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Abstract

Linear relation analysis is a classical abstract interpretation based on an over-approximation of
reachable numerical states of a program by convex polyhedra. Since it works with a lattice of
infinite height, it makes use of a widening operator to enforce the convergence of fixed point com-
putations. Abstract acceleration is a method that computes the precise abstract effect of loops
wherever possible and uses widening in the general case. Thus, it improves both the precision and
the efficiency of the analysis. This article gives a comprehensive tutorial on abstract acceleration:
its origins in Presburger-based acceleration including new insights w.r.t. the linear accelerabil-
ity of linear transformations, methods for simple and nested loops, recent extensions, tools and
applications, and a detailed discussion of related methods and future perspectives.

Keywords: Program analysis, abstract interpretation, linear relation analysis, polyhedra,
acceleration

1. Introduction

Linear relation analysis (LRA)[1, 2] is one of the very first applications of abstract interpre-
tation [3]. It aims at computing an over-approximation of the reachable states of a numerical
program as a convex polyhedron (or a set of such polyhedra). It was applied in various domains
like program parallelization [4], automatic verification [5, 6], compile-time error detection [7], and
invariant generation to aid automated program proofs [8, 9].

In comparison to interval or octagonal static analyses, polyhedral analyses are more expensive,
but also more precise. However, precision is often compromised by the use of widenings that
are required to guarantee convergence of the analysis. A lot of techniques have been proposed to
improve widenings or to limit their effects, like delaying widening, widening with thresholds [10],
landmarks [11] or guided static analysis [12], to mention just a few. Often these methods are based
on heuristics and cure certain symptoms of the problem.

One may ask the question whether there are certain cases where widening can be performed
precisely. This leads us to so-called acceleration techniques, proposed by several authors [13, 14,
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15, 16, 17] investigating the problem of finding subclasses of numerical programs for which the
reachable set can be computed exactly. Roughly, these methods can handle loops with a restricted
form of linear arithmetic in programs without nested loops such that the reachable states can be
characterized in Presburger arithmetic. However, these computations have a very high complexity
(doubly exponential) which limits the applicability of these methods in practice.

Inspired by these methods, Gonnord and Halbwachs proposed abstract acceleration [18] in
LRA as a complement to widening. The rationale is to compute the precise abstract effect of a loop
whenever possible, and otherwise to use widening. Hence, this method integrates seamlessly with
classical linear relation analyses without restricting the class of programs that can be handled by
the overall analysis, and without using expensive computations in Presburger arithmetic. Actually,
the proposed abstract accelerations are very cheap and effectively speed up analysis because less
iterations are required in comparison to a classical LRA.

Contributions and outline The goal of this article is to give a comprehensive tutorial on linear
abstract acceleration. We cover the following aspects:
• Origins: We recall the principles of linear relation analysis and summarize the main results

of Presburger-based acceleration (§2).
• Theoretical background: We develop the notion of linear accelerability of linear transfor-

mations, which, on the one hand, revisits results known from Presburger-based acceleration
and, on the other hand, gives some new insights (§3).
• The method: We give an enhanced account of the abstract acceleration of simple loops (§4)

including concise proofs and a new accelerable case. Then, we will show how these methods
can be applied to multiple loops (§5).
• Extensions: We briefly summarize recent extensions of abstract acceleration to reactive sys-

tems and backward analysis (§6).
• Tools: We briefly describe the tools ASPIC and REAVER that implement these methods and

give some experimental results (§7).
• Properties: We give a detailed discussion of its properties and related work (§8).
• Conclusion: Finally, we discuss some open problems and future perspectives (§9).

2. Preliminaries

As abstract acceleration combines linear relation analysis with acceleration, we will briefly
recall the basic concepts of these two areas and introduce some notations used throughout the
paper.

2.1. Linear Relation Analysis
The goal of LRA is to attach to each control point of a program a system of linear inequal-

ities satisfied by the numerical variables whenever the control is at that point. This is done by
propagating systems of linear inequalities along the control paths of the program.

2.1.1. Programs
We consider numerical programs represented by a control flow graph (sometimes called inter-

preted automaton):
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Definition 1 (Control Flow Graph). A control flow graph (CFG) 〈Σ,L, ,X0〉 is defined by
– the state space Σ with Σ = Rn (or Zn),
– a set of locations L,
– a set of transitions : L×T ×L, where transitions are labeled with a transition relations τ ∈

T =℘(Σ2), and
– X0 : L→℘(Σ) defines for each location the set of initial states.

We will mostly consider transition functions τ : xxx 7→ xxx′ denoted as G(xxx)→ xxx′ = A(xxx), where
the guard G is a conjunction of constraints over state variables xxx that must be satisfied in order to
take the transition, and the action (or assignment) A that computes the next state xxx′ as a function
of the current state xxx. The left-hand side of Fig. 1 gives an example of such a graph: locations are
`1 and `2, the two arrows denote transitions, and the initial state for location `1 is {x1 = 0,x2 = 6}
and is empty for location `2.

Definition 2 (Operational Semantics). An execution of a CFG is a sequence

(`0,xxx0)→ (`1,xxx1)→ . . .(`k,xxxk)→ . . .

such that xxx0 ∈ X0(`0) and for any k>0 : ∃(`k,τ, `k+1) ∈ : xxxk+1 = τ(xxxk). where ` ∈ L and xxx ∈ Σ.

Definition 3 (Collecting Semantics). The collecting semantics defines the set of reachable states
for all locations X : L→ Σ as the least fixed point of the following equation:

X = λ`′.X0(`′)∪
⋃

(`,τ,`′)∈ 
τ(X(`))

where τ(X) = {xxx′ | G(xxx)∧ xxx′ = A(xxx)∧ xxx ∈ X}.
We will denote the right-hand side of the equation F(X).

Mind that, by abuse of notation, τ may denote a transition function or its associated predicate
transformer.

Since the collecting semantics is not computable in general, LRA based on abstract interpre-
tation [3, 1] computes the corresponding abstract semantics over the abstract domain of convex
polyhedra Pol(Rn). The abstraction is defined by the concretization (γ) and abstraction (α) func-
tions that form the Galois connection ℘(Rn)−−→←−−

α

γ

Pol(Rn) (see [3]).

2.1.2. Convex Polyhedra
A convex polyhedron can be either represented by

– the sets of generators (V,R), i.e., the convex closure of vertices and rays

γ(V,R) = {xxx | ∃λλλ >000,µµµ>000 : ∑
i

λi = 1∧ xxx = ∑
i

vvviλi +∑
j

rrr jµ j}

with the vertices V = {vvv1, . . . ,vvvp}, vvvi ∈ Rn and the rays R = {rrr1, . . . ,rrrq}, rrr j ∈ Rn,
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– or by a conjunction of linear constraints Axxx6 bbb, i.e., an intersection of halfspaces

γ(Axxx6 bbb) = {xxx | Axxx6 bbb}

with xxx ∈ Rn, A ∈ Rm×n and bbb ∈ Rm.
We can convert one representation into the other one using the double description method

[19, 20], also known as Chernikova’s algorithm [21, 22]. The set of convex polyhedra Pol(Rn)
ordered by inclusion forms a lattice with > and ⊥ denoting the polyhedra Rn and /0 respectively.

Domain operations. Once a polyhedron is represented in both ways, some domain operations
(t,u, . . .) can be performed more efficiently using the generator representation only, others based
on the constraint representation, and some making use of both. A convex polyhedron X1 is in-
cluded in a convex polyhedron X2 iff all vertices of X1 belong to X2, and all rays of X1 are rays of
X2. A convex polyhedron is empty iff it has no vertex. The intersection (meet, u) of two convex
polyhedra, computed by the conjunction of their constraint systems, is again a convex polyhedron:
X1∩X2 = X1uX2. In contrast, the union of two convex polyhedra is not convex in general. The
domain operator is thus the convex hull (join, t) of the original polyhedra, computed by the union
of their generators, which implies: X1∪X2 ⊆ X1tX2. For the projection ∃xi : X Fourier-Motzkin
elimination is used, which is an algorithm for eliminating variables from a system of linear in-
equalities, i.e., the constraint representation (see, e.g., [23] for details). The Minkowski sum of two
polyhedra X = X1+X2 is defined by X = {xxx1+xxx2 | xxx1 ∈ X1,xxx2 ∈ X2}. The time elapse operation
[5], defined as X1 ↗ X2 = {x1 + tx2 | x1 ∈ X1,x2 ∈ X2, t ∈ R>0}, can be implemented using the
generator representations: (V1,R1)↗ (V2,R2) = (V1,R1∪V2∪R2). The result of the widening op-
eration X1∇X2 consists, roughly speaking, of those constraints of X1 that are satisfied by X2 (see
[2, 5] for a detailed presentation).

2.1.3. Analysis
The classical abstract interpretation-based reachability analysis [3, 24] employs the abstract

domain operations above to over-approximate the fixed point of the abstract semantics equation
X = F(X) (cf. Def. 3). The analysis consists of three phases:
(1) an ascending sequence (Xn)06n6N of applications of F :

X0 = X0 Xn+1 = F(Xn) for n<N
(2) a (delayed) widening sequence (X ′n)06n6N′ that is guaranteed to converge to a post-fixed point

X ′N′ in a finite number of steps:
X ′0 = XN X ′n+1 = X ′n∇(F(X ′n)) until convergence (X ′N′ v X ′N′+1)

(3) a (truncated) descending sequence (X ′′n )06n6N′′ of applications of F for approaching the least
fixed point:
X ′′0 = X ′N′ X ′′n+1 = F(X ′′n ) for n < N′′

Descending iterations generally do not converge: Cousot and Cousot [3] propose the use of a
narrowing operator in order to force the convergence to a fixed point. In practice, the descending
sequence is usually truncated, which is sound because the result of the widening sequence satisfies
F(X ′N′) v X ′N′ , and hence, all elements of the descending sequence are upper bounds of the least
fixed point.
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Figure 1: LRA Example 1: CFG with initial state X0 (left), polyhedra during the analysis in `1 (center) and `2 (right).
The dashed lines indicate the abstract value after widening.

Example 1 (Kleene Iteration with widening). We analyze the CFG of the program depicted in
Fig. 1 with N = 1 and N′′ = 1:

X0 = {`1→ (x1=0 ∧ x2=6), `2→⊥}
X1 = {`1→ (06x161 ∧ x1+x2=6), `2→⊥}

X ′1 = {`1→ (06x161 ∧ x1+x2=6)∇(06x162 ∧ x1+x2=6), `2→⊥∇⊥}=
{`1→ (06x1 ∧ x1+x2=6), `2→⊥}

X ′2 = {`1→ (06x1 ∧ x1+x2=6)∇(06x1 ∧ x1+x2=6), `2→⊥∇(36x1 ∧ x1+x2=6)}=
{`1→ (06x1 ∧ x1+x2=6), `2→ (36x1 ∧ x1+x2=6)}= X ′3 = X ′′0

X ′′1 = {`1→ (06x163 ∧ x1+x2=6), `2→ x1=x2=3}

In practice, abstract interpreters compute the fixed point following an iteration strategy that
take into account the transitions in a specific order (cf. [25]), and widening is only applied at the
loop heads.

Improvements of the Widening Operator. Although Cousot and Cousot [24] show that the approach
using Kleene iteration with widening and infinite height lattices can discover invariants that finite
height lattices cannot discover, the dynamic approximations induced by widening lead quite often
to an important loss of precision. There are several reasons for these problems:
– The standard widening operators are not monotonic, e.g., [0,2]∇[0,4] = [0,∞], but [1,2]∇[0,3] =
> (although [1,2]v [0,2] and [0,3]v [0,4]).

– Descending iterations fail to recover information if the result of the widening sequence is already
a fixed point, i.e., F(X ′N′) = X ′N′ .
Numerous improvements of the widening operators and modified iteration strategies have been

proposed. We refer to, e.g., [26, 27, 28] for surveys of such improvements, some of them will be
discussed in the related work (§8). In this line of research, abstract acceleration can be viewed as
a precise, monotonic widening operator applicable to a specific class of loops.

2.2. Presburger-Based Acceleration
Acceleration methods aim at computing the exact set of reachable states in numerical transi-

tion systems. They are motivated by the analysis of communication protocols often modeled using
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counter machines or Petri nets. First achievements date back to the 1990s [13, 29, 30, 15, 31]. Un-
like abstract interpretation, which overcomes the undecidability issue by computing a conservative
approximation, acceleration identifies classes of systems (of a certain structure and with certain
transition relations) for which the reachability problem is decidable. Acceleration methods have
been shown to be applicable to a variety of systems including pushdown systems and systems of
FIFO channels for instance (cf. [32]). In this section, we summarize the main results w.r.t. the
acceleration of counter systems, which is based on Presburger arithmetic.

Presburger arithmetic. Presburger arithmetic [33] is the first-order additive theory over integers
〈Z,6,+〉. Satisfiability and validity are decidable in this theory. A set is Presburger-definable if
it can be described by a Presburger formula. For example, the set of odd natural numbers x can be
defined by the Presburger formula ∃k>0 : x= 1+2k, whereas for example the formula ∃k : y= k ·k
characterizing the quadratic numbers y is not Presburger because of the multiplication of variables.

Counter systems. Counter systems are a subclass of the program model defined in Def. 1 with Σ =
Zn, and initial states X0 and transition relations R(xxx,xxx′) ∈℘(Σ2) defined by Presburger formulas.
Counter systems generalize Minsky machines [34], thus the reachability problem is undecidable.
In general, the reachable set of a counter system is not Presburger-definable [35] because of the
following two reasons:
(1) The reflexive and transitive closure R∗ is not always Presburger-definable.
(2) In the case of a system with nested loops where the reflexive and transitive closures R∗ of all

circuits in the system are Presburger-definable, the reachable set of the whole system is not
Presburger-definable in general, because there are infinitely many possible sequences of these
circuits.
Issue (1) is addressed by identifying a class of accelerable relations R, i.e., for which the

transitive closure R∗ is Presburger-definable:

Definition 4 (Presburger-linear relations with finite monoid). The transition relation
R(xxx,xxx′) = (ϕ(xxx) ∧ xxx′ = Cxxx + ddd) is Presburger-linear with finite monoid iff ϕ is a Pres-
burger formula and 〈C∗, ·〉 is a finite, multiplicative monoid, i.e., the set C∗ = {Ck | k> 0} is
finite.

Theorem 1 (Presburger-definable transitive closure [31, 36]). If R is a Presburger-linear rela-
tion with finite monoid, then R∗ is Presburger-definable.

The finiteness of the monoid is polynomially decidable [31]. The tool LASH [31, 14] implements
these results.

Example 2 (Translation). An example of transition relations of which the transitive closure is
Presburger-definable are translations: R(xxx,xxx′) = (ϕ(xxx)∧xxx′ = xxx+ddd). The variables are translated
in each iteration by a constant vector ddd. A translation is trivially finite monoid because C=I. The
transitive closure is given by the Presburger formula:

R∗(xxx,xxx′) = ∃k>0 : xxx′ = xxx+ kddd∧∀k′ ∈ [0,k−1] : ϕ(xxx+ k′ddd)

Issue (2) is adressed by the concept of flat acceleration:
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Flat systems. A system is called flat if it has no nested loops, or more precisely if any location of
the system is contained in at most one elementary cycle of the system [17]. This notion allows us
to identify a class of systems for which the set of reachable states can be computed exactly:

Theorem 2 (Presburger-definable flat systems [36]). The reachability set of a counter system is
Presburger-definable if the system is flat and all its transitions are Presburger-linear relations with
finite monoid.

Although there are many practical examples of flat systems [37], most systems are non-flat.

Application to non-flat systems. The idea of Finkel et al [36, 32] is to partially unfold the outer
loops (circuits) of nested loops in order to obtain a flat system that is simulated by the original sys-
tem. Such a system is called a flattening. The algorithm is based on heuristically selecting circuits
of increasing length and enumerating flattenings of these circuits. Hence, the algorithm terminates
in case the system is flattable, i.e., at least one of its (finite) flattenings has the same reachabil-
ity set as the original system. However, flattability is undecidable [32]. All these techniques are
implemented in the tool FAST [17, 38, 39, 32, 40].

3. Linear Accelerability of Linear Transformations

Similarly to Presburger-based acceleration, the abstract acceleration methods that we are going
to present in §§4–6 target loops with linear transformations. To this purpose, we revisit the notion
of linearly accelerable linear transformations, and we show that this class is actually larger than the
“Presburger-based linear relations with finite monoid” originally considered by Presburger-based
acceleration.

3.1. Characterizing Linearly Accelerable Linear Transformations
The basic idea of Presburger-based acceleration is to identify and characterize the class of

linearly (i.e., using Presburger arithmetic) accelerable transitions. Presburger arithmetic is able
to define sets that are conjunctions of linear inequalities (i.e., polyhedra, Axxx6 bbb), congruences
(∃k : x′= x+kd), and finite unions (

⋃
) thereof. This gives us the following definition of linear

accelerability:

Definition 5 (Linear accelerability). A transition τ : xxx′ = Cxxx+ddd is linearly accelerable iff its
reflexive and transitive closure τ∗ can be written as a finite union of sets

τ
∗ = λX .

⋃
l

{Ĉlxxx+kd̂ddl | k>0,xxx ∈ X}

The classical accelerability (“finite monoid”) criterion is merely based on the matrix C. To
elucidate the role of correlations between the coefficients of C, ddd and the initial set X , we will
give an alternative characterization based on the homogeneous form of affine transformations:

any affine transformation of dimension n can be written as a linear transformation
(

xxx′

x′n+1

)
=(

C ddd
0 1

)(
xxx

xn+1

)
of dimension n+1 and with xn+1=1 in the initial set X .
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We consider the Jordan normal form1 J ∈Cn of C′=
(

C ddd
0 1

)
∈Rn which can be obtained by

a similarity transformation J = Q−1C′Q with a nonsingular matrix Q ∈ Cn. J is a block diagonal
matrix consisting of Jordan blocks Ji associated with the eigenvalues λi ∈ C of C′. Furthermore,

we have Jk
= Q−1C′kQ and thus: Jk

=

(
Jk

1 · · · 0
· · · . . . · · ·
0 · · · Jk

j

)
.

We will now examine the linear accelerability of a Jordan block w.r.t. its size and associated
eigenvalue2. We give the acceleration criteria and illustrate them with examples. For the detailed
proofs, we refer to the Appendix A.1.

Lemma 1 (Jordan block of size 1). A transition τ(X) : xxx′ = Jxxx where J is a Jordan block of size 1
is linearly accelerable iff its associated eigenvalue is either zero or a complex root of unity, i.e.,
λ ∈ {0}∪{ei2π

q
p | p,q ∈ N}.

We give some examples for such loops and their accelerations:
(E1) λ =0: X = {1}, τ : x′ = 0: τ∗(X) = X ∪{0}= {0,1}
(E2) λ =ei2π

1
2 =−1: X = {1}, τ : x′ =−x: τ∗(X) =

⋃
06l6p−1{(−1)lx | x ∈ X}= {−1,1}

(E3) λ1,2=ei2π
1
4 =±i: X =

{(
1
0

)}
, τ :

(
x′1
x′2

)
=

(
0 −1
1 0

)(
x1
x2

)
:

τ∗(X) =
⋃

06l6p−1

{(
0 −1
1 0

)l(x1
x2

) ∣∣∣∣ (x1
x2

)
∈ X

}
=

=

{(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
(In real-valued transformation matrices, complex eigenvalues are always conjugate.)

Lemma 2 (Jordan block of size 2). A transition τ(X) : xxx′ = Jxxx where J is a Jordan block of size 2
is linearly accelerable iff its associated eigenvalue is
– either zero (λ = 0) or
– a complex root of unity (λ ∈ {ei2π

q
p | p,q ∈N}) and if in this case the variable associated to the

second dimension of the block has only a finite number of values in X.

We give some examples:

(E4) λ =1 : X =

{(
0
1

)}
, τ :

(
x′1
x′2

)
=

(
1 3
0 1

)(
x1
x2

)
:

τ∗(X) =

{(
1 3
0 1

)k(x1
x2

) ∣∣∣∣ k>0,
(

x1
x2

)
∈ X

}
=

{(
3k
1

)
| k>0

}

(E5) λ1,2=ei2π
1
4 =±i: τ : xxx′ =


0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0

xxx
(see Appendix A.1
regarding its acceleration)

1We refer to textbooks in linear algebra and matrix theory, e.g., [41].
2Boigelot’s proof [31] for the finite monid criterion proceeds similarly, but he considers C instead of C′.
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Lemma 3 (Jordan block of size > 2). A transition τ(X) : xxx′ = Jxxx where J is a Jordan block of
size m>2 is linearly accelerable iff its associated eigenvalue is zero.

We give an example for m=3:

(E6) λ =0: X =


1

2
3

, τ : xxx′ =

2 2 −2
5 1 −3
1 5 −3

xxx

τ∗(X) =
⋃

06l6m


2 2 −2

5 1 −3
1 5 −3

l

xxx

∣∣∣∣∣∣∣ xxx ∈ X

=


1

2
3

 ,

 0
2
−2

 ,

−8
−8
16

 ,

0
0
0


We summarize these results in the following theorem:

Theorem 3 (Accelerable linear transformations). A linear transformation τ(X) : xxx′=C′xxx is lin-
early accelerable iff its Jordan form consists of Jordan blocks J satisfying the following criteria:
• J is of size 1 and its associated eigenvalue λ ∈ {0}∪{ei2π

q
p | p,q ∈ N}.

• J is of size 2 and its associated eigenvalue λ = 0 or λ ∈ {ei2π
q
p | p,q ∈ N}, and in the latter

case the variable associated with the second dimension of the block has only a finite number
of values in X in the Jordan basis.
• J is of size greater than 2 and its associated eigenvalue λ = 0.

3.2. Comparison with Finite Monoid Acceleration
The background of the “finite monoid” criterion of Def. 4 is the following characterization of

Boigelot (Theorem 8.53, [31]): xxx′ = Cxxx+ ddd is accelerable if ∃q>0 such that Cq is diagonizable
and all its eigenvalues are in {0,1}. In other words: the eigenvalues are either zero or roots of unity
and all Jordan blocks of non-zero eigenvalues have size 1.

Theorem 4 (Jordan normal form of finite monoid affine transformations). The Jordan form

of the homogeneous transformation matrix
(

C ddd
0 1

)
, where {Ck | k>0} is finite, consists of

– Jordan blocks of size 1 with eigenvalues which are complex roots of unity,
– at most one block of size 2 with eigenvalue 1 where the variable associated with the second

dimension is a constant equal to 1, and
– blocks with eigenvalue 0 of any size.

PROOF: See Appendix A.2. �
Hence, finite monoid transformations are strictly included in the characterization of accelerable

linear transformations of Thm. 3.
The Jordan normal form gives an intuitive geometric understanding of the linear transforma-

tions. For finite monoid transformations, the Jordan form of the homogeneous transformation
matrix J is the direct product of
• Identity blocks: λ =1, size 1, i.e., τ : x′=x;
• Translation blocks (Ex. E4 with x2 = 1): λ =1, size 2, second dimension equals 1 in X ;
• Nilpotent (“projection”) blocks (E1, E6): λ =0, size m (Jm=0);

9
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• Rotation blocks (E2, E3): λ =ei2π
q
p , size 1: this corresponds to a rotation by θ =2π

q
p .

We now relate the ((n+1)-dimensional) J to the characterization of typical finite monoid transitions
by the (ultimate) periodicity property of the original matrix C, i.e., Cp+l = Cp, p>0, l>0:
• Translations (p=0, l=1,ddd 6=000): J consists of one translation block and n−1 identity blocks.
• Translations with resets (p=1, l =1, m reset variables, n−m translations): J consists of m

nilpotent blocks of size 1, one translation block, and n−m−1 identity blocks.
• Purely periodic C (p=0): J consists of rotation blocks and zero or one translation blocks

(depending on ddd, cf. Appendix A.2).
• Ultimately periodic C: J consists of rotation blocks, nilpotent blocks with maximum size p,

and zero or one translation blocks (depending on ddd, cf. Appendix A.2).
The criterion of Thm. 3 identifies furthermore those transformations as accelerable where the

eigenvalue is a root of unity and the second dimension of the block has a finite set of values in the
initial set X . In addition to the above types of blocks, we have:
• Finite-cardinality translation blocks (E4 with a different X : see Ex. 3 below): λ =1, size 2,

second dimension has a finite number of values in X ;
• Finite-cardinality translation-rotation blocks (E5: see [42] for a detailed example): λ=ei2π

q
p ,

size 2, second dimension has a finite number of values in X .
Note that, in the latter two cases, the application of τ∗ to a Presburger formula describing the set

X requires a check whether X is finite. Hence, τ∗ itself cannot be written as a Presburger formula
in general, but only τ∗(X).

Example 3 (Finite-cardinality translation). The following loop translates x1 by x2 while x2 re-

mains unmodified: τ : x1+2x266→ xxx′ =
(

1 1
0 1

)
xxx with X0 = (x1=0∧ x2 ∈ {2,3,4}). We can

exactly accelerate the loop τ by enumerating the values of x2 in X0 and translating x1 by each of
these values:

τ∗(X0) = {(x′1,2) | ∃k>0 : x′1=x1+2k∧X0(xxx)∧∀06k′<k : x′162} ∪
{(x′1,3) | ∃k>0 : x′1=x1+3k∧X0(xxx)∧∀06k′<k : x′160} ∪
{(x′1,4) | ∃k>0 : x′1=x1+4k∧X0(xxx)∧∀06k′<k : x′16−2}

= {(0,2),(2,2),(4,2),(0,3),(3,3),(6,3),(0,4)}

The resulting points are depicted in Fig. 2.

4. Abstract Acceleration of Simple Loops

Abstract acceleration introduced by Gonnord and Halbwachs [18] reformulates acceleration
concepts within an abstract interpretation approach: it aims at computing the best correct approxi-
mation of the effect of loops in the abstract domain of convex polyhedra.

The objective of abstract acceleration is to over-approximate the set τ∗(X), X ⊆Rn by a (single)
convex polyhedron γ(τ⊗(α(X))) ⊇ τ∗(X) that is “close” to the convex hull of the exact set. Ab-

10
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x1

x2

0

1

2

3

0 1 2 3 4 5 6 7

τ⊗(X)

X

G

Figure 2: Finite-cardinality translation: τ : x1+x267 → x′1=x1+x2 ∧ x′2=x2 with X0 = (06x1=x264): reachable
points and polyhedron computed by abstract acceleration (see §4.4).

stract acceleration targets affine transition relations τ : G→ A (actually functions) with polyhedral
guards3 G = (Axxx6 bbb) and affine actions A = (xxx′ = Cxxx+ddd).

Forgetting about the guard G for a moment, we can intuitively derive a notion of “ab-
stract linear accelerability” by replacing the operators by their abstract counterparts in Def. 5:
τ⊗ = λX .

⊔
l

(
ĈlX ↗{d̂ddl}

)
. This view elucidates the basic approximations made by abstract

accelerations:
• Unions

⋃
are approximated by the convex hull

⊔
.

• Congruences (∃k>0 : xxx′=xxx+kbbb) are lost by the dense approximation using the↗ operator.
We will first give abstract accelerations for the case of translations (C = I) and transla-

tions/resets (C=diag(c1 . . .cn),ci ∈ {0,1}), and in a second step we will reduce the case of (gen-
eral) finite monoid transitions to these two.

4.1. Translations
Theorem 5 (Translations). Let τ be a translation G→ xxx′ = xxx+ddd, then for every convex polyhe-
dron X, the convex polyhedron

τ
⊗(X) = X t τ

(
(X uG)↗{ddd}

)
is a convex over-approximation of τ∗(X).

PROOF: xxx′ ∈
⋃

k>1 τk(X)⇐⇒ xxx′ ∈ τ(
⋃

k>0 τk(X))
⇐⇒∃k>0,∃xxx0 ∈ X ,∃xxxk : xxx′ ∈ τ(xxxk)∧ xxxk = xxx0 + kddd∧G(xxx0) ∧ ∀k′ ∈ [1,k] : G(xxx0 + k′ddd)
⇐⇒∃k>0,∃xxx0 ∈ X ,∃xxxk : xxx′ ∈ τ(xxxk) ∧ xxxk = xxx000 + kddd ∧ G(xxx0) ∧ G(xxxk)

(because G is convex)
=⇒∃α>0,∃xxx0 ∈ X ,∃xxxk : xxx′ ∈ τ(xxxk) ∧ xxxk = xxx0 +αddd ∧ G(xxx0)

(dense approximation; G(xxxk) implied by xxx′ ∈ τ(xxxk))
⇐⇒∃xxx0 ∈ X uG,∃xxxk : xxx′ ∈ τ(xxxk) ∧ xxxk ∈ ({xxx0}↗ {ddd})
⇐⇒ xxx′ ∈ τ((X uG)↗{ddd}) �

Ideally, τ⊗(X) as defined in Thm. 5 should be the best over-approximation of τ∗(X) by a
convex polyhedron. This is not the case as shown by the following example in one dimension. Let

3We will use the same notation for polyhedra X interexchangeably for both the predicate X(xxx) = (Axxx6 bbb) and the
set X = {xxx | Axxx6 bbb}.

11
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x1
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τ⊗(X)

X

G

~d

Figure 3: Abstract accelera-
tion of a translation (Ex. 4)
by vector ddd starting from X
(dark gray) resulting in τ⊗(X)
(whole shaded area).
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τ⊗(X)

X

τ(X)

G

Figure 4: Abstract acceleration of
translations/resets (Ex. 5) starting
from X (dark gray): τ(X) (bold
line) and result τ⊗(X) (whole
shaded area).
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0 1 2 3 4 5 6
x1

x2

(τ2)⊗(τ(X))

(τ2)⊗(X)

X

τ(X)

G

Figure 5: Abstract acceleration of a fi-
nite monoid (Ex. 6) starting from X =
{(1,0)}, τ(X) = {(2,2)}, (τ2)⊗(X) and
(τ2)⊗(τ(X)) (bold lines), and the result
τ⊗(X) (whole shaded area).

X = [1,1] and τ : x16 4→ x′1 = x1+2. τ⊗(X)= [1,6], whereas the best convex over-approximation
of τ∗(X) = {1,3,5} is the interval [1,5]. This is because the operations involved in the definition of
τ⊗(X) manipulate dense sets and do not take into account arithmetic congruences. Considering the
proof, this approximation takes place in the line (⇒) where the integer coefficient k>0 is replaced
by a real coefficient α>0.

Example 4 (Translation). (see Fig. 3) τ : x1+x264 ∧ x263︸ ︷︷ ︸
G

→
(

x′1
x′2

)
=

(
x1
x2

)
+

(
2
1

)
︸ ︷︷ ︸

ddd
Starting from X = (06x161 ∧ 06x264) we compute τ⊗(X):

X uG = (06x161 ∧ 06x263)
(X uG)↗{ddd} = (x1>0 ∧ x2>0 ∧ x1−2x2>−6 ∧ − x1+2x2>−1)

τ((X uG)↗{ddd}) =

{
x1>0 ∧ 06x264 ∧ x1−2x2>−6 ∧
−x1+2x2>−1 ∧ x1+x267

τ⊗(X) = (x1>0 ∧ 06x264 ∧ − x1+2x2>−1 ∧ x1+x267)

4.2. Translations/Resets
Theorem 6 (Translations/resets). Let τ be a translation with resets G→ xxx′ = Cxxx+ ddd, then for
every convex polyhedron X, the convex polyhedron

τ
⊗(X) = X t τ(X)t τ

(
(τ(X)uG)↗{Cddd}

)
is a convex over-approximation of τ∗(X).

Intuitively, Thm. 6 exploits the property that a translation with resets to constants (C is idempo-
tent) iterated N times is equivalent to the same translation with resets, followed by a pure translation
iterated N−1 times. Hence the structure of the obtained formula.

12
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PROOF: The formula is trivially correct for 0 or 1 iterations of the self-loop τ . Using Ck = C, a
recurrence immediately gives τk(Cxxx0 + ddd) = (Cxxx0 + ddd)+ kCddd. It remains to show that, for the
case of k > 2 iterations, our formula yields an over-approximation of

⋃
k>2 τk(X).

xxx′ ∈
⋃

k>2 τk(X)⇐⇒ xxx′ ∈ τ
(⋃

k>0 τk(τ(X))
)

⇐⇒∃k>0,∃xxx0 ∈ τ(X),∃xxxk : xxx′ ∈ τ(xxxk)∧ xxxk = xxx0 + kCddd∧G(xxx0) ∧ ∀k′ ∈ [1,k] : G(xxx0 + k′Cddd)
⇐⇒∃k>0,∃xxx0 ∈ τ(X),∃xxxk : xxx′ ∈ τ(xxxk) ∧ xxxk = xxx000 + kCddd ∧ G(xxx0) ∧ G(xxxk)

(because G is convex)
=⇒∃α>0,∃xxx0 ∈ τ(X),∃xxxk : xxx′ ∈ τ(xxxk) ∧ xxxk = xxx0 +αCddd ∧ G(xxx0)

(dense approximation; G(xxxk) implied by xxx′ ∈ τ(xxxk))
⇐⇒∃xxx0 ∈ τ(X)uG,∃xxxk : xxx′ ∈ τ(xxxk) ∧ xxxk ∈ ({xxx0}↗ {Cddd})
⇐⇒ xxx′ ∈ τ

(
(τ(X)uG)↗{Cddd}

)
�

Example 5 (Translations/resets). (see Fig. 4) Let us consider τ : x1+x264→
{

x′1 = x1+2
x′2 = 1 .

Starting from X = (06x163 ∧ 26x263) we compute τ⊗(X):

τ(X) = (26x164 ∧ x2=1)
τ(X)uG = (26x163 ∧ x2=1)

Cddd = (2,0)T

(τ(X)uG)↗{Cddd} = (x1>2 ∧ x2=1)
τ((τ(X)uG)↗{Cddd}) = (26x165 ∧ x2=1)

τ⊗(X) = (x1>0 ∧ 16x263 ∧ x1+2x2>4 ∧ x1+x266)

4.3. General Case of Finite Monoid Transitions
Let τ be a transition Axxx6 bbb∧ xxx′ = Cxxx+ ddd such that the powers of C form a finite monoid

(cf. Def. 4) with ∃p > 0,∃l > 0 : Cp+l = Cp, i.e., the powers of C generate an ultimately periodic
sequence with prefix p and period l. Gonnord [26] uses the periodicity condition ∃q> 0 : C2q =Cq.
This condition is equivalent to the one above with q = lcm(p, l).

With the latter condition, τ∗ can be rewritten by enumerating the transitions induced by the
powers of C:

τ
∗(X) =

⋃
06 j6q−1

(τq)∗(τ j(X)) (1)

This means that one only has to know how to accelerate τq which equals:

τ
q =

∧
06i6q−1

(
ACixxx+ ∑

06 j6i−1
C jddd 6 bbb

)
︸ ︷︷ ︸

A′xxx6bbb′

→ xxx′ = Cqxxx+ ∑
06 j6q−1

C jddd︸ ︷︷ ︸
xxx′=C′xxx+ddd′

(2)

The periodicity condition above implies that Cq is diagonizable and all eigenvalues of Cq are
in {0,1} as stated by the following lemma. Let denote C′ = Cq.

Lemma 4 (Diagonizable with eigenvalues in {0,1}). C′ is diagonizable and all its eigenvalues
are in {0,1} iff C′ = C′2.

13
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PROOF:

(=⇒): For any diagonal matrix C′ = diag(c1, . . . ,cn) with ci ∈ {0,1} we trivially have C′ = C′2.
(⇐=): C′ = C′2 implies that C′ and C′2 have the same set of eigenvalues λ1, . . . ,λn. Since

diag(λ1, . . . ,λn)
2 = diag(λ 2

1 , . . . ,λ
2
n ), each λi, i ∈ [1,n] must satisfy λi = λ 2

i with the only
solutions λi ∈ {0,1}. �

Hence, τq is a translation with resets in the eigenbasis of Cq.

Lemma 5 (Translation with resets in the eigenbasis). A transition τ : Axxx6 bbb→ xxx′ = C′xxx + ddd
where C′ = C′2 is a translation with resets τ ′ in the eigenbasis of C′:

τ
′ : AQxxx6bbb→ xxx′ = Q−1C′Qxxx+Q−1ddd

where Q−1C′Q = diag(λ1, . . . ,λn) and λi the eigenvalues of C′.

By putting together, these results we get the theorem for abstract acceleration of finite monoid
transitions:

Theorem 7 (Finite monoid). Let τ be a transition G∧xxx′ = Cxxx+ddd where ∃q > 0 : C2q = Cq, then
for every convex polyhedron X, the convex polyhedron

τ
⊗(X) =

⊔
06 j6q−1

(τq)⊗(τ j(X))

is a convex over-approximation of τ∗(X), where τq is defined by Eq. 2 and (τq)⊗ is computed using
Lem. 5.

Example 6 (Finite monoid). (see Fig. 5) τ : x1+x266 ∧
(

x′1
x′2

)
=

(
0 1
1 0

)(
x1
x2

)
+

(
2
1

)
We have C2 = I = C4, thus q = 2. Obviously C2 has its eigenvalues in {0,1} and Q = I.
According to Eq. 2 we strengthen the guard by A(Cxxx + ddd)6 bbb = (x1+x2 6 3) and compute

ddd′ = (C+I)ddd =

(
3
3

)
. Hence we get: τ2 : (x1+x263) ∧

(
x′1
x′2

)
=

(
x1
x2

)
+

(
3
3

)
Starting from X = (x1=1 ∧ x2=0) we compute τ⊗(X) = X t (τ2)⊗(X)t (τ2)⊗(τ(X)):

τ(X) = (x1=x2=2)
(τ2)⊗(X) = (16x16

11
2 ∧ x1−x2=1)

(τ2)⊗(τ(X)) = (16x166 ∧ x1=x2)
τ⊗(X) = (2x1−x2>2 ∧ x26x1 ∧ x1−x261 ∧ x1+x2612)

4.4. Non-Finite-Monoid Cases
In the previous section, we have shown how to handle finite monoid transformations. Now, we

will generalize abstract acceleration to the additional case of linearly accelerable transformations
we identified in §3.1, i.e., Jordan blocks of size two with eigenvalues that are roots of unity. We
will show here the case where λ =1 and refer to [42] for a general presentation.

14
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Proposition 1 (A non-finite-monoid case). Let τ : Axxx 6 bbb → xxx′ = Cxxx be a transition with

C=

(
1 1
0 1

)
. Then τ⊗(X) = X t τ

(
(X uG)↗ D

)
with D =

(
∃x1 : (X uG)

)
is a sound over-

approximation of τ∗(X).

The polyhedron D originates from the right upper entry in Ckxxx =
(

x1 kx2
0 x2

)
where it over-

approximates the set {x2 | xxx ∈ X uG} by which the first dimension is translated. The projection on
the non-translated dimension (x2) may incur an over-approximation if the non-translated dimension
is not independent from the translated dimension (x1) in the initial set X . Remark that we do not
require as in Thm. 3 that the variable corresponding to the non-translated dimension has a finite
number of values in the initial set: this generalization is justified by the dense approximation that
we perform. For the proof, see [42]. Fig. 2 in §3.2 depicts the result of the application of Prop. 1
to Ex. 3.

The methods proposed in this section allow us to accelerate single self-loops. However, real
programs often have locations with multiple self-loops, which we will consider in the next section.

5. Abstract Acceleration of Multiple loops

In the case of flat systems (each location has at most one self-loop), we were able to replace
accelerable self-loops τ by accelerated transitions τ⊗. If all self-loops are accelerable, widening
is not needed at all. In non-flat systems, i.e., systems with nested loops, however, this is no more
possible for all loops: only single inner self-loops can be replaced by their accelerated versions,
and widening is needed to handle outer loops.

In this section, we propose abstract accelerations to avoid widening in cases of locations with
multiple self-loops.

Remark 1. Piecewise constant derivative (PCD) systems [43] can
be considered continuous versions of multiple self-loops with trans-
lations, with the restriction that the guards are assumed to divide the
space into polyhedral regions (points on borders belong to all adja-
cent regions). Such a system (in dimension 2) is drawn on the right-
hand side. Each region is associated with a translation vector that
determines the direction of the trajectory emanating of a reachable
point in the region. The reachability problem for PCDs in dimension
3 and higher is undecidable.

For the two loops, we have to compute: τ1(X)t τ2(X)t τ2 ◦ τ1(X)t τ1 ◦ τ2(X)t τ2
1 (X)t

τ2
2 (X)t τ1 ◦ τ2 ◦ τ1(X)t τ2 ◦ τ1 ◦ τ2(X)t . . . We can speed up the computation of the limit of this

sequence by replacing τi(X) by τ
⊗
i (X) (because τi(X) ∈ τ

⊗
i (X)), and compute the following fixed

point using Kleene iteration:

(
⋃

16i6N

τi)
⊗(X0) = lfpλX .X0t

⊔
16i6N

τ
⊗
i (X) (3)
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However, this fixed point computation may not converge, thus in general, widening is necessary to
guarantee termination. In our experiments, we observed that the fixed point is often reached after
a few iterations in practice.

Graph expansion. The first idea [26, 27] to deal with multiple self-loops τ1, . . . ,τN was to partition
the loop guards into the overlapping regions (pairwise GiuG j) and expand the graph such that each
location has only a single self-loop accelerating the transitions in one of these regions. However,
this approach suffers from the combinatorial explosion in the number of regions, i.e., locations, and
it introduces many new widening points in the resulting strongly connected graph. Hence, we will
investigate cases where we are able to compute abstract accelerations of multiple loops without the
use of widening.

5.1. Multiple Translation Loops
We first consider two translation loops τ1 and τ2: We observe that if one of the transitions is

never taken (τ⊗1 (X)uG2 =⊥ or τ
⊗
2 (X)uG1 =⊥ respectively), then we can resort to the case of

single self-loops. If both transitions may be taken, then we can further distinguish the frequent
case where the guards of the transitions can be mutually strengthened, i.e., substituting G1 ∧G2
for the guards in both transitions has no influence on the concrete semantics. This gives rise to the
following proposition:

Proposition 2 (Translation loops with strengthened guards). Let τ1 : G1 → xxx′ = xxx+ddd1, τ2 :
G2→ xxx′ = xxx+ddd2, with X ⊆ G1uG2 (*) and

(G1+{ddd1}) 6v G1 ∧ (G2+{ddd1})v G2 ∧ (G2+{ddd2}) 6v G2 ∧ (G1+{ddd2})v G1 (**)
then

τ
⊗
1,2(X) = X t

((
(X ↗ D)uG1uG2

)
+D

)
with D = {ddd1}t{ddd2} is a sound over-approximation of (τ1∪ τ2)

∗(X).

Intuitively, combining the two translation vectors ddd1 and ddd2 by their convex hull D results in
a time elapse that contains all interleavings of translations ddd1 and ddd2. Condition (**) states that
no application of τ1 to a state in the intersection of the guards can violate the guard of τ2, hence
strengthening, i.e., conjoining, the guard of τ2 to G1 has no influence on τ1, and vice versa for τ2.
PROOF:

xxx′ ∈ (τ1∪ τ2)
∗(X)

⇐⇒ ∃K>0,∃xxx ∈ X ,∃xxx0 ∈ X :
(
G1(xxx0)∨G2(xxx0)

)
,∀k ∈ [1,K] : ∃xxxk :(

xxxk=xxxk−1+ddd1∧G1(xxxk−1) ∨ xxxk=xxxk−1+ddd2∧G2(xxxk−1)
)
∧(

xxx′=τ1(xxxK) ∨ xxx′=τ2(xxxK) ∨ xxx′=xxx
)

⇐⇒ ∃K>0,∃xxx0 ∈ (X uG1uG2),∀k ∈ [1,K] : ∃xxxk : (because of condition (*))(
xxxk=xxxk−1+ddd1∧G1(xxxk−1)∧G2(xxxk−1) ∨ xxxk=xxxk−1+ddd2∧G2(xxxk−1)∧G1(xxxk−1)

)
∧(

xxx′=τ1(xxxK) ∨ xxx′=τ2(xxxK) ∨ xxx′=xxx0
)

(because of condition (**))
=⇒ ∃α>0,∃xxx0 ∈ X ,∃ddd ∈ {ddd1}t{ddd2},∃xxxK ∈ (G1uG2) :

xxxK = xxx0+αddd ∧
(
xxx′=xxxK+ddd ∨ xxx′=xxx0

)
(convex and dense approximation)

⇐⇒ X t
((

(X ↗ D)uG1uG2
)
+D

)
�
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Example 7 (Translation loops with strengthened guards). (see Fig. 6)

τ1 : x1+x264→
{

x′1 = x1+2
x′2 = x2+1 and τ2 :−2x1+x264→

{
x′1 = x1−1
x′2 = x2+1 .

Starting from X = (06x161∧06x261), we compute:

D = (−16x162 ∧ x2=1)
X ↗ D = (x2>−x1 ∧ x2>0 ∧ x1−2x261)

(X ↗ D)uG1uG2 = (x2>−x1 ∧ x2>0 ∧ x1−2x261 ∧ x1+x264 ∧ −2x1+x264)
(τ1∪ τ2)

⊗(X) = (x2>−x1 ∧ 06x265 ∧ x1−2x261 ∧ x1+x267 ∧ −2x1+x267)

The polyhedron D includes all vectors pointing upwards between (−1,1) and (2,1), thus, X ↗
D corresponds to the unbounded polyhedron above the three lower line segments (including the
dashed lines) in Fig. 6. The final result is then obtained by intersecting with both guards and
joining the results obtained from applying τ1 and τ2, respectively.

The descending iterations in standard LRA cannot recover the three upper-bounding con-
straints, and therefore it yields x2>−x1 ∧ x2>0 ∧ x1−2x261.

In the general case of two translation loops, we can safely approximate (τ1∪τ2)
∗(X) using the

following proposition:

Proposition 3 (Translation loops). Let τ1 : G1→ xxx′ = xxx+ddd1 and τ2 : G2→ xxx′ = xxx+ddd2, then

τ
⊗
1,2(X) = X t τ1(Y )t τ2(Y ) with Y =

(
(X uG1)t (X uG2)

)
↗
(
{ddd1}t{ddd2}

)
is a sound over-approximation of (τ1∪ τ2)

∗(X).

In contrast to Prop. 2, we cannot exploit information about the guards in the last iteration. The
join τ1(Y )t τ2(Y ) computes just a normal descending iteration and hence, if applied to Ex. 7, it
yields the same result as standard LRA.

More than two translation loops. Prop. 3 generalizes to N translation loops as follows:

(
⋃

16i6N

τi)
⊗(X) = X t

⊔
16i6N

τi
(
(
⊔

16i6N

X uGi)↗ (
⊔

16i6N

{dddi})
)

Similarly, Prop. 2 can be generalized to

τ
⊗
1...N(X) = X t

((
(X ↗ D)u

l

16i6N

Gi
)
+D

)
with D = (

⊔
16i6N

{dddi}).

In practice, one starts computing the Kleene iteration with the individually accelerated transi-
tions τ

⊗
i (X). Sometimes a fixed point is already reached after a few iterations. Then one can apply

Prop. 2 if its preconditions are fulfilled or otherwise resort to Prop. 3. Gonnord and Halbwachs
describe some other heuristics in [27].
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5.2. Multiple Translation and Reset Loops
We start with the simplest case: a translation loop and a reset loop.

Proposition 4 (Translation and reset loop). Let τ1 : G1→ xxx′= xxx+ddd1 and τ2 : G2→ xxx′= ddd2, then

τ
⊗
1,2(X) = τ

⊗
1 (X t τ2(τ

⊗
1 (X)))

is a sound over-approximation of (τ1∪ τ2)
∗(X).

Intuitively, the translation τ1 can only act on the initial set X and the reset state ddd2 (if τ2 can be
taken at all, i.e., G2 must be satisfied by X or any iteration of τ1 on X).
PROOF:

(τ1∪ τ2)
∗

= id∪ τ1∪ τ2∪ τ2 ◦ τ1∪ τ1 ◦ τ2∪ τ2
1 ∪ τ2

2 ∪ τ2 ◦ τ2
1 ∪ τ2

2 ◦ τ1∪ . . .
= id∪ τ1∪ τ2∪ τ2 ◦ τ1∪ τ1 ◦ τ2∪ τ2

1 ∪ τ2
1 ◦ τ2∪ . . . (τ2 is idempotent)

⊆ τ∗1 ∪ τ2 ◦ τ∗1 ∪ τ∗1 ◦ τ2∪ τ∗1 ◦ τ2 ◦ τ∗1 ∪ τ2 ◦ τ∗1 ◦ τ2∪ . . . (τ∗1 is idempotent, contains id and τ1)
= τ∗1 ∪ τ2 ◦ τ∗1 ∪ τ∗1 ◦ τ2∪ τ∗1 ◦ τ2 ◦ τ∗1 (τ2 and τ∗1 ◦ τ2 are idempotent)
= τ∗1 ◦ (id∪ (τ2 ◦ τ∗1 ))

By the monotonicity of the abstraction, we have (α ◦ τ∗1 ◦ (id∪ (τ2 ◦ τ∗1 )◦ γ))(X) v τ
⊗
1 (X t

τ2(τ
⊗
1 (X))). �

Example 8 (Translation and reset loop). (see Fig. 7) τ1 : x1+x264→
{

x′1 = x1 +1
x′2 = x2 +1 and τ2 :

x1+x2>5→
{

x′1 = 2
x′2 = 0 . Starting from X = (x1=x2=0), we compute:

τ
⊗
1 (X) = (06x1=x263)

τ2
(
τ
⊗
1 (X)

)
= (x1=2 ∧ x2=0)

τ2
(
τ
⊗
1 (X)

)
tX = (06x162 ∧ x2=0)

τ
⊗
1
(
τ2
(
τ
⊗
1 (X)

)
tX
)

= (06x26x16x2+2 ∧ x1+x266)
τ
⊗
1 (X) gives us the line segment from (0,0) to (3,3). The application of τ2 adds to the result the

second “start” point (2,0) that is joined with X, and re-applying τ
⊗
1 gives us the final result. Since

τ2 is monotonic, we only need to apply it to the bigger set τ
⊗
1 (X) instead of X.

Similar to Prop. 2, we can consider the case where the guards of the transitions can be mutually
strengthened:

Proposition 5 (Translation and translation/reset loops with strengthened guards). Let
τ1 : G1→ xxx′ = xxx+ddd1, τ2 : G2→ xxx′ = C2xxx+ddd2 with(

X t τ2(X)
)
⊆ (G1uG2) and (*)

(G1+{ddd1}) 6v G1 ∧ (G2+{ddd1})v G2 ∧ (G2+{C2ddd2}) 6v G2 ∧ (G1+{C2ddd2})v G1 (**)
then

τ
⊗
1,2(X) = X t

((
((X t τ2(X))↗ D)uG1uG2

)
+D

)
with D =

(⊔{
{ddd1},{C2ddd2},{C2ddd1}

})
is a sound over-approximation of (τ1∪ τ2)

∗(X).
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Figure 6: Acceleration for translation
loops with strengthened guards (Ex. 7).
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Figure 7: Abstract accel-
eration of translation and
reset loops (Ex. 8).
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Figure 8: Acceleration for transla-
tion and translation/reset loops with
strengthened guards (Ex. 9).

There are two differences to Prop. 2: firstly, τ2(X) is applied to expand the initial set with the
reset values of τ2 (cf. Thm. 6), and secondly, D contains, besides the translation vectors of τ1 and
τ2, the projection of ddd1 on the translated dimensions of τ2. The explanation for the latter is that
the alternating application of τ1 and τ2 produces sawtooth-like trajectories of which the direction
of the baseline is given by C2ddd1.4

PROOF: Notation: we partition the dimensions of the vectors xxx according to C2 =diag(c1 . . .cn)
into xxxt consisting of the translated dimensions (ci=1), and the reset dimensions xxxr (ci=0).

xxx′ ∈ (τ1∪ τ2)
∗(X)

⇐⇒ ∃K>0,∃xxx ∈ X ,∃xxx0 ∈ X :
(
G1(xxx0)∨G2(xxx0)

)
: ∀k ∈ [1,K] : ∃xxxk :(

xxxk=xxxk−1+ddd1∧G1(xxxk−1) ∨ xxxk=C2xxxk−1+ddd2∧G2(xxxk−1)
)
∧(

xxx′=τ1(xxxK) ∨ xxx′=τ2(xxxK) ∨ xxx′=xxx
)

⇐⇒ ∃K>0,∃xxx0 ∈
(
(X t τ2(X))uG1uG2

)
: ∀k ∈ [1,K] : ∃xxxk : (because of (*))(

xxxk=xxxk−1+ddd1∧G1(xxxk−1)∧G2(xxxk−1) ∨ xxxk=C2xxxk−1+ddd2∧G1(xxxk−1)∧G2(xxxk−1)
)
∧(

xxx′=τ1(xxxK) ∨ xxx′=τ2(xxxK) ∨ xxx′=xxx
)

(because of (**))
=⇒ ∃K>0,∃xxx0 ∈

(
(X t τ2(X))uG1uG2

)
,∃xxxK :(

xxxt
K = xxxt

0+Kdddt
1 ∨ xxxt

K = xxxt
0+Kdddt

2
)
∧
(
xxxr

K = xxxr
0+Kdddr

1 ∨ xxxr
K = dddr

2 ∨ xxxr
K = dddr

2+Kdddr
1
)
∧(

xxx′=τ1(xxxK) ∨ xxx′=τ2(xxxK) ∨ xxx′=xxx
)

=⇒ ∃α>0,∃xxx0 ∈
(
(X t τ2(X))uG1uG2

)
,∃ddd ∈ {ddd1}t{C2ddd2}t{C2ddd1},∃xxxK :

xxxK = xxx0+αddd ∧
(
xxx′=τ1(xxxK) ∨ xxx′=τ2(xxxK) ∨ xxx′=xxx

)
(ddd is in the convex hull of {dddt

1,ddd
t
2}×{dddr

1,000
r}, and {xxxt

0}×{xxxr
0,ddd

r
2} ⊆ X t τ2(X) (*))

⇐⇒ xxx′ ∈ X t
((

(X ↗ D)uG1uG2
)
+D

)
∧ D =

(⊔{
{ddd1},{C2ddd2},{C2ddd1}

})
�

Example 9 (Translation and translation/reset loops). (see Fig. 8)

τ1 : x1+x264→
{

x′1 = x1+2
x′2 = x2+1 and τ2 :−2x1+x264→

{
x′1 = x1−1
x′2 = 0 .

4A more precise formula can be devised by considering C2(ddd1 +ddd2), and applying τ1 and τ2 instead of adding D
after guard intersection. We leave the proof to the interested reader.
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Starting from X = (06x161∧16x262), we compute:

τ2(X) = (x2 = 0 ∧ x1 6 0 ∧ −16x1)
X t τ2(X) = (x16x2 ∧ 06x2 ∧ x161 ∧ x262 ∧ x262x1 +2)

D = (2,1)t (−1,0)t (2,0) = (3x26x1+1 ∧ 06x2 ∧ x162)
(X t τ2(X))↗ D = (x2>0)

τ
⊗
1,2(X) = (x2>0 ∧ x166 ∧ x1+x267 ∧ −2x1+x266 ∧ − x1+3x2613)

In [18], Gonnord and Halbwachs proposed a specialized abstract acceleration for another com-
bination of translation and translation/reset loops which frequently occurs in synchronous con-
troller programs.

Proposition 6 ([18]). Let τ1 : G1→ xxx′ = xxx+ddd1 and τ2 : xxx′ = C2xxx+ddd2 with G1 = (xn 6 K), C2 =
diag(1 . . .1,0) and5 d2,n=0, and assume X v (xn=K). Then

τ
⊗
1,2(X) =

{
X ↗

⊔
{ddd1,C2ddd1,ddd2} if X ↗{ddd1} v G1

X t τ1
(
X ↗

⊔
{ddd1,ddd2,kmaxC2ddd1 +ddd2}

)
else

with kmax = bK/d1,nc+1 is a convex overapproximation of (τ1∪ τ2)
∗(X).

Prop. 6 is illustrated in Fig 10 for n = 3.

Example 10. We consider the famous cruise control example [5] (see Fig. 9). There are two
input signals that trigger a transition: the “second” signal increments time t and resets the speed
estimate s to 0, and the “meter” signal increments both the distance d and the speed estimate s.
The “meter” signal can only occur when s63 because it is assumed that the speed is less than
4m/s. On the CFG, the occurences of the two signals “second” and “meter” are abstracted by
non-deterministic choices.

With notations of figure 10, we have xxx= (t,d,s), G1 = (s6 3), ddd1 = (0,1,1), ddd2 = (1,0,0), and
X = {(0,0,0)}. Moreover, with kmax = 3/1+1 = 4 and C2ddd1 = (0,1,0) we have kmaxC2ddd1+ddd2 =
(1,4,0), and we obtain:

τ
⊗
1,2(X) =

(
{(0,0,0)}↗

⊔
{(0,1,1),(1,0,0),(1,4,0)}

)
u (s6 3)

= (t > 0 ∧ 06 s6 3 ∧ 06 d 6 4t + s)

For the general case of a translation and a translation/reset loop, we can give a formula by
combining ideas from Propositions 3, 4 and 5:

τ
⊗
1,2(X) = X t τ1(Y )t τ2(Y )

with
{

Y =
(
(ZuG1)t (ZuG2)

)
↗
(⊔{

{ddd1},{C2ddd2},{C2ddd1}
})

Z = τ2(τ
⊗
1 (X))tX

However, its generalization to more than two loops is less obvious.
These results led to algorithms that were implemented in the ASPIC tool (§7). More recent

work considers a different approach to handling multiple loops, as we will see in the next section.

5di,n denotes the nth dimension of dddi.
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τ1 : s ≤ 3 →
d′ = d+ 1
s′ = s+ 1

τ2 : true →

s′ = 0
t′ = t+ 1

(s′, t′, d′) = (0, 0, 0)

Figure 9: CFG of the cruise control
Ex. 10.

K

x1

x3

X

d1

x2

d2

kmaxC2d1

Figure 10: Abstract acceleration of translation and transla-
tion/reset loops (Prop. 6).

5.3. Path Focusing
Henry and al [44] and Monniaux and Gonnord [45] propose to run classical Kleene iterations

on a modified CFG that consists only of a set of “cut” nodes (every cycle in the initial CFG passes
through at least one of these nodes). Joins (convex hulls) are only taken in these locations and
the loop bodies are entirely represented symbolically. This has the advantage that convex unions
on joining branches within the loops are avoided and hence the precision is improved. During the
analysis, one searches for loop paths that violate the current invariant by posing a query to an SMT
solver: Is ΦG(xxx,xxx′)∧xxx∈X∧xxx′′′ 6∈X∧bs

i ∧bd
i ∧ . . . satisfiable? where ΦG denotes an encoding of the

CFG: control points and transitions are boolean values, transition are encoded with primed values;
bs

i ∧bd
i expresses that the desired path begins and end at a given control point, and xxx ∈ X ∧ xxx′′′ 6∈ X

means that the desired path should add new states to the current abstract value. If there is a positive
answer, the valuation gives us a new path that can possibly be accelerated, or at least iterated with
widening until convergence.

Non-elementary loops. Until now our results have been exposed for simple or multiple elementary
loops in a control location. We can still apply abstract acceleration techniques to non-elementary
loops by composing the transitions of cycles of nested loops. However, as enumerating cycles is
costly, we have to choose between all cycles those that are most likely to be accelerable. Again,
this choice can be made via adequate SMT-queries as explained above.

6. Extensions

This section summarizes further developments w.r.t. abstract acceleration. First, abstract ac-
celeration can be generalized from closed to open systems, e.g., reactive systems with numerical
inputs (§6.1, [46, 47]). Then, it can also be applied to perform a backward (co-reachability) anal-
ysis (§6.2, [47]). At last, §6.3 describes a method that makes abstract acceleration applicable to
logico-numerical programs, i.e., programs with Boolean and numerical variables.

6.1. Reactive Systems With Numerical Inputs
Reactive programs such as LUSTRE programs [48] interact with their environment: at each

computation step, they have to take into account the values of input variables, which typically cor-
respond to values acquired by sensors. Boolean input variables can be encoded in a CFG by finite
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non-deterministic choices, but numerical input variables require a more specific treatment. Indeed,
they induce transitions of the form τ : G(xxx,ξξξ )→ xxx′′′ = fff (xxx,ξξξ ), xxx,xxx′′′ ∈ Rn, ξξξ ∈ Rp that depend on
both, numerical state variables xxx and numerical input variables ξξξ . We consider transitions τ where
the variables xxx, ξξξ occur in general linear expressions in guards and actions:(

A L
0 P

)(
xxx
ξξξ

)
6

(
bbb
qqq

)
︸ ︷︷ ︸

Axxx+Lξξξ6bbb ∧ Pξξξ6qqq

→ xxx′′′ =
(
C T

)(xxx
ξξξ

)
+uuu︸ ︷︷ ︸

Cxxx+Tξξξ+uuu

(4)

The main challenge raised by adding inputs consists in the fact that any general affine
transformation without inputs Axxx6 bbb→ xxx′′′ = Cxxx+ddd can be expressed as a “reset with inputs”
(Axxx6 bbb∧ξξξ = Cxxx+ddd)→ xxx′ = ξξξ [47]. This means that there is no hope to get precise acceleration
for such resets or translations with inputs, unless we know how to accelerate precisely general
affine transformations without inputs.

Nevertheless, we can accelerate transitions with inputs if the constraints on the state variables
do not depend on the inputs, i.e., the guard is of the form Axxx 6 bbb∧Pξξξ 6 qqq, i.e., when L = 0
in Eqn. (4). We call the resulting guards simple guards. A general guard G′ can be relaxed
to a simple guard G = (∃ξξξ : G′)︸ ︷︷ ︸

Axxx6bbb

∧(∃xxx : G′)︸ ︷︷ ︸
Pξξξ6qqq

. This trivially results in a sound over-approximation

because Gw G′.
We will now show how to abstractly accelerate a translation with inputs and simple guards:

The first step is to reduce it to a polyhedral translation defined as τ : G→ xxx′ = xxx+D with the
semantics τ(X) = (X uG)+D. Intuitively, the polyhedron D contains all possible values (induced
by the inputs ξ ) that may be added to x. The polyhedron D = {ddd | ddd = TTT ξξξ +uuu∧PPPξξξ 6 qqq} can be
computed using standard polyhedra operations. Then, Thm. 5 can be generalized from ordinary
translations to polyhedral translations.

Theorem 8 (Polyhedral translation [47]). Let τ be a polyhedral translation G→ xxx′= xxx+D with
simple guards, and X, D convex polyhedra. Then, the set

τ
⊗(X) = X t τ

(
(X uG)↗ D

)
is a convex over-approximation of τ∗(X).

The case of translations/resets with inputs can be handled similarly to translations: first, we
reduce translations/resets with inputs and simple guards polyhedral translations with resets τ : G→
xxx′=Cxxx+D. However, the resulting abstract acceleration becomes more complicated than Thm. 6
because, unlike in the case of resets to constants, the variables may be assigned a different value in
each iteration. We refer to [47] for further details.

The general case of finite monoid transitions (Thm. 7) can be extended to inputs based on
Eq. (1) τ∗(X) =

⋃
06 j6q−1(τ

q)∗(τ j(X)), where, in the case of inputs, τq is defined as:∧
06i6q−1

(
ACixxx+LCiξξξ i +∑06 j6i−1 TC jξξξ j−C juuu6 bbb

)
∧ (Pξξξ 6 qqq) →(

xxx′ = Cqxxx+∑06 j6q−1 TC jξξξ j−C juuu
)
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Then we can accelerate each τq by relaxing the guard, reducing them to polyhedral translations
(with resets) and applying the respective theorems in the eigenbasis of Cq according to Lem. 5.
Mind that we need to duplicate the inputs q times.

Also, the non-finite monoid cases of §4.4 can be extended to inputs in a straightforward way
by taking them into account (existential quantification) in the computation of D(l) in Prop. 1.

6.2. Backward Analysis
Abstract acceleration has been applied to forward reachability analysis in order to compute the

reachable states starting from a set of initial states. Backward analysis computes the states co-
reachable from the error states. For example, combining forward and backward analysis allows to
obtain an approximation of the sets of states belonging to a path from initial to error states. The
experience of verification tools, e.g., [49], shows that combining forward and backward analyses
results in more powerful tools.

Although the inverse of a translation is a translation, the difference is that the intersection with
the guard occurs after the (inverted) translation. The case of backward translations with resets is
more complicated than for the forward case, because resets are not invertible. We state here just
the translation case and refer to [47] for the other cases and their respective extensions to numerical
inputs.

Proposition 7 (Backward translation [47]). Let τ be a translation G→ xxx′′′ = xxx+ddd. Then the set

τ
−⊗(X ′) = X ′t

(
(τ−1(X ′)↗{−ddd}

)
uG

is a convex over-approximation of τ−∗(X ′), where τ−∗ = (τ−1)∗ = (τ∗)−1 is the reflexive and
transitive backward closure of τ .

6.3. Logico-Numerical Abstract Acceleration
The classical approach to applying abstract acceleration to logico-numerical programs like

LUSTRE programs [48] relies on the enumeration of the Boolean state space. However, this tech-
nique suffers from the state space explosion. In [50], Schrammel and Jeannet proposed a method
that alleviates this problem by combining an analysis in a logico-numerical abstract domain (that
represents both Boolean and numerical states symbolically) and state space partitioning. This
approach separates the issue of (i) accelerating transition relations that contain Boolean variables
from (ii) finding a suitable CFG that enables a reasonably precise and fast reachability analysis.

Self-loops in logico-numerical programs are of the form τ :
(

bbb′

xxx′

)
=

(
fff b(bbb,βββ ,xxx,ξξξ )
fff x(bbb,βββ ,xxx,ξξξ )

)
where fff x is a vector of expressions of the form

∨
j
(
a j(xxx,ξξξ ) if g j(bbb,βββ ,xxx,ξξξ )

)
where a j are arith-

metic expressions, and g j (as well as the components of fff b) are arbitrary (Boolean) formulas
involving Boolean state variables bbb, Boolean input variables βββ and constraints over xxx and ξξξ . The
“guards” g j are assumed to be disjoint.

We use the logico-numerical abstract domain that abstracts logico-numerical state sets℘(Bm×
Rn) by a cartesian product of Boolean state sets ℘(Bm) (represented with the help of BDDs) and
convex polyhedra abstracting ℘(Rn).
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By factorizing the guards of fff x, we obtain several loops of the form τ : gb(bbb,βββ )∧gx(xxx,ξξξ )→(
bbb′

xxx′

)
=

(
fff b(bbb,βββ ,xxx,ξξξ )

aaax(xxx,ξξξ )

)
. Such a loop is accelerable if gx is a conjunction of linear inequali-

ties and xxx′ = aaax(xxx,ξξξ ) are accelerable actions. Then numerical and Boolean parts of the transition
function τ are decoupled into

τb : gb∧gx→
(

bbb′

xxx′

)
=

(
fff b

xxx

)
and τx : gb∧gx→

(
bbb′

xxx′

)
=

(
bbb
aaax

)
.

and τ⊗ is approximated by (τ]b)
∗ ◦τ⊗x where τ⊗x is computed using numerical abstract acceleration

(which is possible because its Boolean part is the identity) and the abstract version τ
]
b of τb is

iterated up to convergence (which is guaranteed because the lattice of Boolean state sets is finite).
This method can be applied to accelerable loops (in the sense above) in any CFG. However,

in order to alleviate the impact of decoupling Boolean and numerical transition functions on the
precision, it is applied to CFGs obtained by partitioning techniques that group Boolean states that
exhibit the same numerical behavior (“numerical modes”) in the same locations.

7. Tools and Experimental Results

In [27, 51] Gonnord et al. showed a general method to integrate abstract acceleration results
onto a classical LRA tool. Basically, a preprocessing phase identifies accelerable loops and pre-
computes the static information used for acceleration. Accelerable loops are tagged so that to avoid
widening application on their heads. Then a classical LRA is performed, where the application of
any accelerable loop is replaced by the application of its acceleration.

7.1. Tools for abstract acceleration
ASPIC6 was the first implementation of abstract acceleration techniques for numerical pro-

grams. It implements a combination of classical LRA with abstract acceleration on polyhedra on
accelerable simple loops and multiple loops (§4 and §5). The implementation details can be found
in [51]. ASPIC takes as input a variant of the FAST [17] format, and is able to compute numerical
invariants for C programs via C2FSM [51]. It also belongs to a toolsuite called WTC [52] that was
designed to prove termination of flowchart programs.

REAVER7 (REActive system VERifier) is a tool for safety verification of discrete and hybrid
systems specified by logico-numerical data-flow languages, like LUSTRE [53]. It features parti-
tioning techniques and logico-numerical analysis methods based on logico-numerical product and
power domains (of the APRON [54] and BDDAPRON [55] domain libraries) with convex polyhe-
dra, octagons, intervals, and template polyhedra to abstract numerical state sets. It has frontends
for the NBAC format [49], LUSTRE via LUS2NBAC [56], and (subset of) LUCID SYNCHRONE

[57]. It implements abstract acceleration for self-loops (§4) including the extension to numerical
inputs (§6.1), the logico-numerical technique (§6.3), and numerical backward acceleration with
inputs (§6.2). Furthermore, it is able to apply these methods to the analysis of hybrid systems.

6laure.gonnord.org/pro/aspic/aspic.html
7pop-art.inrialpes.fr/people/schramme/reaver/
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7.2. Experimental Results
In this section, we recall some already published experimental results that show the relevance

of the acceleration methods in what concerns precision and efficiency. We also mention appli-
cations where abstract acceleration-based invariant generation has been successfully applied, like
termination analysis.

Accelerated vs standard LRA. Using ASPIC and its C front-end C2FSM, Feautrier and Gonnord
[51] showed the precision of abstract acceleration in comparison to FAST, standard LRA, and its
improvements using widening with thresholds (widening “up to” [10]) and guided static analysis
[12] on 17 small, but difficult benchmarks8. The experiments show that ASPIC generally manages
to infer better invariants in 12 cases in comparison to standard LRA, 7 w.r.t. widening “up to”, and
9 compared with guided static analysis. With a 15 minutes timeout, FAST is able to compute the
exact invariants on 13 benchmarks but is at least 3 times slower.

Proving properties and termination. ASPIC has been used in combination with C2FSM for proving
properties in C programs [51] (Table 1).

File #lines of code (#variables,#control points) Proved property
Apache (simp1_ok) 30 (5,5) No buffer Overflow (c2fsm)

Sendmail (inner_ok) 32 (4,3) No buffer Overflow (c2fsm)
Sendmail (mime_fromqp_arr_ok.c) 84 (20,20) No buffer Overflow (aspic)

Spam (loop_ok) 42 (8,10) No Buffer Overflow (aspic)
OpenSER (parse_config_ok) 72 (7,30) No Buffer Overflow (aspic+accel)

list.c 38 (20,10) AssertOK (aspic+delay4+accel)
disj_simple.c 13 (4,5) AssertOK (aspic+accel)

Heapsort (realheapsort) 59 (25,55) Termination (aspic)
Loops (nestedLoop) 24 (6,6) Termination (aspic+delay4+accel)

Table 1: C benchmarks (cf. [58] and [59])

The two first properties were proved within C2FSM (bad states were proved to be unreachable
while generating the automaton). Standard linear relation analysis was sufficient to prove three
more properties, but the precision gain with acceleration was absolutely mandatory for the rest of
the experiments of this table. In some cases we were obliged to combine (abstract) acceleration
and delayed widening to obtain the desired precision.

For termination analysis, ASPIC was used as invariant generator inside the WTC toolsuite9.
The idea is to approximate the search space domain for finding linear ranking functions and thus
proving termination [52]. The experiments show that in a few cases (7 over 35), abstract accel-
eration gained enough precision to conclude for termination. In 8 more cases, standard analysis
with widening “up to” was precise enough to prove termination, although acceleration gave better
results in terms of invariant precision. In all other cases, the obtained invariants were the same.

8All these benchmarks can be found on http://laure.gonnord.org/pro/aspic/aspic.html
9http://compsys-tools.ens-lyon.fr/rank/index.php
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Figure 11: Comparison between ASPIC, standard numerical linear relation analysis (StdNum), REAVER, standard
logico-numerical analysis (StdLN), and NBAC.

Reactive system analysis. Fig. 11 depicts the results of an experimental comparison (cf. [50]) on
a set of reactive system benchmarks10 written in LUSTRE. On the one hand, it compares standard
analysis methods (standard LRA (§2.1) and NBAC [49]) with abstract acceleration (ASPIC and
REAVER), and on the other hand, it compares purely numerical methods (ASPIC and standard
numerical LRA) that encode the Boolean states in CFG locations11 with logico-numerical methods
(REAVER, NBAC, and standard logico-numerical LRA) that use state space partitioning heuristics
to scale up. It shows that the abstract acceleration-based tools outperform the other methods. This
is due to both the increased precision and the faster convergence to a fixed point. Moreover, it
shows that REAVER that implements logico-numerical abstract acceleration scales better than the
purely numerical ASPIC.

8. Discussion and Related Work

Methods to improve widening. As explained in §2.1.3, the motivation for abstract acceleration was
the development of a precise, monotonic widening operator for a specific class of loops.

Delaying widening (parameter N in §2.1.3) helps discovering a better estimate before applying
extrapolation. This has an important effect on precision. However, delaying widening in polyhedral
analyses is expensive, because coefficients quickly become huge. Remark that delaying widening
is not equivalent to loop unrolling, because the convex union is taken after each iteration, whereas
loop unrolling creates separate locations.

In systems with nested loops (or loops with loop phases (branches within the loop)), the stan-
dard approach often suffers from the fact that the result of the widening sequence is already a
(bad) fixed point, and hence the descending sequence cannot recover any information [60]. This

10Production line benchmarks available on: pop-art.inrialpes.fr/people/schramme/reaver/.
11Only the Boolean states that are reachable in the Boolean skeleton of the program are actually enumerated.
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typically happens due to transitions that keep “injecting” bad extrapolations during the descending
sequence.

Halbwachs [10] observes that distinguishing loop phases can be exploited to obtain a better
precision. Guided static analysis with lookahead widening [61, 12] follows this idea by alternating
ascending and descending sequences on a strictly increasing, finite sequence of restrictions of the
program (by adding new transitions) which converges towards the original program. In many cases
this method improves the precision, but it ultimately relies on the effectiveness of the descending
iterations.

Widening with thresholds tries to limit widening by a given set of constraints T [10, 62] in
order to avoid bad extrapolations in the first place. To achieve this, the result of the standard
widening is intersected with those constraints in T that are satisfied by both arguments of the
widening operator. The problem is, though, how to find a set of relevant threshold constraints.
A static threshold inference method based on propagating the post-condition of a loop guard to
the widening points of the CFG is proposed in [28]. Dynamic threshold inference methods are
for example counterexample-refined widening [63], which is based on an (under-approximating)
backward analysis, and widening with landmarks [11], which extrapolates threshold constraints by
estimating the number of loop iterations until the guard of the loop is violated.

A framework for designing new widening operators was proposed in [64, 65]. The proposition
for a new widening operator for polyhedron gives better precision locally but as widening is not
monotonic, there is no result on the global precision improvement. Most experimental results
show an improvement, but there are also counter-examples. Moreover, the cost of the analysis can
increase significantly, because the convergence is generally slower.

Abstract acceleration vs. Kleene iteration. Abstract acceleration aims at computing a tight over-
approximation of α(

⋃
k>0 τk(X0)) where X0 is a convex polyhedron and τ is an affine transfor-

mation with an affine guard. Since convex polyhedra are closed under affine transformations
(α(τ(X0)) = τ(X0)), we have α(

⋃
k>0 τk(X0)) =

⊔
k>0 τk(X0). The latter formula is known as

Merge-Over-All-Paths (MOP) solution of the reachability problem [66], which computes the limit
of the sequence:

X0 X1 = X0t τ(X0) X2 = X0t τ(X0)t τ2(X0) . . .
In contrast, the standard approach in abstract interpretation computes the fixed point X ′∞ of
X = X0t τ(X), known as the Minimal-Fixed-Point (MFP) solution. It proceeds as follows:

X ′0 = X0 X ′1 = X ′0t τ(X ′0) X ′2 = X ′0t τ(X ′0t τ(X ′0)) . . .
The MOP solution is more precise than the MFP solution [66]. The reason is that, in general, τ

does not distribute over t and we have τ(X1)tτ(X2)v τ(X1tX2). For instance, if X0 = [0,0] and
τ : x61→ x′=x+2, we have X2 = [0,0]t [2,2]t⊥= [0,2] and X ′2 = [0,0]tτ([0,2]) = [0,3]. Since
abstract acceleration should yield a tight over-approximation of the MOP solution, we should gen-
erally have the relationship

⊔
k>0 τk(X0)v τ⊗(X0)v X ′∞, i.e., abstract acceleration should be more

precise than the standard abstract interpretation approach (MFP) even when assuming convergence
of the Kleene iteration without widening.

Abstract acceleration in non-flat systems. Generally, the invariants computed by abstract accel-
eration of a single self-loop τ are not inductive, which implies that τ⊗ is not idempotent, i.e.,
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τ⊗(τ⊗(X0)) 6= τ⊗(X0). While this is not a problem for flat systems, it has negative effects in the
presence of nested loops. For example, in the system (id ◦ τ∗)∗ we can apply abstract acceleration
to the innermost loop: (id ◦ τ⊗)∗ = (τ⊗)∗. If τ⊗ is not idempotent, then the outer loop might not
converge and thus widening is needed. Thus, the considerations w.r.t. MOP and MFP solutions
for τ∗ above apply to (τ⊗)∗ in the same manner. Since this problem arises in particular when the
initial set is not contained in the guard G (cf. [67, 47]), Leroux and Sutre [67] propose to accelerate
translations by the formula τ⊗(X) = τ(X↗D), i.e., without initially intersecting with G, which is
idempotent and hence convergence without widening can be expected more often. However, this
formula is clearly less precise and should not be used for accelerating non-nested loops.

Affine derivative closure algorithm. The initial source of inspiration for abstract acceleration was
the affine derivative closure algorithm of Ancourt et al. [68] which is based on computing an
abstract transformer, i.e., a relation between variables xxx and xxx′, independently of the initial state of
the system. The abstract transformer abstracts the effect of the loop by a polyhedral translation

true→ xxx′′′ = xxx+DR with DR = {ddd | ∃xxx,ξξξ ,xxx′ : R(xxx,ξξξ ,xxx′)∧ xxx′ = xxx+ddd}

where R is the concrete transition relation. The polyhedron DR is called the “derivative” of the
relation R. The effect of multiple loops with relations R1, . . . ,Rk is abstracted by considering
the convex union

⊔
i DRi . Then, the reflexive and transitive closure R∗ = {(xxx,xxx′) | ∃k> 0 : xxx′=

xxx+kddd∧DR(ddd)} is applied to a polyhedron X of initial states: R∗(X) = {xxx′ | ∃xxx : R∗(xxx,xxx′)∧X(xxx)}
The final result is obtained by computing one descending iteration (which eventually takes into
account the guards of the loops), in the same way as it is done in standard abstract interpretation
after widening. The affine derivative closure algorithm is implemented in the code optimization
tool PIPS12.

In single self-loops with translations or translations/resets, the method works similarly
to abstract acceleration, and is expected to yield the same results: although resets can-
not be expressed as polyhedral translations (for instance, if R(x,x′) = (x′ = 0), then DR =
{d |∃x,x′ : x′ = 0∧ x′ = x+d }=>), this information is recovered during the descending iteration.
However, in nested loop situations, these descending iterations may fail (like in Ex. 7). Hence,
even though the derivative closure method elegantly deals with multiple loops by taking the con-
vex union of the derivatives, it is also less precise than abstract acceleration for such programs.
However, the main advantage of the derivative closure method is that it is more general than ab-
stract acceleration, because it automatically approximates any kind of transformations. Moreover,
since it computes abstract transformers, it is modular and can be used in the context of interproce-
dural analyses.

In the context of applying Presburger-based acceleration to program parallelization, Beletska
et al. [69, 70] propose a similar computation scheme for multiple loops that accelerates first the
loop bodies and takes into account the guards afterwards, thus trading precision for efficiency.

Strategy iteration. Another approach to overcome the widening issue is to restrict the domain (e.g.,
using template polyhedra [71] or intervals [72]) and use fixed point iteration strategies that do not

12pips4u.org
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need widening at all. Strategy (policy) iteration methods [73, 74, 75] solve the fixed point equation
associated with the reachability analysis by iteratively approximating the least fixed point by fixed
points of simpler semantic equations that can be solved exactly using mathematical programming,
for example. Strategy iteration methods are able to “accelerate” globally the whole transition sys-
tem regardless of the graph structure or type of affine transformation, and they effectively compute
the least fixed point. However, this is only possible on the simpler domain of template polyhedra.
In contrast, abstract acceleration is only able to accelerate some cases of self-loops and cycles with
certain types of affine transformations, and it relies on widening in the general case. However, due
to the use of general convex polyhedra, it is able to “discover” complex invariant constraints.

Presburger-based acceleration. Most of the related work has been discussed in §2.2. It remains to
mention that it has been shown that the transitive closure of difference [15] and octagonal relations
[76] is also Presburger-definable. A performant algorithm for accelerating such relations is imple-
mented in the tool FLATA [77]. In the most recent work [78], the CEGAR method is extended with
an acceleration-based counter example generalization.

Ellipsoidal techniques. Alternative techniques for linear loops originate from the analysis of linear
filters frequently found in control systems. These techniques consider ellipsoidal domains [79, 80,
81] that are known to be well suited for analyzing systems that are Lyapunov-stable (eigenvalues
with modulus < 1.), and hence, they target a different class of linear transformations.

Recurrence equations. Kovacs [82] infers loop invariants by solving the recurrence equations rep-
resenting the loop body in closed form. The technique targets exact invariant generation for single
loops that admit polynomial equality invariants. While polynomials go beyond the scope of LRA
they cannot express all finite monoid transitions (counterexample: rotations). Hence, the class of
inferred properties and programs is incomparable to that considered by abstract acceleration. Re-
gardless of performance considerations, the technique could provide a significant enhancement of
abstract acceleration to handle a larger class of loops. However, it is not clear how to integrate the
technique into LRA.

Quantifier elimination. Acceleration can be viewed as a loop summarization method, in the sense
that it aims at finding a relation between the states X entering the loop and any future states X ′

encountered at the loop head (the intersection with the negated loop guard yields the exit states).
Symbolically computing such a transformer Rxxx,xxx′ = ∃k>0 : xxx′= τk(xxx) is essentially a quantifier
elimination problem. For example, Tiwari et al. [83, 84] propose to compute such transformers
for linear differential equations dxxx(t)/dt = Axxx(t) in the context of hybrid systems, which is a
problem similar to the acceleration of discrete linear loops. The transformers are computed using
off-the-shelf quantifier elimination tools over real arithmetic, like REDLOG. Although efficiency
drawbacks are reported, they are able to solve many tricky benchmarks. Real quantifier elimination
is also used by Colón et al. [85, 86] who proposed methods that solve for the coefficients of the
linear invariant directly using Farkas’ Lemma. Gulwani, Srivastava and Tiwari [87, 88] propose to
compute template-based invariants by translating the program into a big ∃∀ formula. Then rational
numbers are mapped to bounded-range integers and the formula is solved using bit-blasting or
other SMT-based techniques.
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9. Summary and Prospects

Abstract acceleration is complement to widening in linear relation analysis. Due to its mono-
tonicity property, it is possible to accelerate the innermost loops precisely while using widening
for the outer loops in nested loop situations. Thus, better invariants are computed for programs
where a lot of information is lost when using widening only. We have shown how (linear) abstract
accelerations are derived for linearly accelerable linear transitions, and we have given experimental
results using the tools ASPIC and REAVER.

Open problems and prospects. Abstract acceleration reduces more general linear transformations
to some base cases (translations, resets, a.s.o) via a change of basis. This basis change requires
the computation of the eigenvalues of the transformation matrix which corresponds to finding the
roots of matrix’s characteristic polynomial. This is a hard problem and, in general, only numerical
approximations can be computed (see, e.g., [89]). However, for our purpose, numerical approxi-

mations are not useful, because, for example, the matrices
(

1 1
0 1

)
and

(
1 1
0 1+ ε

)
are close to

each other, but the Jordan form of the first one is itself, whereas the second one is diagonalizable

for ε > 0 with the Jordan form
(

1 0
0 1+ ε

)
, and hence, we could accelerate the first but not the

second one. For these reasons, our tools do not yet perform a basis change and accelerate only
transitions that are accelerable in the given basis, which is often the case in practical programs.
Nonetheless, in order to fully exploit abstract acceleration, we could consider the use of computer
algebra systems like SAGE13 that allow us to manipulate rational and algebraic numbers in an exact
manner, hoping that the performance is sufficient for most practical cases.

Another direction for future research could be to detect the maximal linearly accelerable sub-
transformations within a general linear transformation or even in a general transition function.
Then, the transition function can be decomposed w.r.t. the accelerable dimensions which are
treated using abstract acceleration and the non-accelerable dimensions which can be handled with
widening or the derivative closure technique.

At last, it would be of great interest to generalize the abstract acceleration concept to not lin-
early accelerable (linear) transformations: for example, to compute a reasonably simple, but pre-
cise, convex, polyhedral over-approximation of the transitive closure of the self-loop x6 10→
x′ = 2x which has an exponential trajectory as a function of time. Computing precise approxima-
tions of such behavior is also of high importance in the analysis of hybrid systems, of which the
time-continuous behavior is often specified by linear dynamics ẋxx = Cxxx.

Regarding implemention, we plan to implement abstract acceleration inside the PAGAI14 tool,
which already implements path focusing (§5.3) in a more general framework than ASPIC [44]. This
implementation will enable the combination of acceleration, precise fixpoint iteration and linear
relation analysis for general C programs. Moreover, we plan to add front-ends for the Numerical
Transition System format [90] to our tools in order to favor further experimental comparisons.

13www.sagemath.org
14pagai.forge.imag.fr
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krajów s lowiańskich, Warszawa 1929, 1930, pp. 92–101.

[34] M. L. Minsky, Computation: Finite and Infinite Machines, Prentice Hall, 1967.

[35] W. Kelly, W. Pugh, E. Rosser, T. Shpeisman, Transitive closure of infinite graphs and its applications,
International Journal of Parallel Programming 24 (6) (1996) 579–598.

[36] A. Finkel, J. Leroux, How to compose Presburger-accelerations: Applications to broadcast protocols,
in: Foundations of Software Technology and Theoretical Computer Science, Vol. 2556 of LNCS,
Springer, 2002, pp. 145–156.

[37] J. Leroux, G. Sutre, Flat counter automata almost everywhere!, in: Automated Technology for Verifi-
cation and Analysis, Vol. 3707 of LNCS, Springer, 2005, pp. 489–503.

[38] J. Leroux, Algorithmique de la vérification des systèmes à compteurs – approximation et accélération
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Appendix A. Omitted Proofs

Appendix A.1. Jordan form characterization of linearly accelerable transformations
Lemma 6 (Jordan block of size 1). A transition τ(X) : xxx′ = Jxxx where J is a Jordan block of size
1 is linearly accelerable iff its associated eigenvalue is either zero or a complex root of unity, i.e.,
λ ∈ {0}∪{ei2π

q
p | p,q ∈ N}.

PROOF: A Jordan block of size m = 1 consists of its associated eigenvalue: J = (λ ). The linear
acceleration for τ is thus

τ
∗(X) =

⋃
k>0

{λ kx | x ∈ X}=
⋃

l

{alx+blk | k>0,x ∈ X}

This means that we have to look for values of λ such that there is a finite number of values for the
coefficients al,bl as solutions of the equation ∀k>0,x ∈ X : λ kx = alx+blk. We distiniguish cases
according to k:
• k=0: λ 0 = 1 for any λ , hence a0=1,b0=0.
• k>1: By writing λ k in polar form ρkeiθk we get the solutions{

λ =0, a0=0, b0=0 (i.e., 0keiθk = 0x+0k)
λ = ei2π

q
p , ak=ei2π

q
p k, bk=0, p,q ∈ N (i.e., 1kei2π

q
p kx = ei2π

q
p kx+0k).

For the second solution, the number of values for ak is finite because they are periodic:
ei2π

q
p = ei(2π

q
p+2πq j), j ∈ Z. Hence, there are p distinct values for ak with 06k6 p−1.

This yields:
λ =0: τ∗ = λX .X ∪{0}
λ =ei2π

q
p : τ∗ = λX .

⋃
06l6p−1{

(
ei2π

q
p lx
)
| x ∈ X} �

Lemma 7 (Jordan block of size 2). A transition τ(X) : xxx′ = Jxxx where J is a Jordan block of size
2 is linearly accelerable iff its associated eigenvalue is
– either zero (λ = 0) or
– a complex root of unity (λ ∈ {ei2π

q
p | p,q ∈N}) and if in this case the variable associated to the

second dimension of the block has only a finite number of values in X.

PROOF: A Jordan block of size m = 2 has the form J =

(
λ 1
0 λ

)
. The linear acceleration for τ

is

τ∗(X) = X ∪
⋃

k>1

{(
λ k kλ k−1

0 λ k

)(
x1
x2

)
|
(

x1
x2

)
∈ X

}
=

⋃
l

{(
al,1 al,2
al,3 al,4

)(
x1
x2

)
+ k
(

bl,1
bl,2

)
| k>0,

(
x1
x2

)
∈ X

}
The case k=0 is the identity for any eigenvalue λ , thus, we concentrate on k>1: We have to find
values of λ such that there is a finite number of values for the coefficients al,·,bl,· in the equation

∀k>1,xxx ∈ X :
{

λ kx1+kλ k−1x2 = al,1x1+al,2x2+bl,1k
λ kx2 = al,3x1+al,4x2+bl,2k

We distinguish cases by values of k:
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• k=1: The left-hand side of the first equation reduces to λx1+x2. Hence, we can match left
and right-hand sides for any values of λ : a0,1=a0,4=λ ,a0,2=1, all other coefficents are 0.
• k>2: In this case we cannot match kλ k−1x2 with al,2x2, but we can match it with bl,1k under

the assumption that x2 has a finite number of values in X , which gives us (besides λ =0) the
following solution (p,q ∈ N):

∀k>2,xxx ∈ X :


ei2π

q
p k︸ ︷︷ ︸

λ k

x1+k ei2π
q
p (k−1)︸ ︷︷ ︸

λ k−1

x2 = ei2π
q
p k︸ ︷︷ ︸

akx2,1

x1+ 0︸︷︷︸
akx2,2

·x2+ei2π
q
p (k−1)x2︸ ︷︷ ︸
bkx2,1

k

ei2π
q
p k︸ ︷︷ ︸

λ k

x2 = 0︸︷︷︸
akx2,3

·x1+ei2π
q
p k︸ ︷︷ ︸

akx2,4

x2+ 0︸︷︷︸
bkx2,2

·k

As in the proof for Lem. 6 there is a finite number of values for ei2π
q
p k because it is periodic.

This yields:

λ =0: τ∗ = λX .X ∪
{(

x2
0

)
,

(
0
0

)}

λ =ei2π
q
p : τ∗ =


λX .X∪⋃

16l6p,x2

{(
ei2π

q
p lx1+klei2π

q
p (l−1)x2

ei2π
q
p lx2

)
| xxx ∈ X ,k>0

} �

Lemma 8 (Jordan block of size > 2). A transition τ(X) : xxx′ = Jxxx where J is a Jordan block of
size > 2 is linearly accelerable iff its associated eigenvalue is zero.

PROOF: Jordan blocks of size m > 2 have the form: J =


λ 1 0 . . . 0
0 λ 1 . . . 0

. . . . . .
. . . . . . . . .

0 . . . 0 λ 1
0 . . . 0 0 λ

.

Their powers have the form:

Jk =


λ k Ck

1λ k−1 Ck
2λ k−2 . . . Ck

m−1λ k−m+1

0 λ k Ck
1λ k−1 . . . Ck

m−2λ k−m+2

. . . . . .
. . . . . . . . .

0 . . . 0 λ k Ck
1λ k−1

0 . . . 0 0 λ k


where Ck

j are the binomial coefficients.
For any value of λ 6= 0 we have polynomials in k of order m, hence we cannot match the

coefficients with a linear form in k.
Thus, we have only λ =0: τ∗ = λX .

⋃
06k6m{Jkxxx | xxx ∈ X} �

Appendix A.2. Jordan form characterization of finite monoid transformations
Theorem 9 (Jordan form of finite monoid affine transformations). The Jordan form of the ho-

mogeneous transformation matrix
(

C ddd
0 1

)
, where {Ck | k>0} is finite, consists of
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– Jordan blocks of size 1 with eigenvalues which are complex roots of unity,
– at most one block of size 2 with eigenvalue 1 where the variable associated with the second

dimension is a constant equal to 1, and
– blocks with eigenvalue 0 of any size.

PROOF: We will show that
(1) extending C to the homogeneous form adds the eigenvalue 1 to the spectrum. Hence, only

the Jordan blocks in the Jordan form of C associated with an eigenvalue 1 are affected by
homogenization, and

(2) the Jordan form of the homogenized matrix has at most one Jordan block of size 2 associated
to an eigenvalue 1.
(1) follows from the fact that the characteristic polynomial of the homogeneous form is the

characteristic polynomial of C multiplied by 1−λ :

det
(

C−λ I ddd
0 1−λ

)
= (1−λ ) ·det(C−λ I)

(because the left-hand side matrix is triangular). The variable corresponding to the dimension
added during homogenization is known to equal the constant 1.

(2) We show that the Jordan form of C′ has at most one Jordan block of size 2 associated with
an eigenvalue 1: Assume that the Jordan form of the (n−1)-dimensional matrix C has m−1 blocks
of size 1 associated with eigenvalue 1. Then, the homogeneous form C′ has
• exactly 1 Jordan block of size 2 (with eigenvalue 1) and m−2 blocks of size 1 (with eigenvalue

1) if ker(C′− I) has dimension m−1, i.e., rank(C′−I) = n−m+1;
• no Jordan block of size 2 (with eigenvalue 1) and m blocks of size 1 (with eigenvalue 1) if

ker(C′− I) has dimension m, i.e., rank(C′−I) = n−m.
Since the eigenvalues 1 of C have all geometric multiplicity 1, C−I has n−m linearly indepen-

dent column vectors. Hence, C′−I has n−m linearly independent column vectors iff the additional

column vector
(

ddd
0

)
is not linearly independent from the others; otherwise it has n−m+1 linearly

independent column vectors. Hence, we have n−m6rank(C′−I)6n−m+1. �

Example 11 (Jordan form characterization). Consider C =

 0 1 0
0 0 1
1 0 0

 and ddd = (0,1,2)T .

C has the eigenvalues {1,−1
2±

1
2 i
√

3}. Hence, the homogeneous form C′ has 4 dimensions (n=4)
and an eigenvalue 1 with algebraic multiplicity m=2.

The matrix C′−I =


−1 1 0 0
0 −1 1 1
1 0 −1 2
0 0 0 0

 has n−m+1=3 linearly independent column vec-

tors, hence the Jordan form has one block with size 2 associated with the eigenvalue 1.
Assume that ddd=(−1,0,1)T , then C′−I would have only n−m=2 linearly independent column

vectors, hence the Jordan form would have 2 blocks of size 1 associated with the eigenvalue 1.
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