and refined in REFMAC5 (Mur-

shudov et al., 1997) to final R factor of 20.8% andRfree of 24.5% (Table S2) with

all residues in allowed (97% in favored) regions of the Ramachandran plot, as

analyzed by MOLPROBITY (Davis et al., 2004).

X-ray diffraction data for hPRDM9 was collected at 100 K at beamline 19-ID

of Advanced Photon Source at Argonne National Laboratory. Crystals of

hPRDM9 (195–415) belong to the space group P21 with unit cell dimensions

of a = 54.7 Å, b = 48.8 Å, c = 78.7 Å, and b = 100�. Data were processed using

HKL-3000 suite (Otwinowski and Minor, 1997). The structure of hPRDM9 was

determined by single-wavelength anomalous dispersion (SAD) phasing

method using a SeMet-substituted crystal. SOLVE/RESOLVE (Terwilliger

and Berendzen, 1999) were used for heavy atom site search, phase improve-

ment, and initial model building. Program BUCCANEER (Cowtan, 2006) and

ARP/wARP (Perrakis et al., 1999) were used for automatic model building.

COOT (Emsley and Cowtan, 2004) was used for model building and visualiza-

tion. Structure was refined with REFMAC5 (Murshudov et al., 1997) to final R

factor of 19.6% and Rfree of 26.4%with all residues in allowed (96% in favored)

regions of the Ramachandran plot, as analyzed by MOLPROBITY (Davis et al.,

2004). Crystal diffraction data and refinement statistics for the structure are

displayed in Table S2. Representative parts of the 2Fo–Fc electron density

maps calculated using the refined models are shown in Figures S4B and S4C.

X-ray diffraction data for hPRDM4 were collected at 100 K on RIGAKU FR-E

DW. Crystals of hPRDM4 belong to the space group I422 with unit cell dimen-

sions of a = 107.3 Å, b = 107.3 Å, and c = 133.6 Å. Data were processed using

HKL-2000 suite (Otwinowski and Minor, 1997). The structure of hPRDM4 was

determined by SAD phasing method using a SeMet-substituted crystal. The

structure was solved by using SHELXD (Sheldrick, 2008). COOT (Emsley

and Cowtan, 2004) was used for model building and visualization. Structure

was refined with REFMAC5 (Murshudov et al., 1997) to final R factor of

22.2% and Rfree of 29.8% with all residues in allowed (92.1% in favored)

regions of the Ramachandran plot, as analyzed by MOLPROBITY (Davis

et al., 2004). Crystal diffraction data and refinement statistics for the structure

are displayed in Table S2.

Methyltransferase Assays

Methyltransferase activity of PRDM9was analyzed using a continuous, fluores-

cent-coupled assay SAMfluoro (G-Bioscience). The AdoHcy product of the

methylation reaction is further converted by a supplied mixture of three

enzymes to hydrogen peroxide that reacts with 10-acetyl-3,7-dihydroxyphe-

noxazine to produce a fluorescent compound Resorufin. The production of

Resorufin was monitored for 30 min at room temperature using an Infinite 200

PRO plate reader (Tecan). The methylation reactions, containing 0.26 or

0.3mMenzymeand0.22mMpeptide substrate,wereset upaccording tomanu-

facturer instructions. The tested substrate includes H3K4 (ARTKQTARK-Y),

H3K4me2 (ARTKme2QTARK-Y), and H4K20 (Y-GKGGKGLGKGGAKRHR

KVLRD) peptides. All peptides include an extra tyrosine residue for quantifica-

tion. All the reactions were performed at least in duplicates, and the differences

between methylation rates calculated from the linear parts of corresponding

curves (above background level) were within 10%.



For mass spectrometry analysis, 1 mM H3K4 peptide was incubated with

5 mM AdoMet in the presence or absence of 10 mM mPRDM9 (198–368) at

room temperature for 2 hr in 20 mM Tris 7.0 and 150 mM NaCl. The reaction

mixture was analyzed by MALDI-TOF mass spectrometry. The duplicate

experiment yielded essentially identical results.

Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) experiments were performed at 25�C,
using an ITC200 microcalorimeter (MicroCal). Experiments included 26 injec-

tions of 1.5 ml of 2.7 mM peptide solution into the sample cell containing 60 mM

of mPRDM9 (198–368) in 20 mM Tris 7.0, 150 mM NaCl, and 5 mM b-mercap-

toethanol. The initial data point was deleted, and the last point after saturation

was subtracted from the data sets. Binding isotherms were fitted with a one-

site binding model by nonlinear regression using Origin Software version 7.0

(MicroCal).

Methyltransferase Activity Assay on Peptide Array

Modified histone peptide arrays (Active Motif, catalog number 13005) were

preincubated in methylation buffer (50 mM Tris-HCl, pH 9.0; 100 mM

NaCl; 5 mM dithiothreitol; 10 mM ZnCl2) for 20 min, followed by incubation

with methylation buffer containing 0.58 mM of (methyl-3H)-S-adenosyl-L-

methionine (Perkin Elmer) and 0.2 mM of either wild-type or Y357F mutant

mPRDM9 (198–368) for 10, 30, or 60 min at ambient temperature. The

arrays were washed four times for 5 min with washing buffer (50 mM

NH4HCO3 and 0.1% SDS) and then dried and rinsed with Amplify

NAMP100 solution (GE Healthcare). The arrays were completely dried and

exposed to the Carestream Kodak Biomax MR films in darkness at �80�C
for 1–3 days.

ACCESSION NUMBERS

Protein Data Bank coordinates for the crystal structure of the mPRDM9 (198–

368) and hPRDM9 (195–415) have been deposited with accession codes

4C1Q and 4IJD, respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and two tables and can be

foundwith this article online at http://dx.doi.org/10.1016/j.celrep.2013.08.035.
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