
HAL Id: hal-00876594
https://hal.science/hal-00876594v1

Submitted on 25 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimal Arc Consistency Algorithm for a Particular
Case of Sequence Constraint

Mohamed Siala, Emmanuel Hébrard, Marie-José Huguet

To cite this version:
Mohamed Siala, Emmanuel Hébrard, Marie-José Huguet. An Optimal Arc Consistency Algorithm for
a Particular Case of Sequence Constraint. Constraints, 2014, 19 (1), pp.30-56. �10.1007/s10601-013-
9150-6�. �hal-00876594�

https://hal.science/hal-00876594v1
https://hal.archives-ouvertes.fr

An Optimal Arc Consistency Algorithm for a Particular

Case of Sequence Constraint

Mohamed Siala1,2, Emmanuel Hebrard1,3, and Marie-José Huguet1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France

{siala, hebrard, huguet}@laas.fr

Abstract. The ATMOSTSEQCARD constraint is the conjunction of a cardinality

constraint on a sequence of n variables and of n− q + 1 constraints ATMOST u

on each subsequence of size q.

This constraint is useful in car-sequencing and crew-rostering problems. In [21],

two algorithms designed for the AMONGSEQ constraint were adapted to this con-

straint with an O(2qn) and O(n3) worst case time complexity, respectively. In

[10], another algorithm similarly adaptable to filter the ATMOSTSEQCARD con-

straint with a time complexity of O(n2) was proposed.

In this paper, we introduce an algorithm for achieving arc consistency on the

ATMOSTSEQCARD constraint with an O(n) (hence optimal) worst case time

complexity. Next, we show that this algorithm can be easily modified to achieve

arc consistency on some extensions of this constraint. In particular, the conjunc-

tion of a set of m ATMOSTSEQCARD constraints sharing the same scope can be

filtered in O(nm). We then empirically study the efficiency of our propagator on

instances of the car-sequencing and crew-rostering problems.

1 Introduction

In many applications, there are restrictions on the successions of decisions that can be

taken. Some sequences are allowed or preferred while other are forbidden. For instance,

in crew-rostering applications, it is often not recommended to have an employee work

on an evening or a night shift, and then again on the morning shift of the next day.

Several constraints have been proposed to deal with this type of problems. The

REGULAR [14] and COST-REGULAR constraints [6] make it possible to restrict se-

quences in an arbitrary way. However, there might often exist a more efficient algorithm

for the particular case at hand. For instance, filtering algorithms have been proposed

for the AMONGSEQ constraint in [5, 10, 21, 22]. This constraint ensures that all subse-

quences of size q have at least l but no more than u values in a set v. This constraint is

often applied to car-sequencing and crew-rostering problems. However, the constraints

in these two benchmarks do not correspond exactly to this definition. Indeed, there are

often no lower bound restriction on the number of values (l = 0). Instead, the number

of values in the set v is often constrained by an overall demand.

In this paper, we consider the constraint ATMOSTSEQCARD. This constraint, posted

on n variables x1, . . . , xn, ensures that, in every subsequence of length q, no more than

u are set to a value in a set v, and that over all the sequence, exactly d are set to values

in v. In car-sequencing, this constraint allows to state that, given an option, no subse-

quence of length q can involve more than u classes of cars requiring this option, and that

exactly d cars require it overall. In crew-rostering problems, one can state, for instance,

that a worker must have at least a 16h break between two 8h shifts, and at least two days

off for every period of seven days, while enforcing a total number of worked hours over

the scheduling period.

The rest of the paper is organized as follows: In Section 2 we give a brief back-

ground on Constraint Programming and sequence constraints. Then in Section 3, we

give a linear time (hence optimal) algorithm for filtering the ATMOSTSEQCARD con-

straint. Next, in Section 4, we show how to adapt the same pruning on more general

constraints. Last, in Section 5, we evaluate our new propagators on car-sequencing and

crew-rostering benchmarks, before concluding in Section 6.

2 CSP and SEQUENCE Constraints

A constraint satisfaction problem (CSP) is a triplet P = (X ,D, C), where X is a set

of variables, D is a set of domains, and C is a set of constraints that specify allowed

combinations of values for subsets of variables. We denote by min(x) and max(x)
the minimum and maximum values in D(x), respectively. An assignment of a set of

variables X is a tuple w, where w[i] denotes the value assigned to the variable xi. A

constraint C ∈ C on a set of variables X defines a relation on the domains of variables

in X . An assignment w is consistent for a constraint C iff it belongs to the correspond-

ing relation. A constraint C is arc consistent (AC) iff, for every value j of every variable

xi in its scope, there exists a consistent assignment w such that w[i] = j, i.e., a sup-

port. There are several variants of the SEQUENCE constraints, we first review them and

then motivate the need for the variant proposed in this paper: the ATMOSTSEQCARD

constraint. In the following definitions, v is a set of integers and l, u, q are integers. Se-

quence constraints are conjunctions of AMONG constraints, constraining the number of

occurrences of a set of values in a set of variables.

Definition 1. AMONG(l, u, [x1, . . . , xq], v)⇔ l ≤ |{i | xi ∈ v}| ≤ u

Chains of AMONG Constraints: The AMONGSEQ constraint, first introduced in [2],

is a chain of AMONG constraints of width q slid along a vector of n variables.

Definition 2. AMONGSEQ(l, u, q, [x1, . . . , xn], v)⇔
∧n−q

i=0 AMONG(l, u, [xi+1, . . . , xi+q], v)

The first (incomplete) algorithm for filtering this constraint was proposed in 2001 [1].

Then, in [21, 22], two complete algorithms for filtering the AMONGSEQ constraint were

introduced. First, a reformulation using the REGULAR constraint using 2q−1 states and

hence achieving AC in O(2qn) time. Second, an algorithm achieving AC with a worst

case time complexity of O(n3). Moreover, this last algorithm is able to handle arbi-

trary sets of AMONG constraints on consecutive variables (denoted GEN-SEQUENCE),

however in O(n4). Last, two flow-based algorithms were introduced in [10]. The first

achieves AC on AMONGSEQ in O(n3/2 logn log u), while the second achieves AC on

GEN-SEQUENCE in O(n3) in the worst case. These two algorithms have an amortized

complexity down a branch of the search tree of O(n2) and O(n3), respectively.

Chain of ATMOST Constraints: Although useful in both applications, the AMONGSEQ

constraint does not model exactly the type of sequences useful in car-sequencing and

crew-rostering applications.

First, there is often no lower bound for the cardinality of the subsequences, i.e.,

l = 0. Therefore AMONGSEQ is unnecessarily general in that respect. Moreover, the

capacity constraint on subsequences is often paired with a cardinality requirement.

For instance, in car-sequencing, classes of car requiring a given option cannot be

clustered together, because a working station can only handle a fraction of the cars

passing on the line (at most u times in any sequence of length q). The total number of

occurrences of these classes is a requirement, and translates as an overall cardinality

constraint rather than lower bounds on each subsequence.

In crew-rostering, allowed shift patterns can be complex, hence the REGULAR con-

straint is often used to model them. However, working in at most u shifts out of q is a

useful particular case. If days are divided into three 8h shifts, ATMOSTSEQ with u = 1
and q = 3 makes sure that no employee work more than one shift per day and that there

must be a 24h break when changing shifts. Moreover, similarly to car-sequencing, the

lower bound on the number of worked shifts is global (monthly, for instance).

In other words, we often have a chain of ATMOST constraints, defined as follows:

Definition 3. ATMOST(u, [x1, . . . , xq], v)⇔ AMONG(0, u, [x1, . . . , xq], v)

Definition 4. ATMOSTSEQ(u, q, [x1, . . . , xn], v)⇔
∧n−q

i=0 ATMOST(u, [xi+1, . . . , xi+q], v)

However, it is easy to maintain AC on this constraint. Indeed, the ATMOST con-

straint is monotone, i.e., the set of supports for value 0 is a super-set of the set of sup-

ports for value 1. Hence an ATMOSTSEQ constraint is AC iff each ATMOST is AC [4].

A good tradeoff between filtering power and complexity can be achieved by rea-

soning about the total number of occurrences of values from the set v together with the

chain of ATMOST constraints.1 We therefore introduce the ATMOSTSEQCARD con-

straint, defined as the conjunction of an ATMOSTSEQ with a cardinality constraint on

the total number of occurrences of values in v:

Definition 5. ATMOSTSEQCARD(u, q, d, [x1, . . . , xn], v)⇔

ATMOSTSEQ(u, q, [x1, . . . , xn], v) ∧ |{i | xi ∈ v}| = d

The two AC algorithms introduced in [22] were adapted in [21] to achieve AC

on the ATMOSTSEQCARD constraint. First, in the same way that AMONGSEQ can

be encoded with a REGULAR constraint, ATMOSTSEQCARD can be encoded with a

COST-REGULAR constraint, where the cost stands for the overall demand, and it is

increased on transitions labeled with the value 1. This procedure has the same worst

case time complexity, i.e., O(2qn). Second, the more general version of the polyno-

mial algorithm (GEN-SEQUENCE) is used, to filter the following decomposition of the

ATMOSTSEQCARD constraint into a conjunction of AMONG:

ATMOSTSEQCARD(u, q, d, [x1, . . . , xn], v)⇔
n−q∧

i=0

AMONG(0, u, [xi+1, . . . , xi+q], v) ∧ AMONG(d, d, [x1, . . . , xn], v)

1 This modeling choice is used in [21] on car-sequencing.

Since the number of AMONG constraints is linear, the algorithm of van Hoeve et al [21].

runs in O(n3) on this decomposition. Similarly, the algorithm of Maher et al. [10] runs

in O(n2) on ATMOSTSEQCARD, which is the best known complexity for this problem.

Global Sequencing Constraint: Finally, in the particular case of car-sequencing, not

only do we have an overall cardinality for the values in v, but each value corresponds

to a class of car and has a required number of occurrences. Therefore, Puget and Régin

[17] proposed to consider the conjunction of an AMONGSEQ and a GCC. Let cl and cu
be two mapping on integers such that cl(j) ≤ cu(j) ∀j, and let D =

⋃n
i=1D(xi). The

Global Cardinality Constraint (GCC) is defined as follows:

Definition 6. GCC(cl, cu, [x1, . . . , xn])⇔
∧

j∈D cl(j) ≤ |{i | xi = j}| ≤ cu(j)

Then, the Global Sequencing Constraint is defined as follows:

Definition 7. GSC(l, u, q, cl, cu, [x1, . . . , xn], v)⇔

AMONGSEQ(l, u, q, [x1, .., xn], v) ∧ GCC(cl, cu, [x1, .., xn])

The mappings cl and cu are defined so that for a value v, both cl(v) and cu(v) map

to the number of occurrences of the corresponding class of car. A reformulation of this

constraint into a set of GCC was introduced in [17]. However, achieving AC on this

constraint is NP-hard [3].

3 The ATMOSTSEQCARD Constraint

In this section, we introduce a linear filtering algorithm for the ATMOSTSEQCARD

constraint. We first give a simple greedy algorithm for finding a support with an O(nq)
time complexity. Then, we show that one can use two calls to this procedure to enforce

AC. Last, we show that its worst case time complexity can be reduced to O(n).

It was observed in [21] and [10] that we can consider Boolean variables and v =
{1}, since the following decomposition of AMONG (or ATMOST) does not hinder prop-

agation as it is Berge-acyclic [5]:

AMONG(l, u, [x1, . . . , xq], v)⇔

q∧

i=1

(xi ∈ v ↔ x′i = 1) ∧ l ≤

q∑

i=1

x′i ≤ u

Therefore, throughout the paper, we shall consider the following restriction of the

ATMOSTSEQCARD constraint, defined on Boolean variables, and with v = {1}:

Definition 8.

ATMOSTSEQCARD(u, q, d, [x1, . . . , xn])⇔

n−q∧

i=0

(

q∑

l=1

xi+l ≤ u) ∧ (

n∑

i=1

xi = d)

3.1 Finding a Support

Let w be an n-tuple in {0, 1}n, w[i] denotes the ith element of w, |w| =
∑n

i=1 w[i] its

cardinality, andw[i : j] the (|j−i|+1)-tuple equal to w on the subsequence [xi, . . . , xj].
We first show that one can find a support by greedily assigning variables in a lex-

icographical order to the value 1 whenever possible, that is, while taking care of not

violating the ATMOSTSEQ constraint. More precisely, doing so leads to an assignment

of maximal cardinality, which may easily be transformed into an assignment of cardi-

nality d.

The greedy procedure leftmost (Algorithm 1) computes an assignment w that

maximizes the cardinality of the sequence (x1, . . . , xn) subject to an ATMOSTSEQ

constraint (with parameters u and q),

Algorithm 1: leftmost

1 foreach i ∈ [1, . . . , n] do w[i]← min(xi);
;

foreach i ∈ [1, . . . , q] do w[n+ i]← 0;

;

c(1)← w[1];
foreach j ∈ [2, . . . , q] do c(j)← c(j − 1) + w[j];
;

foreach i ∈ [1, . . . , n] do

2 if |D(xi)| > 1 & maxj∈[1,q](c(j)) < u then

w[i]← 1;

3 foreach j ∈ [1, . . . , q] do c(j)← c(j) + 1;

;

4 foreach j ∈ [2, . . . , q] do c(j − 1)← c(j);
;

5 c(q)← c(q − 1) + w[i+ q]− w[i];

return w;

Algorithm leftmost works as follows.

First, the tuple w is initialized to the minimum value in the domain of each variable

in Line 1. Then, at each step i ∈ [1, . . . , n] of the main loop, the cardinality of the jth

subsequence involving the variable xi with respect to the current value of w is stored in

c(j). In other words, at step i, we have c(j) =
∑min(n,i+j−1)

l=max(1,i−q+j) w[l].

When exploring variable xi, such that D(xi) = {0, 1} we set w[i] to 1 iff this

would not violate the capacity constraints, that is, if c(j) < u for all j ∈ [1, . . . , q]
(Condition Line 2). In that case, the cardinality of every subsequence involving xi is

incremented (Line 3). Finally, when moving to the next variable, the values of c(j) are

shifted (Line 4), and the value of c(q) is obtained by adding the value of w[i + q] and

subtracting w[i] to its previous value (Line 5).

D(xi) . 0 . 1 . . . 0 . 0 1 . . 1 1
−→w [i] 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1

c(1) 0 1 1 2 1 2 2 1 0 0 2 2 1 2 1 2 2 1 1 2 2 2

c(2) 0 1 2 1 1 2 1 0 0 2 2 1 2 1 1 2 1 0 1 2 2 1

c(3) 0 2 1 1 1 1 0 0 1 2 1 2 1 1 1 1 0 0 1 2 1 1

c(4) 1 1 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 1 1 1 1 1

max(c) 1 2 2 2 1 2 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 2

Fig. 1: Example of the execution of leftmost for ATMOSTSEQ(2, 4, [x1, . . . , xn]) with max-

imal cardinality.

From now on, we shall use the following notations:

– −→w shall denote the assignment found by leftmost on the sequence x1, . . . , xn.

– ←−w shall denote the assignment found by the same algorithm, however on the se-

quence xn, . . . , x1, that is, from right to left. Notice that, in order to simplify the

notations,←−w [i] shall denote the value assigned by leftmost to the variable xi,

and not xn−i+1 as it would actually be if we gave the reversed sequence as input.

Example 1. We illustrate the behavior of leftmoston a simple example (see Fig-

ure 1). Let [x1, . . . , x22] be a sequence of variables with a capacity constraint of 2/4,

that is, constrained by: ATMOSTSEQ(2, 4, [x1, . . . , x22]). Dots in the first row stand for

unassigned variables. The second row shows the computed assignment−→w , and the next

rows show the state of the variables c(1), c(2), c(3) and c(4) at the start of each iteration

of the main loop. The last row stands for the maximum value of c(j). The bold values

indicate that leftmost assigns the value 1.

Lemma 1. leftmostmaximizes
∑n

i=1 xi subject to ATMOSTSEQ(u, q, [x1, . . . , xn]).

Proof. Let −→w be the assignment found by leftmost, and suppose that there exists

another assignment w (consistent for ATMOSTSEQ(u, q, [x1, . . . , xn])) such that |w| >
|−→w |. Let i be the smallest index such that −→w [i] 6= w[i]. By definition of −→w , we know

that −→w [i] = 1 hence w[i] = 0. Now, let j be the smallest index such that −→w [j] < w[j]
(it must exists since |w| > |−→w |).

We first argue that the assignment w′ equal to w except that w′[i] = 1 and w′[j] = 0
(as in −→w) is consistent for ATMOSTSEQ. Clearly, its cardinality is not affected by this

swap, hence |w′| = |w|. Now, we consider all the sum constraints whose scopes are

changed by this swap, that is, the sums
∑a+q−1

l=a w′[l] on intervals [a, a + q − 1] such

that a ≤ i < a+ q or a ≤ j < a+ q. There are three cases:

1. Suppose first that a ≤ i < j < a+ q: in this case, the value of the sum is the same

in w and w′, therefore it is lower than or equal to u.

2. Suppose now that i < a ≤ j < a+q: in this case, the value of the sum is decreased

by 1 from w to w′, therefore it is lower than or equal to u.

3. Last, suppose that a ≤ i < a + q ≤ j: in this case, for any l ∈ [a, a + q − 1], we

have w′[l] ≤ −→w [l] since j is the smallest integer such that −→w [j] < w[j], hence the

sum is lower than or equal to u.

Therefore, given a sequence w of maximum cardinality that differs from −→w at rank

i, we can build a sequence of equal cardinality that does not differ from −→w until rank

i + 1. By iteratively applying this argument, we can obtain a sequence identical to −→w ,

albeit with cardinality |w|, therefore contradicting our hypothesis that |w| > |−→w |. ⊓⊔

Corollary 1. Let−→w be the assignment returned by leftmost. There exists a solution

of ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) iff the three following propositions hold:

(1) ATMOSTSEQ(u, q, [x1, . . . , xn]) is satisfiable (2)
∑n

i=1 min(xi) ≤ d
(3) |−→w | ≥ d.

Proof. It is easy to see that these conditions are all necessary: (1) and (2) come from

the definition, and (3) is a direct application of Lemma 1. Now, we prove that they

are sufficient by showing that if these properties hold, then a solution exists. Since

ATMOSTSEQ(u, q, [x1, . . . , xn]) is satisfiable,−→w does not violate the chain of ATMOST

constraints as the value 1 is assigned to xi only if all subsequences involving xi have

cardinality u − 1 or less. Moreover, since
∑n

i=1 min(xi) ≤ d ≤ |−→w |, then there are

at least |−→w | − d variables such that min(xi) = 0 and −→w [i] = 1. Assigning them to 0
in −→w does not violate the ATMOSTSEQ constraint. Hence we can build a support for

ATMOSTSEQCARD. ⊓⊔

Lemma 1 and Corollary 1 give us a polynomial support-seeking procedure for

ATMOSTSEQCARD. Indeed, the worst case time complexity of Algorithm 1 is in O(nq).
There are n steps and on each step, Lines 2, 3 and 4 involve O(q) operations. Therefore,

for each variable xi, a support for xi = 0 or xi = 1 can be found in O(nq).
Consequently, we have a naive AC procedure running in O(n2q) time.

3.2 Filtering the Domains

In this section, we show that we can filter out all the values inconsistent with respect to

the ATMOSTSEQCARD constraint within the same time complexity as Algorithm 1.

First, we show that there can be inconsistent values only in the case where the

cardinality |−→w | of the assignment returned by leftmost is exactly d: in any other

case, the constraint is either violated (when |−→w | < d) or AC, (when |−→w | > d). The

following lemma formalizes this:

Lemma 2. The constraint ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) is AC if the three

following propositions hold:

(1) ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC

(2)
∑n

i=1 min(xi) ≤ d
(3) |−→w | > d

Proof. By Corollary 1 we know that ATMOSTSEQCARD(u, q, d + 1, [x1, . . . , xn]) is

satisfiable. Let w be a satisfying assignment, and consider without loss of generality a

variable xi such that |D(xi)| > 1. Assume first that w[i] = 1. The solution w′ equal

to w except that w′[i] = 0 satisfies ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]). Indeed,

|w′| = |w| − 1 = d and since ATMOSTSEQ(u, q, [x1, . . . , xn]) was satisfied by w it

must be satisfied by w′. Hence, for every variable xi such that |D(xi)| > 1, there exists

a support for xi = 0.

Suppose that w[i] = 0, and let a < i (resp. b > i) be the largest (resp. smallest)

index such that w[a] = 1 and D(xa) = {0, 1} (resp. w[b] = 1 and D(xb) = {0, 1}).
Let w′ be the assignment such that w′[i] = 1, w′[a] = 0, w′[b] = 0, and w = w′ other-

wise. We have |w′| = d, and we show that it satisfies ATMOSTSEQ(u, q, [x1, . . . , xn]).

Consider a subsequence xj , . . . , xj+q−1. If j + q ≤ i or j > i then
∑j+q−1

l=j w′[l] ≤
∑j+q−1

l=j w[l] ≤ u, so only indices j s.t. j ≤ i < j + q matter. There are two cases:

1. Either a or b or both are in the subsequence (j ≤ a < j + q or j ≤ b < j + q). In

that case
∑j+q−1

l=j w′[l] ≤
∑j+q−1

l=j w[l].
2. Neither a nor b are in the subsequence (a < j and j + q ≤ b). In that case, since

D(xi) = {0, 1} and since ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC, we know that∑j+q−1
l=j min(xl) < u. Moreover, since a < j and j + q ≤ b, there is no variable

xl in that subsequence such that w[l] = 1 and 0 ∈ D(xl). Therefore, we have∑j+q−1
l=j w[l] < u, hence

∑j+q−1
l=j w′[l] ≤ u.

In both cases w′ satisfies all capacity constraints. Hence it is support for the value 1. ⊓⊔
Remember that achieving AC on ATMOSTSEQ is trivial since AMONG is monotone.

Therefore we focus of the case where ATMOSTSEQ is AC, and |−→w | = d. In particu-

lar, Lemmas 3, 4, 6 and 7 only apply in that case. The equality |−→w | = d is therefore

implicitly assumed in all of them.

Lemma 3. If |−→w [1 : i− 1]|+ |←−w [i+ 1 : n]| < d then xi = 0 is not AC.

Proof. Suppose that we have |−→w [1 : i − 1]|+ |←−w [i+ 1 : n]| < d and suppose that there

exists a consistent assignment w such that w[i] = 0 and |w| = d.

By Lemma 1 on the sequencex1, . . . , xi−1 we know that
∑i−1

l=1 w[l] ≤ |
−→w [1 : i− 1]|.

By Lemma 1 on the sequencexn, . . . , xi+1 we know that
∑n

l=i+1 w[l] ≤ |
←−w [i+ 1 : n]|.

Therefore, since w[i] = 0, we have |w| =
∑n

l=1 w[l] < d, thus contradicting the

hypothesis that |w| = d. Hence, there is no support for xi = 0. ⊓⊔

Lemma 4. If |−→w [1 : i]|+ |←−w [i : n]| ≤ d then xi = 1 is not AC.

Proof. Suppose that we have |−→w [1 : i]| + |←−w [i : n]| ≤ d and suppose that there exists

a consistent assignment w′ such that w′[i] = 1 and |w′| = d.

By Lemma 1 on the sequence x1, . . . , xi we know that
∑i

l=1 w
′[l] ≤ |−→w [1 : i]|.

By Lemma 1 on the sequence xn, . . . , xi we know that
∑n

l=i w
′[l] ≤ |←−w [i : n]|.

Therefore, since w′[i] = 1, we have |w′| =
∑i

l=1 w
′[l] +

∑n
l=iw

′[l]− 1 < d, thus

contradicting the hypothesis that |w′| = d. Hence there is no support for xi = 1. ⊓⊔

Lemmas 3 and 4 entail a pruning rule. In a first pass, from left to right, one can

use an algorithm similar to leftmost to compute and store the values of |−→w [1 : i]|
for all i ∈ [1, . . . , n]. In a second pass, the values of |←−w [i : n]| for all i ∈ [1, . . . , n]
are similarly computed by simply running the same procedure on the same sequence

of variables, however reversed, i.e., from right to left. Using these values, one can then

apply Lemma 3 and Lemma 4 to filter out the value 0 and 1, respectively. We detail this

procedure in the next section.

We first show that these two rules are complete, that is, if ATMOSTSEQ is AC, and

the overall cardinality constraint is AC then an assignment xi = 0 (resp. xi = 1) is

inconsistent iff Lemma 3 (resp. Lemma 4) applies. The following Lemma shows that

the greedy rule maximizes the density of 1s on any subsequence starting on x1, and

therefore minimizes it on any subsequence finishing on xn. Let leftmost(k) denote

the algorithm corresponding to applying leftmost, however stopping whenever the

cardinality of the assignment reaches a given value k.

Lemma 5. Let w be a satisfying assignment of ATMOSTSEQ(u, q, [x1, . . . , xn]). If

k ≤ |w| then the assignment −→w k computed by leftmost(k) is such that, for any

1 ≤ i ≤ n:
∑n

l=i
−→w k[l] ≤

∑n
l=i w[l].

Proof. Let m be the index at which leftmost(k) stops. We distinguish two cases.

If i > m, for any value l in [m + 1, . . . , n], −→w k[l] ≤ w[l] (since −→w k[l] = min(xl)),
hence

∑n
l=i
−→w k[l] ≤

∑n
l=i w[l]. When i ≤ m, clearly for i = 1,

∑n
l=i
−→w k[l] ≤∑n

l=iw[l] since |−→w k| ≤ |w|. Now consider the case of i 6= 1. Since |−→w k| ≤ |w|, then∑n
l=i
−→w k[l] ≤ |w| −

∑i−1
l=1
−→w k[l]. Thus,

∑n
l=i
−→w k[l] ≤

∑n
l=iw[l] + (

∑i−1
l=1 w[l] −∑i−1

l=1
−→w k[l]). Moreover,by applying Lemma 1, we show that

∑i−1
l=1
−→w k[l] is maximum,

hence larger than or equal to
∑i−1

l=1 w[l]. Therefore,
∑n

l=i
−→w k[l] ≤

∑n
l=iw[l]. ⊓⊔

Lemma 6. If ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC, and |−→w [1 : i− 1]|+|←−w [i+ 1 : n]| ≥
d then xi = 0 has a support.

= ≥

−→w
1

−→w [1 : i− 1] 0 ←−wd−L[i : n]

xixj xj+q−1

L d− L

a support for xi = 0.
−→w [1 : i− 1]

0 ←−wd−L[i : n]

Fig. 2: Illustration of Lemma 6’s proof. Horizontal arrows represent assignments.

Proof. Let −→w be the assignment found by leftmost. We consider, without loss of

generality, a variable xi such thatD(xi) = {0, 1} and |−→w [1 : i− 1]|+ |←−w [i+ 1 : n]| ≥
d, and show that one can build a support for xi = 0. If −→w [i] = 0 or ←−w [i] = 0 then

there exists a support for xi = 0, hence we only need to consider the case where
−→w [i] =←−w [i] = 1.

Let L = |−→w [1 : i− 1]| and←−w d−L be the result of leftmost(d− L) on the sub-

sequence xn, . . . , xi. We will show that w, defined as the concatenation of −→w [1 : i− 1]
and←−w d−L[i : n] is a support for xi = 0.

First, we show thatw[i] = 0, that is←−w d−L[i] = 0. By hypothesis, since |−→w [1 : i− 1]|+
|←−w [i+ 1 : n]| ≥ d, we have |←−w [i+ 1 : n]| ≥ d − L. Now, consider the sequence

xi, . . . , xn, and let w′ be the assignment such that w′[i] = 0, and w′ = ←−w [i+ 1 : n]
otherwise. Since |w′| = |←−w [i+ 1 : n]| ≥ d − L, by Lemma 5, we know that w′

has a higher cardinality than ←−w d−L on any subsequence starting in i, hence w[i] =
←−w d−L[i] = w′[i] = 0.

Now, we show that w does not violate the ATMOSTSEQ constraint. Obviously, since

it is the concatenation of two consistent assignments, it can violate the constraint only

on the junction, i.e., on a subsequence xj , . . . , xj+q−1 such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less or equal to u by comparing

with −→w , as illustrated in Figure 2. We have
∑j+q−1

l=j
−→w [l] ≤ u, and

∑i−1
l=j
−→w [l] =

∑i−1
l=j w[l]. Moreover, by Lemma 5, since |−→w [i : n]| = |←−w d−L| = d − L we have

∑j+q−1
l=i

←−w d−L[l] ≤
∑j+q−1

l=i
−→w [l] hence

∑j+q−1
l=i w[l] ≤

∑j+q−1
l=i

−→w [l]. Therefore,

we can conclude that
∑j+q−1

l=j w[l] ≤ u. ⊓⊔

Lemma 7. If ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC, |−→w [1 : i]| + |←−w [i : n]| > d then

xi = 1 has a support.

=

=

≥

−→w
1 0 0. . . 0

−→wL−1
0 0 0. . . 1 ←−wd−L

0 0. . . 0

←−wd−L+1
0 0 0. . . 1

xixa

xb

L− 1 d− L + 1

a support for xi = 1.
−→wL−1

1 ←−wd−L

Fig. 3: Illustration of Lemma 7’s proof. Horizontal arrows represent assignments.

Proof. Let−→w and←−w be the assignments found byleftmost, on respectively x1, . . . , xn

and xn, . . . , x1. We consider, without loss of generality, a variable xi such thatD(xi) =
{0, 1} and |−→w [1 : i]|+ |←−w [i : n]| > d, and show that one can build a support for xi = 1.

If −→w [i] = 1 or←−w [i] = 1 then there exists a support for xi = 1, hence we only need to

consider the case where−→w [i] =←−w [i] = 0.

Let L = |−→w [1 : i]| = |−→w [1 : i− 1]| (this equality holds since −→w [i] = 0). Let
−→wL−1 be the assignment obtained by using leftmost(L − 1) on the subsequence

x1, . . . , xi−1, and let←−w d−L be the assignment returned by leftmost(d− L) on the

subsequence xn, . . . , xi+1.

We show that w such that w[i] = 1, equal to −→wL−1 on x1, . . . , xi−1 and to←−w d−L

on xi+1, . . . , xn, is a support.

Clearly |w| = d, therefore we only have to make sure that all capacity constraints

are satisfied. Moreover, since it is the concatenation of two consistent assignments, it

can violate the constraint only on the junction, i.e., on a subsequence xj , . . . , xj+q−1

such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less or equal to u by comparing

with −→w and ←−w d−L (see Figure 3). First, note that on the subsequence x1, . . . , xi−1,
−→wL−1 = −→w , except for the largest index a such that −→w [a] = 1 and w[a] = 0. Simi-

larly on xn, . . . , xi+1, we have←−w d−L = ←−w d−L+1, except for the smallest b such that
←−w d−L+1[b] = 1. There are two cases:

Suppose first that j > a. In that case,
∑j+q−1

l=j w[l] =
∑j+q−1

l=i
←−w d−L+1[l] if j +

q − 1 ≥ b, and otherwise it is equal to 1. It is therefore always less than or equal to u
since i ≥ j (and we assume u ≥ 1).

Now suppose that j ≤ a. In that case, consider first the subsequence xj , . . . , xi.

On this interval, the cardinality of w is the same as that of −→w , i.e.,
∑i

l=j w[l] =
∑i−1

l=j
−→wL−1[l] + 1 =

∑i
l=j
−→w [l]. On the subsequence xi+1, . . . , xj+q−1, note that

|w[i + 1 : n]| = |−→w [i+ 1 : n]| = d− L, hence by Lemma 5, we have
∑j+q−1

l=i+1 w[l] =∑j+q−1
l=i+1

←−w d−L[l] ≤
∑j+q−1

l=i+1
−→w [l]. Therefore

∑j+q−1
l=j w[l] ≤

∑j+q−1
l=j

−→w [l] ≤ u. ⊓⊔

3.3 Algorithmic Complexity

Using Lemmas 3, 4, 6 and 7, one can design a filtering algorithm with the same worst

case time complexity as leftmost. In this section, we introduce a linear time imple-

mentation of leftmost. We denote this algorithm leftmost count, since we use

it to compute an array “count” containing the values of |−→w [1 : i]| for all values of i. We

give the pseudo code for this procedure in Algorithm 2. The key idea that allows to re-

duce the complexity is that, at each step, a single new subsequence is to be considered.

However, we also need to compute the new maximum across current subsequences, and

increment all subsequences when assigning the value 1 to w[i], both in constant time.

It is easy to see that leftmost count has an O(n) worst case time complexity.

In order to prove its correctness, we will show that the assignment computed by

leftmost count is the same as that computed by leftmost.

Lemma 8. Algorithms 1 and 2 return the same assignment w.

Proof (in Appendix). We give the full proof in Appendix.

The idea is to prove the following three invariants, true at the beginning of each step

of the main loop:

– The cardinality of the jth subsequence is equal to c[(i+j−2) mod q]+count[i−1].

– The number of subsequences of cardinality k is equal to occ[n− count[i− 1]+ k].

– The cardinality maximum of any subsequence is equal to maxc.

Then, it is easy to check that leftmost count computes the exact same assignment

as leftmost. Furthermore, at the at the end of the algorithm, we will have count[i] =
|−→w [1 : i]| for all i ∈ [1, n]. ⊓⊔

3.4 Achieving Arc-Consistency on ATMOSTSEQCARD

Now, we can prove our main result, that AC on a constraint ATMOSTSEQCARD(u, q, d, [x1, . . . , xn])
can be achieved in O(n) time by Algorithm 3.

First, in Line 1, we achieve AC on ATMOSTSEQ(u, q, [x1, . . . , xn]), so that the first

condition for Lemma 2 holds. Achieving AC on ATMOSTSEQ can be done in linear

time using a procedure essentially similar to leftmost count. Indeed, since the

constraint ATMOST is monotone, we simply need to achieve AC on every ATMOST.

Moreover, a constraint ATMOST(u, [xi1 , . . . , xiq]) may prune the domain of a variable

only if u other variables in [xi1 , . . . , xiq]) are assigned to 1. To do that, we run a trun-

cated version of leftmost count: the values of w[i] are never updated, i.e., they

are set to the minimum value in the domain and we never enter the if-then-else block

starting at condition 1 in Algorithm 2. Now, if at step i we have maxc = u, then there

are u variables assigned to 1 in at least one subsequence involving vari, hence it should

be set to 0 if possible.

Second, in Line 2, we achieve AC on the cardinality constraint, in order to satisfy

the second condition of Lemma 2.

Third, in Line 4 we compute the vector L that maps each index i to the value of

|−→w [1 : i]|. This is given by the array count returned by leftmost count on the

sequence [x1, . . . , xi]. Notice that, we work with the residual demand, computed in

Line 3, rather than the original demand. At this point, the third condition of Lemma 2

can be checked, and we know whether the constraint is AC, inconsistent, or if some

pruning may be possible.

In the latter case, we compute the vector R, that maps each index i to the value of

|←−w [i : n]|, in Line 5.

Finally, we can activate the pruning rules that are shown to be correct and sufficient

by Lemmas 3 and 6 for Line 6, and Lemmas 4 and 7 for Line 7.

Algorithm 3: AC(ATMOSTSEQCARD)

Data: [x1, . . . , xn], u, q, d
Result: AC on ATMOSTSEQCARD(u, q, d, [x1, .., xn])

1 AC(ATMOSTSEQ)(u, q, [x1, . . . , xn]);
2 AC(

∑n

i=1 xi = d);

3 dres ← d−
∑n

i=1 min(xi);
4 L← leftmost count([x1, . . . , xn], u, q);

if L[n] = dres then

5 R← leftmost count([xn, . . . , x1], u, q);
foreach i ∈ [1, . . . , n] such that D(xi) = {0, 1} do

6 if L[i] +R[n− i+ 1] ≤ dres thenD(xi)← {0};
;

7 if L[i− 1] +R[n− i] < dres thenD(xi)← {1};
;

else if L[n] < dres then
return failure;

return consistent;

Theorem 1. Algorithm 3 achieves AC on ATMOSTSEQCARD with an optimal worst

case time complexity.

Proof. The soundness of Algorithm 3 is a straight application of Lemmas 3 and 4. Its

completeness is a consequence of Lemmas 2, 6 and 7.

Achieving AC on ATMOSTSEQ (Line 1) can be done with one call to leftmost count.

Achieving AC on a simple cardinality constraint (Line 2) can be done trivially in O(n)
time. Finally, pruning the domains requires at most two calls to leftmost count,

plus going through the sequence of variable to actually change the domains, that is,

O(n) time.

The worst case time complexity of Algorithm 3 is then O(n), hence optimal. ⊓⊔

Example 2. We give an example of the execution of Algorithm 3 in Figure 4 for com-

puting the AC of constraint ATMOSTSEQCARD with u = 4, q = 8 and d = 12.

The first line stands for current domains, dots are unassigned variables (hence dres =
10). The two next lines give the assignments−→w and←−w obtained by runningleftmost count

from left to right and from right to left, respectively. The third and fourth lines stand

for the values of L[i] = |−→w [1 : i]| and R[n − i + 1] = |←−w [i : n]|. The fifth and sixth

lines correspond to the application of, respectively, Lemma 3 and 4. Last, the seventh

line gives the arc consistent domains. Bold values indicate pruning.

4 Extensions

In this section, we show that the filtering algorithm described in the previous section

can be extended in a number of ways to enforce AC on more general constraints. Some

generalizations are straightforward. For instance, the parameter u does not need to be

the same for all subsequences. Indeed neither Algorithm 1 nor Algorithm 2 relies on

the fact that u is constant across all subsequences. We can easily give a list of upper

bounds, one for each subsequence. Another relatively straightforward generalization is

to have a domain variable, rather than a single value, for the demand d.

4.1 The ATMOSTSEQ∆CARD constraint

Let δ be a domain variable, we define the ATMOSTSEQ∆CARD as follows:

Definition 9.

ATMOSTSEQ∆CARD(u, q, δ, [x1, . . . , xn])⇔

n−q∧

i=0

(

q∑

l=1

xi+l ≤ u) ∧ (

n∑

i=1

xi = δ)

We show how one can achieve AC on the above generalization. The changes to Algo-

rithm 3 required to handle this generalization are minimal. Indeed, tight lower and upper

bounds on δ are easy to compute. They are given, respectively by
∑n

i=1 min(xi), and

|−→w |. Moreover, by Lemma 2, we know there can be inconsistent values for a variable

xi only if |−→w | ≤ d. It follows that we only need to care about the lower bound of δ. We

show these changes in Algorithm 4. The domain of δ is updated in Line 2 for the lower

bound, and Line 5 for the upper bound. Also, the lower bound of δ (min(δ)) is used to

compute the residual demand to reach in Line 3 instead of d.

Algorithm 4: AC(ATMOSTSEQ∆CARD)

Data: [x1, . . . , xn], u, q, δ
Result: AC on ATMOSTSEQ∆CARD(u, q, δ, [x1, .., xn])

1 AC(ATMOSTSEQ)(u, q, [x1, . . . , xn]);
2 AC(

∑n

i=1 xi = δ);

3 dres ← min(δ)−
∑n

i=1 min(xi);
4 L← leftmost count([x1, . . . , xn], u, q);
5 D(δ)← D(δ) ∩ [0, L[n] +

∑n

i=1 min(xi)];
6 if L[n] = dres then

R← leftmost count([xn, . . . , x1], u, q);
foreach i ∈ [1, . . . , n] such that D(xi) = {0, 1} do

if L[i] +R[n− i+ 1] ≤ dres thenD(xi)← {0};
;

if L[i− 1] +R[n− i] < dres thenD(xi)← {1};
;

7 else if L[n] < dres then
return failure;

return consistent;

Theorem 2. Algorithm 4 achieves AC on ATMOSTSEQ∆CARD with an optimal worst

case time complexity.

Proof. First, we need to prune inconsistent values from the domain of δ. By Lemma 1,

the cardinality |−→w | of the assignment returned by leftmost is a valid upper bound

for δ. Moreover, because of the cardinality constraint,
∑n

i=1 min(xi) is a valid lower

bound. It is easy to see that any value d within these bounds satisfies the conditions of

Lemma 1. In other words, we can assign δ to any value in the interval [
∑n

i=1 min(xi), |
−→w |]

and extend it to an AC support of ATMOSTSEQ∆CARD(u, q, δ, [x1, . . . , xn]). These

bounds are therefore tight.

Second, we need to prune values inD(xi) for all i in 1, . . . , n that are not supported

by any value in D(δ). A naive algorithm for checking that would be to run leftmost

for each value in D(δ) and compute the union of possible values for the variables xi.

However, one can avoid this by distinguishing two cases after line 5. Suppose that

|D(δ)| > 1, in this case, lines 1, 2 and 5 imply that Lemma 2 holds for d = min(D(δ)).
Hence all values for the variables xi are consistent and in this case we will never enter

lines 6 and 7. Suppose now that |D(δ)| = 1, in this case, we can simply apply the same

filtering (Line 6) that we proposed previously for a fixed cardinality.

The whole procedure requires at most two calls to leftmost count, which takes

O(n) time. ⊓⊔

4.2 The MULTIATMOSTSEQCARD Constraint

Here, we show that we can easily modify Algorithm 3 (or Algorithm 4) to achieve AC

on the conjunction of several ATMOSTSEQCARD constraints.

For instance, in crew-rostering problems, the work pattern of an employee might

require a conjunction of ATMOSTSEQCARD: one to limit the number of shifts per day,

and another to limit the number of shifts per week. In the crew-rostering benchmarks

that we consider in Section 5, we have a variable xi for each working shift i. More-

over, we want each employee to work at most one shift per day, at most five shifts

per week, and between 17 and 18 shifts on the whole period. We model this with

two ATMOSTSEQ∆CARD constraints: ATMOSTSEQ∆CARD(1, 3, δ, [x1, . . . , xn]) and

ATMOSTSEQ∆CARD(5, 21, δ, [x1, . . . , xn]) s.t. D(δ) = {17, 18}. However, AC on

these two constraints is not equivalent to AC on their conjunction. We illustrate this in

Example 3 (using smaller instances of the constraints).

Example 3. Consider the conjunction of the two following ATMOSTSEQCARD con-

straints:

ATMOSTSEQCARD(1, 2, 9, [x1, . . . , x22]) & (4.1)

ATMOSTSEQCARD(2, 5, 9, [x1, . . . , x22]) (4.2)

Now, suppose that D(x8) = D(x14) = D(x20) = {0}, whilst all other domains are

equal to {0, 1}. The first line of Table 1 shows the domains of [x1, . . . , x22], with a dot

(.) standing for a full domain ({0, 1}) and the value 0 standing for the domain reduced

to the singleton {0}. The second and third lines show the results of leftmost on

[x1, . . . , x22] for u/q = 1/2 and u/q = 2/5, respectively. Since the demand d is equal

to 9, both constraints 4.1 and 4.2 are AC. Last, the third line shows an assignment of

maximum cardinality respecting simultaneously ATMOSTSEQ(1, 2, [x1, . . . , x22]) and

ATMOSTSEQ(2, 5, [x1, . . . , x22]). It is obtained using the same principle as leftmost,

however by checking two sets of subsequences, one for each ATMOSTSEQCARD con-

straint. It is easy to see that the arguments of Lemma 1 are still valid when considering

any number of subsequences. Therefore, the total cardinality of 8 is a valid upper bound,

and since d is equal to 9, the conjunction of the two constraints has no solution.

Table 1: Maximal cardinality assignments.

xi: 0 0 0 . .
−→w on 4.1: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |−→w | = 11
−→w on 4.2: 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 |−→w | = 10

−→w on 4.1 & 4.2: 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 |−→w | = 8

We define the constraint MULTIATMOSTSEQCARD, and show that the algorithm

introduced in this paper can be adapted to enforce AC on this constraint in O(nm) time,

where m is the number of chains of ATMOST constraints.

Definition 10. MULTIATMOSTSEQCARD(u1, .., um, q1, .., qm, d, [x1, . . . , xn])⇔

m∧

k=1

n−qk∧

i=0

(

qk∑

l=1

xi+l ≤ uk) ∧ (

n∑

i=1

xi = d)

Theorem 3. One can achieve AC on MULTIATMOSTSEQCARD in O(nm) time.

Proof (sketch). The main argument to show that this theorem holds is that all previous

proofs and algorithms can be easily lifted to this case. We therefore only sketch its

proof.

First, note that one can modify the procedure leftmost (or leftmost count)

to handle a conjunction of ATMOSTSEQ constraints instead of a single one. All we need

to do is to duplicate m times the structures maintaining the cardinalities of the subse-

quences. We obtain a procedure that checks m chains in O(nm) if we use Algorithm 2.

Second we show that Lemma 1 still holds with this new procedure, and with respect

to several chains of ATMOST constraints. In other words, greedily assigning the value

“1” while respecting m chains of ATMOST will produce a sequence of maximal cardi-

nality. The argument used in the proof of Lemma 1 generalizes without modification to

several chains. We show that if we make the hypothesis that an assignment w of cardi-

nality higher than of |−→w | found by the greedy procedure leads to a contradiction. For

each value of q, the same three cases arise, and can be analyzed in exactly the same way.

Hence we can show that w can be made equal to −→w without changing its cardinality,

hence a contradiction.

Indeed, in all subsequent proofs, we check subsequences of length q and show that

they do not violate capacity constraints. Obviously, these proofs hold for any value of

q (within [1, n]). Actually, the only difference is that when considering multiple chains,

we might have to check subsequences of different lengths. ⊓⊔

5 Experimental Results

We tested our filtering algorithm on two benchmarks: car-sequencing and crew-rostering.

All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. All models are imple-

mented using Ilog-Solver.

Since we compare propagators, we averaged the results across several branching

heuristics to reduce the bias that these can have on the outcome. Moreover, these heuris-

tics were randomized and for each instance and each heuristic we launched 5 random-

ized runs with a 20 minutes time cutoff.2 For each considered data set, we primarily

compare the total number of successful runs, denoted “#solved”. We say that a run was

successful if either a solution could be found or unsatisfiability could be proven. Then,

we also consider the CPU time in seconds and number of backtracks, denoted #back-

tracks, both restricted to successful runs. When appropriate, we emphasize the statistics

of the best method using bold face fonts.

5.1 Car-sequencing

Problem description. In the car-sequencing problem [7, 20], n vehicles have to be pro-

duced on an assembly line, subject to capacity and demand constraints. There are k
classes of vehicles and p types of options. Each class c is associated with a demand

Dc, that is, the number of occurrences of this class on the assembly line, and a set of

options. Each option is handled by a working station able to process only a fraction of

2 For a total of approximately one year of CPU time.

the vehicles passing on the line. The capacity related to an option j is defined by two

integers uj and qj , and enforces that no subsequence of size qj contains more than uj

vehicles requiring option j. We define also for each option j, the corresponding set of

classes of vehicles requiring this option Cj = {c | j ∈ Oc}, and the option’s demand

dj =
∑

c∈Cj
Dc.

Models and heuristics. We use a standard CSP model with two sets of variables. The

first set corresponds to n integer variables {x1, . . . , xn} taking values in {1, . . . , k}
and standing for the class of vehicles in each slot of the assembly line. The second

set of variables corresponds to np Boolean variables {y11, . . . , y
p
n}, where yji stands for

whether the vehicle in the ith slot requires option j. Regarding the constraints, first,

the demand for each class is enforced with a GCC [16]. Second, to ensure the capacity

constraints, we consider four models:

1. sum: we use the default decomposition into a chain of ATMOST constraints.

2. gsc: Let card be a mapping on integers such that card(c) = Dc, ∀c ∈ {1, . . . , k}.
For each option j, we post the following GSC constraint:

GSC(0, uj, qj , card, card, [x1, . . . , xn], Cj)
3. amsc: For each option j, we post the following ATMOSTSEQCARD constraint:

ATMOSTSEQCARD(uj , qj , dj
, [yj1, . . . , y

j
n])

4. gsc+amsc: we combine GSC with ATMOSTSEQCARD for each option.

Last, we channel integer and Boolean variables: ∀j ∈ {1, ..., p}, ∀i ∈ {1, ..., n}, yji =
1⇔ xi ∈ Cj .

We use 42 search heuristics obtained by combining different ways of exploring the

assembly line either in lexicographic order or from the middle to the sides; of branching

on affectation of a class to a slot or of an option to a slot; of selecting the best class or

option among a number of natural criteria (such as maximum demand, minimum u/q
ratio, as well as other criteria described in or derived from [17], [18], [19]).

Benchmarks. We use benchmarks available in the CSPLib [8]. The first group of the

CSPLib contains 70 satisfiable instances involving 200 cars, it is denoted by set1. The

second group of the CSPLib corresponds to 4 satisfiable instances with 100 cars, de-

noted by set2 and 5 unsatisfiable instances with 100 cars denoted by set3. The third

group of the CSPLib contains 30 larger instances (ranging from 200 to 400 vehicles).

set4 concerns the 7 instances from this group that are known to be satisfiable. The

status of the 23 remaining instances (set5) are still unknown. However, these instances

are often treated as optimization problems. We therefore consider them separately later.

For each method, we report the average number of solved instances in Table 2, the

average CPU time on solved instances in Table 3 and the average number of back-

tracks in Table 4. In each table, we also report the minimum and maximum value (for

any heuristic, though averaged over randomized runs) as well as the standard deviation

over the different heuristics. Table 2 shows that in all cases, the best method is either

gsc+amsc or amsc. In some cases a stronger filtering seems to be key and gsc+amsc

solves more instances than other methods: 95.46% of set1 and 3.04% of set3. In other

cases, exploration speed is more important and amsc is better: 55.95% and 14.55% of

Table 2: Evaluation of the filtering methods (solved instances count)

propagation
#solved in set1 (70× 5) #solved in set2 (4× 5)

avg min max dev avg min max dev

sum 268.33 70.00 350.00 88.95 2.95 0.00 15.00 3.66

gsc 333.52 154.00 350.00 42.16 10.11 0.00 20.00 5.25

amsc 321.35 80.00 350.00 64.05 11.19 0.00 20.00 5.22

gsc+amsc 334.11 154.00 350.00 41.88 10.45 0.00 20.00 5.06

propagation
#solved in set3 (5× 5) #solved in set4 (7× 5)

avg min max dev avg min max dev

sum 0.00 0.00 0.00 0.00 2.35 0.00 9.00 2.65

gsc 0.73 0.00 10.00 2.35 4.64 0.00 10.00 3.69

amsc 0.38 0.00 5.00 1.21 5.09 0.00 10.00 3.75

gsc+amsc 0.76 0.00 10.00 2.41 4.80 0.00 10.00 3.65

Table 3: Evaluation of the filtering methods (CPU time on solved instances)

propagation
CPU time (in sec.) on set1 (70× 5) CPU time (in sec.) on set2 (4× 5)

avg min max dev avg min max dev

sum 10.49 0.02 1145.20 80.39 58.74 0.01 766.25 178.88

gsc 3.16 0.52 1100.54 33.17 109.45 0.11 1096.37 237.46

amsc 3.79 0.03 1197.88 51.49 70.56 0.01 1014.57 186.87

gsc+amsc 3.03 0.53 1017.74 33.60 99.71 0.11 1155.40 222.85

propagation
CPU time (in sec.) on set3 (5× 5) CPU time (in sec.) on set4 (7× 5)

avg min max dev avg min max dev

sum - - - - 30.85 0.03 985.75 136.43

gsc 276.06 29.22 988.79 308.64 53.61 1.63 975.03 147.35

amsc 8.62 1.06 18.07 6.72 38.45 0.03 1171.78 124.29

gsc+amsc 285.43 6.01 1131.19 337.24 61.61 1.62 1180.53 175.23

Table 4: Evaluation of the filtering methods (search tree size on solved instances)

propagation
#backtracks on set1 (70× 5) #backtracks on set2 (4× 5)

avg min max dev avg min max dev

sum 174017 148 25062202 1341281 1101723 78 15324348 3439897

gsc 1408 99 2320312 34519 131062 58 1595137 306448

amsc 33600 92 13888040 468527 665205 61 10254401 1827516

gsc+amsc 1007 92 1180605 23649 104823 56 1055307 244135

propagation
#backtracks on set3 (5× 5) #backtracks on set4 (7× 5)

avg min max dev avg min max dev

sum - - - - 378475 170 13767766 1754180

gsc 55365 5852 218590 63211 23897 151 467396 75097

amsc 40326 5991 83454 29690 215349 146 5624744 653498

gsc+amsc 57725 1120 244787 69705 22974 146 428523 71552

solved instances for set2 and set4, respectively. Overall, as witnessed by Table 4, gsc

and gsc+amsc usually require exploring a much smaller tree than amsc. However, the

propagator for GSC slows down the search by a substantial amount. Considering Ta-

ble 3 as well as data from unsolved instances, we observed a factor 12.5 on the number

of nodes explored per second between these two models. Moreover, the level of filtering

obtained by these two methods are incomparable. Therefore combining them is always

better than using GSC alone.

In [21] the authors applied their method to set1, set2 and set3 only. For their experi-

ments, they considered the best result provided by 2 heuristics. When using COST-REGULAR

or GEN-SEQUENCE filtering alone, 50.7% of problems are solved and when combining

either COST-REGULAR or GEN-SEQUENCE with GSC, 65.2% of problems are solved

(with a time out of 1 hour). In our experiments, in average over the 42 heuristics and

the 5 randomized runs, ATMOSTSEQCARD and GSC solve respectively 84.29% and

87.19% of instances and combining ATMOSTSEQCARD with GSC solves 87.42% in-

stances in a time out of 20 minutes. Moreover, using the model gsc+amsc, the best

heuristic was able to solve 96.20% of these instances.

Next, we considered an optimization version of the same problem, introduced in

[9] and used for instance in [12, 13]. Here, the objective is to minimize the number of

empty slots in the assembly line. In other words, we want to find the minimum value

of n such that the standard model is satisfiable. With this setting, we can tackle the 23

instances of set5, for which no solution has been found.

We consider three groups of instances with the same (original) number of variables,

respectively 200, 300 and 400. For each model, we report the minimum and average

objective values, as well as CPU time, all averaged across the instances in each group.

Table 5: Optimization on set5.

Instance
amsc gsc gsc+amsc sum

Empty slots time (s) Empty slots time (s) Empty slots time (s) Empty slots time (s)

min avg avg min avg avg min avg avg min avg avg

pb 200 7.75 8.32 13.06 7.87 8.35 44.03 7.62 8.27 53.09 7.75 8.32 21.52

pb 300 11.62 12.37 53.04 11.87 12.77 99.19 11.50 12.47 129.04 11.87 12.57 42.49

pb 400 10.57 11.45 10.28 11.14 11.74 185.44 11.00 11.71 175.28 10.57 11.34 6.58

In Table 5, we observe an outcome similar to the satisfaction case for the two smaller

groups, where, gsc+amsc and amsc give better solutions for the first and second group,

respectively. However, for larger instances, the extra pruning does not seem to help to

get better solutions, and sum is as good as amsc, and in fact a little bit better on average.

5.2 Crew-rostering

Problem description. In this problem, working shifts have to be attributed to employees

over a period, so that the required service is met at any time and working regulations are

respected. The latter condition can entail a wide variety of constraints. Previous work

[11] [15] used allowed (or forbidden) patterns to express successive shift constraints.

For example, with 3 shifts of 8 hours per day: D (day), E (evening) and N (night), ND

can be forbidden since employees need some rest after night shifts. In this paper, we

consider a simple case involving 20 employees with 3 shifts of 8 hours per days where

no employee can work more than one 8h shift per day, no more than 5 days per period

of 7 days, and the break between two worked shifts must be at least 16h. The planning

horizon is of 28 days, and each employee must work 17 shifts over the 4 weeks period

(i.e. 34 hours per week in average).

Models and heuristics. We use a model with one Boolean variable eij for each of

the m employees and each of the n shifts stating if employee i works on shift j. The

demand dsj on each shift j is enforced through a sum constraint
∑m

i=1 eij = dsj .The

other constraints are stated using two ATMOSTSEQCARD constraints per employee,

one with ratio u/q = 1/3, another with ratio 5/21, and both with the same demand

d = 17. We compare four models. In the first (sum), we use a decomposition in a

chain of ATMOST constraints. In the second (amsc) we use two ATMOSTSEQCARD

constraints per employee j, of the form:

ATMOSTSEQCARD(u, q, d, [ei1, . . . , ein])

In the first constraint we haveu = 1, q = 3, d = 17 and in the second constraint we have

u = 5, q = 21, d = 17. Both are propagated using Algorithm 3. In the third model (gsc),

we use the following GSC constraint to encode the constraint ATMOSTSEQCARD(u, q, d, [ei1, . . . , ein]):

GSC(0, u, q, {0 : n− d, 1 : d}, {0 : n− d, 1 : d}, [ei1, . . . , ein], {1})

Note that in this case, since the domains are Boolean, the GSC is in this case equivalent

to ATMOSTSEQCARD. Therefore, it cannot prune more since the latter enforces AC.

However, it is stronger than the decomposition. Last, in the fourth model (mamsc) the

conjunction of the the two ATMOSTSEQCARD constraints is propagated using Algo-

rithm 4.

We used the following four variable ordering heuristics.

1. Lexicographic: Explores shifts chronologically and pick an employee at random;

2. Middle: Similar as above, however we start exploring shifts from the middle;

3. Employee: Picks an employee with min slack, then a possible shift of max demand;

4. Shift: Similar as above, however, the shift is selected first, then the employee.

In all cases, we branch by assigning the value 1 to the chosen pair (employee, shift).

Benchmarks. We generated 341 instances, with worker availability ranging from 82%

to 48% by increment of 0.1. This value denotes the probability that a given employee is

willing to work during a given shift. It allows to vary the constrainedness of the prob-

lem. 228 of these instances were found feasible, 77 infeasible and 36 remain open. We

report results for the satisfiable and unsatisfiable sets with 5 random runs per instance.

We report the results for the static heuristics in Table 6 and for the dynamic heuris-

tics in Table 7. The first column indicates the total number of successful runs (#sol),

Table 6: Evaluation of the filtering methods: static branching (highest success counts are in bold

fonts)

Lexicographic

Model

satisfiable (1140) unsatisfiable (385)

#sol
CPU time #backtracks

#sol
CPU time #backtracks

avg dev avg dev avg dev avg dev

sum 0 - - - - 170 0.05 0.02 86 452

gsc 25 308.93 344.29 74074 84301 175 2.56 9.71 262 1794

amsc 125 164.36 239.56 1828347 2759080 213 1.76 21.95 22621 292152

mamsc 534 87.29 188.81 685720 1491867 271 2.80 45.02 27150 444913

From the middle to the sides

Model
satisfiable (1140) unsatisfiable (385)

#sol
CPU time #backtracks

#sol
CPU time #backtracks

avg dev avg dev avg dev avg dev

sum 1 166.76 0.00 5716015 0 160 0.04 0.00 0 0

gsc 7 253.20 301.63 53763 63110 165 1.07 0.08 0 0

amsc 57 161.38 267.23 2207676 3621762 201 0.20 1.46 1622 15809

mamsc 336 134.95 239.11 1410458 2525422 265 0.05 0.00 0 0

then we report CPU time and number of backtracks, averaged over all instances and

runs, as well as the standard deviation on this sample. Clearly, achieving AC on the

(MULTI)ATMOSTSEQCARD constraint have a significant impact on the efficiency of

the model. The decomposition into sum constraints cannot solve any satisfiable in-

stance with lexicographic branching, and only one when starting from the middle of

the sequence. The model using GSC offers a much more potent filtering, however, it

is not as strong as AC on the ATMOSTSEQCARD constraint and moreover, it is much

slower. On the other hand, the model using Algorithm 3 for the ATMOSTSEQCARD

constraint achieves AC whilst being as fast as the decomposed model in terms of explo-

ration. Moreover, combining the two ATMOSTSEQCARD constraints and using Algo-

rithm 4 allows to solve about four times more satisfiable instances with Lexicographic

branching and six times more with Middle branching.

The COST-REGULAR constraint could be used to enforce the same level of consis-

tency as the combination of two ATMOSTSEQCARD constraints. The possible patterns

can be encoded through a finite automaton whilst the overall cardinality is encoded by

the counter. Notice that using a REGULAR constraint (i.e., without cost) and model-

ing the overall work load with a cardinality constraint would not enforce a higher level

of consistency than the decomposition into cardinality constraints (i.e., model sum)

since ATMOST constraints are monotone. A worst case analysis would indicate that

the number of states in the automaton is too large. However, using the O.D.E.N alpha-

bet, standing for Off, Day, Evening and Night shift, respectively, the two ATMOSTSEQ

constraints can be encoded using an automaton involving no more than 41 states.3 Tran-

sitions labeled D,E or N have a cost 1, whilst transitions labeled O have a null cost. The

3 We thank the anonymous reviewer who provided the automaton.

target cost is set to the required working load. We do not compare our approach against

such a COST-REGULAR encoding, although it would be interesting to empirically assess

the computational overhead of this latter method. It is possible, however, to get an idea

of this overhead by considering the similar approach used in [21] on car-sequencing

benchmarks. In this case, the COST-REGULAR encoding seems very close in CPU time

and overall behavior to the cubic algorithm used for propagating the GEN-SEQUENCE

constraint. Since the level of consistency would be strictly the same as in the model

using the MULTIATMOSTSEQCARD constraint, we might expect similar results, albeit

with slightly larger CPU times.

Table 7: Evaluation of the filtering methods (dynamic branching)

Most constrained employee

Model

satisfiable (1140) unsatisfiable (385)

#sol
CPU time #backtracks

#sol
CPU time #backtracks

avg dev avg dev avg dev avg dev

sum 772 21.93 104.91 205087 1000794 165 0.06 0.00 0 2

gsc 746 65.75 180.29 14133 42235 175 0.98 0.09 0 3

amsc 818 20.51 103.76 147479 761261 215 0.13 0.55 330 2582

mamsc 842 20.78 111.00 125886 676061 270 0.05 0.01 0 2

Most constrained shift

Model

satisfiable (1140) unsatisfiable (385)

#sol
CPU time #backtracks

#sol
CPU time #backtracks

avg dev avg dev avg dev avg dev

sum 987 20.76 102.53 169964 853020 352 19.74 99.61 180161 967933

gsc 1006 33.30 107.08 8875 31586 335 15.97 95.36 5145 35824

amsc 1061 10.07 65.02 90247 593928 362 12.19 77.37 108797 736775

mamsc 1074 10.94 77.37 91222 667176 377 14.63 107.58 110244 834887

When using dynamic heuristics (see Table 7), the difference between the different

models becomes much less spectacular. However, the trend is the same, with the model

combining the pairs of ATMOSTSEQCARD constraint dominating the other models.

6 Conclusion

We have introduced a linear time algorithm for achieving arc consistency on the con-

straint ATMOSTSEQCARD, a particular case of sequence constraint useful for instance

in car-sequencing and crew-rostering applications.

Previously, the best AC algorithm for that constraint had an O(n2) time complex-

ity [10]. However, it ran in O(n2 log n) time down a branch since subsequent calls cost

O(n log n), whilst our algorithm is not incremental hence requires up to O(n2) steps

down a branch.

We also proposed some extensions of ATMOSTSEQCARD and showed that one

can easily adapt the initial algorithm to achieve arc consistency on these constraints.

In particular, we have shown that it is possible to achieve AC on a conjunction of

ATMOSTSEQCARD constraints on the same scope with the same complexity as achiev-

ing AC on each conjunct.

Our empirical evaluation shows that current models for car-sequencing and crew-

rostering problems can take advantage of this constraint. On car-sequencing problems,

the filtering of our propagator is incomparable with that of GSC, albeit much less com-

putationally costly. For some instances, it is thus worth combining both constraints. In

other cases, a model using only the ATMOSTSEQCARD constraint is better. On crew-

rostering problem, the REGULAR constraint is often used since it can model arbitrary

working patterns. However, ATMOSTSEQCARD can model useful patterns and provide

efficient and cheap filtering for them. Moreover, several such patterns can be combined

to obtain a stronger filtering without degrading the time complexity.

Acknowledgments

We would like to thank Nina Narodytska for her precious help and comments, and the

Cork Constraint Computation Center (4C) for kindly granting us access to its computing

resources.

References

1. N. Beldiceanu and M Carlsson. Revisiting the Cardinality Operator and Introducing the

Cardinality-Path Constraint Family. In ICLP, pages 59–73, 2001.

2. N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Mathematical

Computation Modelling, 20(12):97–123, 1994.

3. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The Slide Meta-Constraint. In

CPAI Workshop, held alongside CP, 2006.

4. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Slide: A Useful Special Case

of the Cardpath Constraint. In ECAI, pages 475–479, 2008.

5. S. Brand, N. Narodytska, C.-G. Quimper, P. J. Stuckey, and T. Walsh. Encodings of the

Sequence Constraint. In CP, pages 210–224, 2007.

6. S. Demassey, G. Pesant, and L.-M. Rousseau. A Cost-Regular Based Hybrid Column Gen-

eration Approach. Constraints, 11(4):315–333, 2006.

7. M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the Car-Sequencing Problem in

Constraint Logic Programming. In ECAI, pages 290–295, 1988.

8. I. P. Gent and T. Walsh. CSPLib: a benchmark library for constraints, 1999.

9. K-S. Hindi and G. Ploszajski. ”formulation and solution of a selection and sequencing prob-

lem in car manufacture”. Computers & Industrial Engineering, 26(1):203 – 211, 1994.

10. M. J. Maher, N. Narodytska, C.-G. Quimper, and T. Walsh. Flow-Based Propagators for the

SEQUENCE and Related Global Constraints. In CP, pages 159–174, 2008.

11. J. Menana and S. Demassey. Sequencing and Counting with the multicost-regular Constraint.

In CPAIOR, pages 178–192, 2009.

12. L. Perron and P. Shaw. Combining Forces to Solve the Car Sequencing Problem. In CPAIOR,

pages 225–239. 2004.

13. L. Perron, P. Shaw, and V. Furnon. Propagation Guided Large Neighborhood Search. In CP,

pages 468–481, 2004.

14. G. Pesant. A Regular Language Membership Constraint for Finite Sequences of Variables.

In CP, pages 482–495, 2004.

15. G. Pesant. Constraint-Based Rostering. In PATAT, 2008.

16. J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In AAAI, pages

209–215, 1996.

17. J.-C. Régin and J.-F. Puget. A Filtering Algorithm for Global Sequencing Constraints. In

CP, pages 32–46, 1997.

18. M. Siala, E. Hebrard, and M-J. Huguet. A study of Branching Heuristics for the Car-

sequencing Problem. In SSNOW Workshop, held alongside CPAIOR, 2012.

19. B.M. Smith. Succeed-first or Fail-first: A Case Study in Variable and Value Ordering, 1997.

20. C. Solnon, V. Cung, A. Nguyen, and C. Artigues. The car sequencing problem : Overview of

state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge problem.

EJOR, 191:912–927, 2008.

21. W. J. van Hoeve, G. Pesant, L.-M.Rousseau, and A. Sabharwal. New Filtering Algorithms

for Combinations of Among Constraints. Constraints, 14(2):273–292, 2009.

22. W. J. van Hoeve, G. Pesant, L.-M. Rousseau, and Ashish Sabharwal. Revisiting the Sequence

Constraint. In CP, pages 620–634, 2006.

Appendix

Complete proof of Lemma 8

Proof. We prove the following three invariants, true at the beginning of each step of the

main loop:

– The cardinality of the jth subsequence is equal to c[(i+j−2) mod q]+count[i−1].
– The number of subsequences of cardinality k is equal to occ[n− count[i− 1]+ k].
– The cardinality maximum of any subsequence is equal to maxc.

Cardinality of the subsequences.

Let wi denote the assignment w after i−1 steps of the loop. Notice that at the begin-

ning and the end of the sequence of variables, subsequences are truncated. However, to

simplify the notations, we will consider that w[−q], w[−q+1], . . . , w[−1] exist and are

equal to 0. Thus we can write that the cardinality of the jth is equal to
∑i+j−1

l=i−q+j wi[l].
We prove the first invariant by induction, i.e., let P (i) denote the fact that the fol-

lowing equalities hold at the beginning of a step i:

(

i+j−1∑

l=i−q+j

wi[l]) = (c[i + j − 2 mod q] + count[i− 1]) ∀j ∈ [1, . . . , q]

The base case P (1) is easily checkable from the initialization of c.
Now suppose that P (i) holds, and consider the state of c at the beginning of step

i + 1. First, note that at step i of the loop, only the value of c[i − 1 mod q] changes.

Consider j ∈ [1, . . . , q−1]. In this case, ((i+1)+j−2 mod q) = (i+j−1 mod q) 6=
(i− 1 mod q). Therefore, c[(i+1)+ j− 2 mod q] has not changed between step i and

step i+ 1, and since P (i) holds, we have:

(

i+(j+1)−1∑

l=i−q+(j+1)

wi[l]) = (c[i + (j + 1)− 2 mod q] + count[i− 1])

which can be rewritten as follows:

(

(i+1)+j−1∑

l=(i+1)−q+j

wi[l]) = (c[(i + 1) + j − 2 mod q] + count[i− 1])

Now there are two possibilities. Either count is incremented, i.e., count[i] = count[i−
1] + 1, and in that case wi+1[i] = wi[i] + 1. Or count is not incremented, and in that

case wi+1[i] = wi[i].
In both cases we have:

(i+1)+j−1∑

l=(i+1)−q+j

wi+1[l] =

(i+1)+j−1∑

l=(i+1)−q+j;l 6=i

wi[l] + wi+1[i]

since wi+1[l] = wi[l] for all l 6= i. Hence we obtain:

(

(i+1)+j−1∑

l=(i+1)−q+j

wi+1[l]) = (c[i+ (j + 1)− 2 mod q] + count[i− 1])− wi[i] + wi+1[i]

which can be rewritten as:

(

(i+1)+j−1∑

l=(i+1)−q+j

wi+1[l]) = (c[(i+ 1) + j − 2 mod q] + count[i])

Thus P (i + 1) holds.

Now we look at the last case: j = q. Here, at step i the value of c[i − 1 mod q] is

set to c[i + q − 2 mod q] + wi+1[i + q] − wi+1[i]. Since P (i) holds, we can replace

c[i+ q− 2 mod q] by
∑i+q−1

l=i wi[l])− count[i− 1], so at the beginnning of step i+1
we have:

c[(i + 1) + q − 2 mod q] = (

i+q−1∑

l=i

wi[l])− count[i− 1] + wi+1[i+ q]− wi+1[i]

however, since
∑i+q−1

l=i wi[l]) = wi[i] +
∑i+q−1

l=i+1 wi+1[l]) we have:

c[(i + 1) + q − 2 mod q] =

i+q∑

l=i+1

wi+1[l]− count[i− 1] + wi[i]− wi+1[i]

Therefore, since count[i] = count[i− 1] + wi+1[i]− wi[i], the following holds:

c[(i+ 1) + q − 2 mod q] =

i+q∑

l=i+1

wi+1[l]− count[i]

We have shown that P (i) implies P (i + 1), and we can therefore conclude that at

the beginnig of each step i of the loop P (i) (that is, the first invariant) holds.

Occurrences of each cardinality.

We proceed as for the first invariant, and prove it by induction. The base case is easy

to check. Since count[0] = 0, and since the array c is properly initialized.

Now we assume that there are exactly occ[n − count[i − 1] + k] subsequences

involving xi which cardinility is equal to k in wi, and we show that at the beginning of

step i+1 there will be occ[n−count[i]+k] subsequences involving xi+1 of cardinality

k in wi+1.

There are two reasons for cardininalities to change.

First, when moving up to the next step in the loop, we move from subsequences

involving xi to subsequences involving xi+1. There are q − 1 subsequences involv-

ing both xi and xi+1. So we simply need to make sure that the occurrences are up-

dated to reflect the fact that the subsequence xi−q+1, . . . , xi should not be counted

anymore, whilst the subsequence xi+1, . . . , xi+q should now be. Let k1 (resp. k2) be

the cardinality of the former (resp. latter) subsequence. As established by the first in-

variant, k1 = c[(i− 1) mod q] + count[i− 1], that is the value prev in Line 2 is set to

k1−count[i−1]. Moreover,next is given the value c[(i+q−2) mod q]+w[i+q]−w[i].

However, from invariant 1, we have c[(i+q−2) mod q]+count[i−1] =
∑i+q−1

l=i w[l].
It follows that

next =

i+q−1∑

l=i

w[l] + w[i + q]− w[i]− count[i− 1] =

i+q∑

l=i+1

w[l]− count[i− 1]

therefore next = k2 − count[i − 1]. To maintain invariant (2), we therefore need to

increment the value of occ[n− count[i− 1] + k2] and decrement the value of occ[n−
count[i− 1] + k1]. However, this is precisely what is done in Line 4 and 5.

Second, when the conditions in Line 1 are met, the value of w[i] is set to 1. Since its

value was previously 0, the cardinality of every subsequence involving w[i] should be

incremented before starting the next step (i + 1). This happens automatically because

in this case the value of count[i] will be set to count[i− 1] + 1. Indeed, for any integer

k, the number of occurrences of subsequences of cardinality k − 1 at the beginning of

step i is occ[n− count[i− 1] + k − 1]. Therefore, since count[i] = count[i− 1] + 1,

at the beginning of step i+1, we have occ[n− (count[i]− 1)+ k− 1], that is, occ[n−
count[i] + k].

Cardinality maximum.

Here we show that the maximum value of the cardinalities of the current subse-

quences is properly maintained. When the number of occurrences of a cardinality k be-

comes non-null and if k > maxc, then maxc is set to k. Similarly, When the number of

occurrences of a cardinality k becomes null and if k = maxc, then maxc is decreased.

Last, when the cardinality of all subsequences is incremented,maxc is incremented too.

These operations are correct because from one step i to i + 1, the value of maxc
cannot change by more than 1. Indeed, only the first subsequence is removed, the other

q − 1 subsequences remain unchanged. Moreover, the first subsequence is replaced by

the last subsequence to which a value a ∈ [0, 1] is added, and another value b ∈ [0, 1]
is substracted. Therefore its value cannot change by more than 1, hence maxc.

Now having these three invariants, one can check that at each step i the values of

w[i] will be the same as in Algorithm 1. ⊓⊔

Algorithm 2: leftmost count

Data: u, q, [x1, . . . , xn]
Result: count : [0, . . . , n] 7→ [0, . . . , n]
foreach i ∈ [1, . . . , n] do

w[i]← min(xi);
occ[i] = 0;

foreach i ∈ [0, . . . , n] do count[i]← 0;

;

c[0]← w[1];
foreach i ∈ [1, . . . , u] do occ[n+ i] = 0;

;

foreach i ∈ [1, . . . , q] do

w[n+ i]← 0;

if i < q then c[i]← c[i− 1] + w[i+ 1];
;

occ[n + c[i− 1]]← occ[n+ c[i− 1]] + 1;

maxc ← max({c[i] | i ∈ [0, . . . , q − 1]});
foreach i ∈ [1, . . . , n] do

1 if maxc < u & |D(xi)| > 1 then

maxc ← maxc +1;

count[i]← count[i − 1] + 1;

w[i]← 1;

else count[i]← count[i− 1];
;

2 prev ← c[(i− 1) mod q];
3 next← c[(i+ q − 2) mod q] + w[i+ q]− w[i];

c[(i− 1) mod q]← next;

if prev 6= next then

4 occ[n + prev]← occ[n + prev]− 1;

5 occ[n + next]← occ[n+ next] + 1;

if next+ count[i] > maxc then maxc ← maxc +1;

;

if occ[n+ prev] = 0 & prev + count[i] = maxc then

maxc ← maxc−1;

return count;

D(xi) . 0 0 1 0 1
−→w [i] 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1
←−w [i] 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1

L[i] 0 1 1 2 3 4 4 4 4 4 4 4 5 6 7 7 7 7 8 8 9 10 10

R[n− i+ 1] 10 9 9 9 8 7 6 6 6 6 6 6 5 4 3 3 3 3 3 2 1 0 0

L[i] +R[n− i+ 1] 11 10 11 12 12 11 10 10 10 10 10 11 11 11 10 10 10 11 11 11 11 10

L[i− 1] +R[n− i] 9 10 10 10 10 10 10 10 10 10 10 9 9 9 10 10 10 10 10 9 9 10

AC(D(xi)) 1 0 0 0 0 1 0 1 1 1 0 0 0 . . 1 1

Fig. 4: Example of the execution of Algorithm 3 for the constraint

ATMOSTSEQCARD(u=4, q=8, d=12, [x1, . . . , xn])

