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, two algorithms designed for the AMONGSEQ constraint were adapted to this constraint with an O(2 q n) and O(n 3 ) worst case time complexity, respectively. In [10], another algorithm similarly adaptable to filter the ATMOSTSEQCARD constraint with a time complexity of O(n 2 ) was proposed. In this paper, we introduce an algorithm for achieving arc consistency on the ATMOSTSEQCARD constraint with an O(n) (hence optimal) worst case time complexity. Next, we show that this algorithm can be easily modified to achieve arc consistency on some extensions of this constraint. In particular, the conjunction of a set of m ATMOSTSEQCARD constraints sharing the same scope can be filtered in O(nm). We then empirically study the efficiency of our propagator on instances of the car-sequencing and crew-rostering problems.

Introduction

In many applications, there are restrictions on the successions of decisions that can be taken. Some sequences are allowed or preferred while other are forbidden. For instance, in crew-rostering applications, it is often not recommended to have an employee work on an evening or a night shift, and then again on the morning shift of the next day.

Several constraints have been proposed to deal with this type of problems. The REGULAR [START_REF] Pesant | A Regular Language Membership Constraint for Finite Sequences of Variables[END_REF] and COST-REGULAR constraints [START_REF] Demassey | A Cost-Regular Based Hybrid Column Generation Approach[END_REF] make it possible to restrict sequences in an arbitrary way. However, there might often exist a more efficient algorithm for the particular case at hand. For instance, filtering algorithms have been proposed for the AMONGSEQ constraint in [START_REF] Brand | Encodings of the Sequence Constraint[END_REF][START_REF] Maher | Flow-Based Propagators for the SEQUENCE and Related Global Constraints[END_REF][START_REF] Van Hoeve | New Filtering Algorithms for Combinations of Among Constraints[END_REF][START_REF] Van Hoeve | Revisiting the Sequence Constraint[END_REF]. This constraint ensures that all subsequences of size q have at least l but no more than u values in a set v. This constraint is often applied to car-sequencing and crew-rostering problems. However, the constraints in these two benchmarks do not correspond exactly to this definition. Indeed, there are often no lower bound restriction on the number of values (l = 0). Instead, the number of values in the set v is often constrained by an overall demand.

In this paper, we consider the constraint ATMOSTSEQCARD. This constraint, posted on n variables x 1 , . . . , x n , ensures that, in every subsequence of length q, no more than u are set to a value in a set v, and that over all the sequence, exactly d are set to values in v. In car-sequencing, this constraint allows to state that, given an option, no subsequence of length q can involve more than u classes of cars requiring this option, and that exactly d cars require it overall. In crew-rostering problems, one can state, for instance, that a worker must have at least a 16h break between two 8h shifts, and at least two days off for every period of seven days, while enforcing a total number of worked hours over the scheduling period.

The rest of the paper is organized as follows: In Section 2 we give a brief background on Constraint Programming and sequence constraints. Then in Section 3, we give a linear time (hence optimal) algorithm for filtering the ATMOSTSEQCARD constraint. Next, in Section 4, we show how to adapt the same pruning on more general constraints. Last, in Section 5, we evaluate our new propagators on car-sequencing and crew-rostering benchmarks, before concluding in Section 6.

CSP and SEQUENCE Constraints

A constraint satisfaction problem (CSP) is a triplet P = (X , D, C), where X is a set of variables, D is a set of domains, and C is a set of constraints that specify allowed combinations of values for subsets of variables. We denote by min(x) and max(x) the minimum and maximum values in D(x), respectively. An assignment of a set of variables X is a tuple w, where w[i] denotes the value assigned to the variable x i . A constraint C ∈ C on a set of variables X defines a relation on the domains of variables in X . An assignment w is consistent for a constraint C iff it belongs to the corresponding relation. A constraint C is arc consistent (AC) iff, for every value j of every variable x i in its scope, there exists a consistent assignment w such that w[i] = j, i.e., a support. There are several variants of the SEQUENCE constraints, we first review them and then motivate the need for the variant proposed in this paper: the ATMOSTSEQCARD constraint. In the following definitions, v is a set of integers and l, u, q are integers. Sequence constraints are conjunctions of AMONG constraints, constraining the number of occurrences of a set of values in a set of variables. Definition 1. AMONG(l, u, [x 1 , . . . , x q ], v) ⇔ l ≤ |{i | x i ∈ v}| ≤ u Chains of AMONG Constraints: The AMONGSEQ constraint, first introduced in [START_REF] Beldiceanu | Introducing Global Constraints in CHIP[END_REF], is a chain of AMONG constraints of width q slid along a vector of n variables. Definition 2. AMONGSEQ(l, u, q, [x 1 , . . . , x n ], v) ⇔ n-q i=0 AMONG(l, u, [x i+1 , . . . , x i+q ], v) The first (incomplete) algorithm for filtering this constraint was proposed in 2001 [START_REF] Beldiceanu | Revisiting the Cardinality Operator and Introducing the Cardinality-Path Constraint Family[END_REF]. Then, in [START_REF] Van Hoeve | New Filtering Algorithms for Combinations of Among Constraints[END_REF][START_REF] Van Hoeve | Revisiting the Sequence Constraint[END_REF], two complete algorithms for filtering the AMONGSEQ constraint were introduced. First, a reformulation using the REGULAR constraint using 2 q-1 states and hence achieving AC in O(2 q n) time. Second, an algorithm achieving AC with a worst case time complexity of O(n 3 ). Moreover, this last algorithm is able to handle arbitrary sets of AMONG constraints on consecutive variables (denoted GEN-SEQUENCE), however in O(n 4 ). Last, two flow-based algorithms were introduced in [START_REF] Maher | Flow-Based Propagators for the SEQUENCE and Related Global Constraints[END_REF]. The first achieves AC on AMONGSEQ in O(n 3/2 log n log u), while the second achieves AC on GEN-SEQUENCE in O(n 3 ) in the worst case. These two algorithms have an amortized complexity down a branch of the search tree of O(n 2 ) and O(n 3 ), respectively.

Chain of ATMOST Constraints: Although useful in both applications, the AMONGSEQ constraint does not model exactly the type of sequences useful in car-sequencing and crew-rostering applications.

First, there is often no lower bound for the cardinality of the subsequences, i.e., l = 0. Therefore AMONGSEQ is unnecessarily general in that respect. Moreover, the capacity constraint on subsequences is often paired with a cardinality requirement.

For instance, in car-sequencing, classes of car requiring a given option cannot be clustered together, because a working station can only handle a fraction of the cars passing on the line (at most u times in any sequence of length q). The total number of occurrences of these classes is a requirement, and translates as an overall cardinality constraint rather than lower bounds on each subsequence.

In crew-rostering, allowed shift patterns can be complex, hence the REGULAR constraint is often used to model them. However, working in at most u shifts out of q is a useful particular case. If days are divided into three 8h shifts, ATMOSTSEQ with u = 1 and q = 3 makes sure that no employee work more than one shift per day and that there must be a 24h break when changing shifts. Moreover, similarly to car-sequencing, the lower bound on the number of worked shifts is global (monthly, for instance).

In other words, we often have a chain of ATMOST constraints, defined as follows:

Definition 3. ATMOST(u, [x 1 , . . . , x q ], v) ⇔ AMONG(0, u, [x 1 , . . . , x q ], v) Definition 4. ATMOSTSEQ(u, q, [x 1 , . . . , x n ], v) ⇔ n-q i=0 ATMOST(u, [x i+1 , . . . , x i+q ],
v) However, it is easy to maintain AC on this constraint. Indeed, the ATMOST constraint is monotone, i.e., the set of supports for value 0 is a super-set of the set of supports for value 1. Hence an ATMOSTSEQ constraint is AC iff each ATMOST is AC [START_REF] Bessiere | Slide: A Useful Special Case of the Cardpath Constraint[END_REF].

A good tradeoff between filtering power and complexity can be achieved by reasoning about the total number of occurrences of values from the set v together with the chain of ATMOST constraints. 1 We therefore introduce the ATMOSTSEQCARD constraint, defined as the conjunction of an ATMOSTSEQ with a cardinality constraint on the total number of occurrences of values in v:

Definition 5. ATMOSTSEQCARD(u, q, d, [x 1 , . . . , x n ], v) ⇔ ATMOSTSEQ(u, q, [x 1 , . . . , x n ], v) ∧ |{i | x i ∈ v}| = d
The two AC algorithms introduced in [START_REF] Van Hoeve | Revisiting the Sequence Constraint[END_REF] were adapted in [START_REF] Van Hoeve | New Filtering Algorithms for Combinations of Among Constraints[END_REF] to achieve AC on the ATMOSTSEQCARD constraint. First, in the same way that AMONGSEQ can be encoded with a REGULAR constraint, ATMOSTSEQCARD can be encoded with a COST-REGULAR constraint, where the cost stands for the overall demand, and it is increased on transitions labeled with the value 1. This procedure has the same worst case time complexity, i.e., O(2 q n). Second, the more general version of the polynomial algorithm (GEN-SEQUENCE) is used, to filter the following decomposition of the ATMOSTSEQCARD constraint into a conjunction of AMONG:

ATMOSTSEQCARD(u, q, d, [x 1 , . . . , x n ], v) ⇔ n-q i=0 AMONG(0, u, [x i+1 , . . . , x i+q ], v) ∧ AMONG(d, d, [x 1 , . . . , x n ], v)
Since the number of AMONG constraints is linear, the algorithm of van Hoeve et al [START_REF] Van Hoeve | New Filtering Algorithms for Combinations of Among Constraints[END_REF]. runs in O(n 3 ) on this decomposition. Similarly, the algorithm of Maher et al. [START_REF] Maher | Flow-Based Propagators for the SEQUENCE and Related Global Constraints[END_REF] runs in O(n 2 ) on ATMOSTSEQCARD, which is the best known complexity for this problem.

Global Sequencing Constraint: Finally, in the particular case of car-sequencing, not only do we have an overall cardinality for the values in v, but each value corresponds to a class of car and has a required number of occurrences. Therefore, Puget and Régin [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF] proposed to consider the conjunction of an AMONGSEQ and a GCC. Let c l and c u be two mapping on integers such that c l (j) ≤ c u (j) ∀j, and let D = n i=1 D(x i ). The Global Cardinality Constraint (GCC) is defined as follows:

Definition 6. GCC(c l , c u , [x 1 , . . . , x n ]) ⇔ j∈D c l (j) ≤ |{i | x i = j}| ≤ c u (j)
Then, the Global Sequencing Constraint is defined as follows:

Definition 7. GSC(l, u, q, c l , c u , [x 1 , . . . , x n ], v) ⇔ AMONGSEQ(l, u, q, [x 1 , .., x n ], v) ∧ GCC(c l , c u , [x 1 , .., x n ])
The mappings c l and c u are defined so that for a value v, both c l (v) and c u (v) map to the number of occurrences of the corresponding class of car. A reformulation of this constraint into a set of GCC was introduced in [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF]. However, achieving AC on this constraint is NP-hard [START_REF] Bessiere | The Slide Meta-Constraint[END_REF].

The ATMOSTSEQCARD Constraint

In this section, we introduce a linear filtering algorithm for the ATMOSTSEQCARD constraint. We first give a simple greedy algorithm for finding a support with an O(nq) time complexity. Then, we show that one can use two calls to this procedure to enforce AC. Last, we show that its worst case time complexity can be reduced to O(n).

It was observed in [START_REF] Van Hoeve | New Filtering Algorithms for Combinations of Among Constraints[END_REF] and [START_REF] Maher | Flow-Based Propagators for the SEQUENCE and Related Global Constraints[END_REF] that we can consider Boolean variables and v = {1}, since the following decomposition of AMONG (or ATMOST) does not hinder propagation as it is Berge-acyclic [START_REF] Brand | Encodings of the Sequence Constraint[END_REF]:

AMONG(l, u, [x 1 , . . . , x q ], v) ⇔ q i=1 (x i ∈ v ↔ x ′ i = 1) ∧ l ≤ q i=1 x ′ i ≤ u
Therefore, throughout the paper, we shall consider the following restriction of the ATMOSTSEQCARD constraint, defined on Boolean variables, and with v = {1}:

Definition 8. ATMOSTSEQCARD(u, q, d, [x 1 , . . . , x n ]) ⇔ n-q i=0 ( q l=1 x i+l ≤ u) ∧ ( n i=1 x i = d)

Finding a Support

Let w be an n-tuple in {0, 1} n , w[i] denotes the i th element of w, |w| = n i=1 w[i] its cardinality, and w[i : j] the (|j-i|+1)-tuple equal to w on the subsequence [x i , . . . , x j ].

We first show that one can find a support by greedily assigning variables in a lexicographical order to the value 1 whenever possible, that is, while taking care of not violating the ATMOSTSEQ constraint. More precisely, doing so leads to an assignment of maximal cardinality, which may easily be transformed into an assignment of cardinality d.

The greedy procedure leftmost (Algorithm 1) computes an assignment w that maximizes the cardinality of the sequence (x 1 , . . . , x n ) subject to an ATMOSTSEQ constraint (with parameters u and q), Algorithm 1: leftmost

1 foreach i ∈ [1, . . . , n] do w[i] ← min(xi); ; foreach i ∈ [1, . . . , q] do w[n + i] ← 0; ; c(1) ← w[1]; foreach j ∈ [2, . . . , q] do c(j) ← c(j -1) + w[j]; ; foreach i ∈ [1, . . . , n] do 2 if |D(xi)| > 1 & max j∈[1,q] (c(j)) < u then w[i] ← 1; 3 foreach j ∈ [1, . . . , q] do c(j) ← c(j) + 1; ; 4 foreach j ∈ [2, . . . , q] do c(j -1) ← c(j); ; 5 c(q) ← c(q -1) + w[i + q] -w[i];
return w;

Algorithm leftmost works as follows.

First, the tuple w is initialized to the minimum value in the domain of each variable in Line 1. Then, at each step i ∈ [1, . . . , n] of the main loop, the cardinality of the j th subsequence involving the variable x i with respect to the current value of w is stored in c(j). In other words, at step i, we have c(j) = min(n,i+j-1)

l=max(1,i-q+j) w[l].
When exploring variable x i , such that D(x i ) = {0, 1} we set w[i] to 1 iff this would not violate the capacity constraints, that is, if c(j) < u for all j ∈ [1, . . . , q] (Condition Line 2). In that case, the cardinality of every subsequence involving x i is incremented (Line 3). Finally, when moving to the next variable, the values of c(j) are shifted (Line 4), and the value of c(q) is obtained by adding the value of w[i + q] and subtracting w[i] to its previous value (Line 5). 0 1 2 1 1 2 1 0 0 2 2 1 2 1 1 2 1 0 1 2 2 1 c(3) 0 2 1 1 1 1 0 0 1 2 1 2 1 1 1 1 0 0 1 2 1 1 c(4) 1 1 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 1 1 1 1 1 max(c) 1 2 2 2 1 2 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 2 From now on, we shall use the following notations:

. . . . 1 -→ w [i] 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 c(1) 0 1 1 2 1 2 2 1 0 0 2 2 1 2 1 2 2 1 1 2 2 2 c(2)
--→ w shall denote the assignment found by leftmost on the sequence x 1 , . . . , x n .

-←w shall denote the assignment found by the same algorithm, however on the sequence x n , . . . , x 1 , that is, from right to left. Notice that, in order to simplify the notations, ←w [i] shall denote the value assigned by leftmost to the variable x i , and not x n-i+1 as it would actually be if we gave the reversed sequence as input.

Example 1. We illustrate the behavior of leftmoston a simple example (see Figure 1). Let [x 1 , . . . , x 22 ] be a sequence of variables with a capacity constraint of 2/4, that is, constrained by: ATMOSTSEQ(2, 4, [x 1 , . . . , x 22 ]). Dots in the first row stand for unassigned variables. The second row shows the computed assignment -→ w , and the next rows show the state of the variables c(1), c(2), c(3) and c(4) at the start of each iteration of the main loop. The last row stands for the maximum value of c(j). The bold values indicate that leftmost assigns the value 1.

Lemma 1. leftmost maximizes n i=1 x i subject to ATMOSTSEQ(u, q, [x 1 , . . . , x n ]). Proof. Let -→ w be the assignment found by leftmost, and suppose that there exists another assignment w (consistent for ATMOSTSEQ(u, q, [x 1 , . . . , x n ])) such that |w| > | -→ w |. Let i be the smallest index such that -→ w [i] = w [i]. By definition of -→ w , we know that -→ w [i] = 1 hence w[i] = 0. Now, let j be the smallest index such that -→ w

[j] < w[j] (it must exists since |w| > | -→ w |).
We first argue that the assignment w ′ equal to w except that w ′ [i] = 1 and w ′ [j] = 0 (as in -→ w ) is consistent for ATMOSTSEQ. Clearly, its cardinality is not affected by this swap, hence |w ′ | = |w|. Now, we consider all the sum constraints whose scopes are changed by this swap, that is, the sums a+q-1 l=a w ′ [l] on intervals [a, a + q -1] such that a ≤ i < a + q or a ≤ j < a + q. There are three cases:

1. Suppose first that a ≤ i < j < a + q: in this case, the value of the sum is the same in w and w ′ , therefore it is lower than or equal to u. 2. Suppose now that i < a ≤ j < a + q: in this case, the value of the sum is decreased by 1 from w to w ′ , therefore it is lower than or equal to u. 3. Last, suppose that a ≤ i < a + q ≤ j: in this case, for any l ∈ [a, a + q -1], we have w

′ [l] ≤ -→ w [l] since j is the smallest integer such that -→ w [j] < w[j]
, hence the sum is lower than or equal to u.

Therefore, given a sequence w of maximum cardinality that differs from -→ w at rank i, we can build a sequence of equal cardinality that does not differ from -→ w until rank i + 1. By iteratively applying this argument, we can obtain a sequence identical to -→ w , albeit with cardinality |w|, therefore contradicting our hypothesis that |w| > | -→ w |.

⊓ ⊔ Corollary 1. Let -→ w be the assignment returned by leftmost. There exists a solution of ATMOSTSEQCARD(u, q, d, [x 1 , . . . , x n ]) iff the three following propositions hold:

(1) ATMOSTSEQ(u, q, [x 1 , . . . , x n ]) is satisfiable (2) n i=1 min(x i ) ≤ d (3) | -→ w | ≥ d.
Proof. It is easy to see that these conditions are all necessary: (1) and ( 2) come from the definition, and ( 3) is a direct application of Lemma 1. Now, we prove that they are sufficient by showing that if these properties hold, then a solution exists. Since ATMOSTSEQ(u, q, [x 1 , . . . , x n ]) is satisfiable, -→ w does not violate the chain of ATMOST constraints as the value 1 is assigned to x i only if all subsequences involving x i have cardinality u -1 or less. Moreover, since

n i=1 min(x i ) ≤ d ≤ | -→ w |, then there are at least | -→ w | -d variables such that min(x i ) = 0 and -→ w [i] = 1.
Assigning them to 0 in -→ w does not violate the ATMOSTSEQ constraint. Hence we can build a support for ATMOSTSEQCARD.

⊓ ⊔ Lemma 1 and Corollary 1 give us a polynomial support-seeking procedure for ATMOSTSEQCARD. Indeed, the worst case time complexity of Algorithm 1 is in O(nq). There are n steps and on each step, Lines 2, 3 and 4 involve O(q) operations. Therefore, for each variable x i , a support for x i = 0 or x i = 1 can be found in O(nq).

Consequently, we have a naive AC procedure running in O(n 2 q) time.

Filtering the Domains

In this section, we show that we can filter out all the values inconsistent with respect to the ATMOSTSEQCARD constraint within the same time complexity as Algorithm 1.

First, we show that there can be inconsistent values only in the case where the cardinality | -→ w | of the assignment returned by leftmost is exactly d: in any other case, the constraint is either violated (when

| -→ w | < d) or AC, (when | -→ w | > d).
The following lemma formalizes this:

Lemma 2. The constraint ATMOSTSEQCARD(u, q, d, [x 1 , . . . , x n ]) is AC if the three following propositions hold: (1) ATMOSTSEQ(u, q, [x 1 , . . . , x n ]) is AC (2) n i=1 min(x i ) ≤ d (3) | -→ w | > d Proof. By Corollary 1 we know that ATMOSTSEQCARD(u, q, d + 1, [x 1 , . . . , x n ]) is satisfiable.
Let w be a satisfying assignment, and consider without loss of generality a variable

x i such that |D(x i )| > 1. Assume first that w[i] = 1. The solution w ′ equal to w except that w ′ [i] = 0 satisfies ATMOSTSEQCARD(u, q, d, [x 1 , . . . , x n ]). Indeed, |w ′ | = |w| -1 = d and since ATMOSTSEQ(u, q, [x 1 , . . . , x n ]
) was satisfied by w it must be satisfied by w ′ . Hence, for every variable x i such that |D(x i )| > 1, there exists a support for x i = 0.

Suppose that w[i] = 0, and let a < i (resp. b > i) be the largest (resp. smallest) index such that w

[a] = 1 and D(x a ) = {0, 1} (resp. w[b] = 1 and D(x b ) = {0, 1}). Let w ′ be the assignment such that w ′ [i] = 1, w ′ [a] = 0, w ′ [b]
= 0, and w = w ′ otherwise. We have |w ′ | = d, and we show that it satisfies ATMOSTSEQ(u, q, [x 1 , . . . , x n ]). Consider a subsequence x j , . . . , x j+q-1 . If j + q ≤ i or j > i then

j+q-1 l=j w ′ [l] ≤ j+q-1 l=j w[l] ≤ u,
so only indices j s.t. j ≤ i < j + q matter. There are two cases:

1. Either a or b or both are in the subsequence (j ≤ a < j + q or j ≤ b < j + q). In that case

j+q-1 l=j w ′ [l] ≤ j+q-1 l=j w[l]. 2.
Neither a nor b are in the subsequence (a < j and j + q ≤ b). In that case, since D(x i ) = {0, 1} and since ATMOSTSEQ(u, q, [x 1 , . . . , x n ]) is AC, we know that j+q-1 l=j min(x l ) < u. Moreover, since a < j and j + q ≤ b, there is no variable x l in that subsequence such that w[l] = 1 and 0 ∈ D(x l ). Therefore, we have

j+q-1 l=j w[l] < u, hence j+q-1 l=j w ′ [l] ≤ u.
In both cases w ′ satisfies all capacity constraints. Hence it is support for the value 1. ⊓ ⊔ Remember that achieving AC on ATMOSTSEQ is trivial since AMONG is monotone. Therefore we focus of the case where ATMOSTSEQ is AC, and | -→ w | = d. In particular, Lemmas 3, 4, 6 and 7 only apply in that case. The equality | -→ w | = d is therefore implicitly assumed in all of them. 

Lemma 3. If | -→ w [1 : i -1]| + | ← - w [i + 1 : n]| < d then x i = 0 is not AC. Proof. Suppose that we have | -→ w [1 : i -1]|+ | ← - w [i + 1 : n]| < d
x i = 0. ⊓ ⊔ Lemma 4. If | -→ w [1 : i]| + | ← - w [i : n]| ≤ d then x i = 1 is not AC. Proof. Suppose that we have | -→ w [1 : i]| + | ← - w [i : n]| ≤ d and suppose that there exists a consistent assignment w ′ such that w ′ [i] = 1 and |w ′ | = d.
By Lemma 1 on the sequence x 1 , . . . , x i we know that

i l=1 w ′ [l] ≤ | -→ w [1 : i]|.
By Lemma 1 on the sequence x n , . . . , x i we know that ,n] are similarly computed by simply running the same procedure on the same sequence of variables, however reversed, i.e., from right to left. Using these values, one can then apply Lemma 3 and Lemma 4 to filter out the value 0 and 1, respectively. We detail this procedure in the next section.

n l=i w ′ [l] ≤ | ← - w [i : n]|. Therefore, since w ′ [i] = 1, we have |w ′ | = i l=1 w ′ [l] + n l=i w ′ [l] -1 < d,
We first show that these two rules are complete, that is, if ATMOSTSEQ is AC, and the overall cardinality constraint is AC then an assignment x i = 0 (resp. x i = 1) is inconsistent iff Lemma 3 (resp. Lemma 4) applies. The following Lemma shows that the greedy rule maximizes the density of 1s on any subsequence starting on x 1 , and therefore minimizes it on any subsequence finishing on x n . Let leftmost(k) denote the algorithm corresponding to applying leftmost, however stopping whenever the cardinality of the assignment reaches a given value k.

Lemma 5. Let w be a satisfying assignment of ATMOSTSEQ(u, q, [x 1 , . . . , x n ]). If k ≤ |w| then the assignment -→ w k computed by leftmost(k) is such that, for any

1 ≤ i ≤ n: n l=i -→ w k [l] ≤ n l=i w[l].
Proof. Let m be the index at which leftmost(k) stops. We distinguish two cases.

If i > m, for any value l in [m + 1, . . . , n], -→ w k [l] ≤ w[l] (since -→ w k [l] = min(x l )), hence n l=i -→ w k [l] ≤ n l=i w[l]. When i ≤ m, clearly for i = 1, n l=i -→ w k [l] ≤ n l=i w[l] since | -→ w k | ≤ |w|. Now consider the case of i = 1. Since | -→ w k | ≤ |w|, then n l=i -→ w k [l] ≤ |w| - i-1 l=1 -→ w k [l]. Thus, n l=i -→ w k [l] ≤ n l=i w[l] + ( i-1 l=1 w[l] - i-1 l=1 -→ w k [l]
). Moreover,by applying Lemma 1, we show that Proof. Let -→ w be the assignment found by leftmost. We consider, without loss of generality, a variable

i-1 l=1 -→ w k [l] is maximum, hence larger than or equal to i-1 l=1 w[l]. Therefore, n l=i -→ w k [l] ≤ n l=i w[l]. ⊓ ⊔ Lemma 6. If ATMOSTSEQ(u, q, [x 1 , . . . , x n ]) is AC, and | -→ w [1 : i -1]|+| ← - w [i + 1 : n]| ≥ d then x i = 0 has a support. = ≥ - → w 1 - → w [1 : i -1] 0 ← - w d-L [i : n] xi xj xj+q-1 L d -L a support for xi = 0. - → w [1 : i -1] 0 ← - w d-L [i : n]
x i such that D(x i ) = {0, 1} and | -→ w [1 : i -1]| + | ← - w [i + 1 : n]| ≥ d,
and show that one can build a support for

x i = 0. If -→ w [i] = 0 or ← -
w [i] = 0 then there exists a support for x i = 0, hence we only need to consider the case where

-→ w [i] = ← - w [i] = 1. Let L = | -→ w [1 : i -1]| and ← -
w d-L be the result of leftmost(d -L) on the subsequence x n , . . . , x i . We will show that w, defined as the concatenation of

-→ w [1 : i -1] and ← - w d-L [i : n] is a support for x i = 0.
First, we show that w

[i] = 0, that is ← - w d-L [i] = 0. By hypothesis, since | -→ w [1 : i -1]|+ | ← - w [i + 1 : n]| ≥ d, we have | ← - w [i + 1 : n]| ≥ d -L
. Now, consider the sequence x i , . . . , x n , and let w ′ be the assignment such that w ′ [i] = 0, and w ′ = ← -

w [i + 1 : n] otherwise. Since |w ′ | = | ← - w [i + 1 : n]| ≥ d -L
, by Lemma 5, we know that w ′ has a higher cardinality than ←w d-L on any subsequence starting in i, hence

w[i] = ← - w d-L [i] = w ′ [i] = 0.
Now, we show that w does not violate the ATMOSTSEQ constraint. Obviously, since it is the concatenation of two consistent assignments, it can violate the constraint only on the junction, i.e., on a subsequence x j , . . . , x j+q-1 such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less or equal to u by comparing with -→ w , as illustrated in Figure 2. We have Proof. Let -→ w and ←w be the assignments found by leftmost, on respectively x 1 , . . . , x n and x n , . . . , x 1 . We consider, without loss of generality, a variable

j+q-1 l=j -→ w [l] ≤ u, and i-1 l=j -→ w [l] = i-1 l=j w[l]. Moreover, by Lemma 5, since | -→ w [i : n]| = | ← - w d-L | = d -L we have j+q-1 l=i ← - w d-L [l] ≤ j+q-1 l=i -→ w [l] hence j+q-1 l=i w[l] ≤ j+q-1 l=i -→ w [l]. Therefore, we can conclude that j+q-1 l=j w[l] ≤ u. ⊓ ⊔ Lemma 7. If ATMOSTSEQ(u, q, [x 1 , . . . , x n ]) is AC, | -→ w [1 : i]| + | ← - w [i : n]| > d then x i = 1 has a support. = = ≥ - → w 1 0 0 . . . 0 - → w L-1 0 0 0 . . . 1 ← - w d-L 0 0 . . . 0 ← - w d-L+1 0 0 0 . . . 1 xi xa x b L -1 d -L + 1 a support for xi = 1. - → w L-1 1 ← - w d-L
x i such that D(x i ) = {0, 1} and | -→ w [1 : i]|+ | ← - w [i : n]| > d
, and show that one can build a support for

x i = 1. If -→ w [i] = 1 or ← - w [i] = 1
then there exists a support for x i = 1, hence we only need to consider the case where -→ w

[i] = ← - w [i] = 0. Let L = | -→ w [1 : i]| = | -→ w [1 : i -1]| (this equality holds since -→ w [i] = 0). Let -→ w L-1
be the assignment obtained by using leftmost(L -1) on the subsequence x 1 , . . . , x i-1 , and let ←w d-L be the assignment returned by leftmost(d -L) on the subsequence x n , . . . , x i+1 .

We show that w such that w[i] = 1, equal to -→ w L-1 on x 1 , . . . , x i-1 and to ←w d-L on x i+1 , . . . , x n , is a support.

Clearly |w| = d, therefore we only have to make sure that all capacity constraints are satisfied. Moreover, since it is the concatenation of two consistent assignments, it can violate the constraint only on the junction, i.e., on a subsequence x j , . . . , x j+q-1 such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less or equal to u by comparing with -→ w and ←w d-L (see Figure 3). First, note that on the subsequence x 1 , . . . , x i-1 , -→ w L-1 = -→ w , except for the largest index a such that -→ w [a] = 1 and w[a] = 0. Similarly on x n , . . . , x i+1 , we have ← -

w d-L = ← - w d-L+1 , except for the smallest b such that ← - w d-L+1 [b] = 1.
There are two cases:

Suppose first that j > a. In that case, j+q-1 l=j

w[l] = j+q-1 l=i ← - w d-L+1 [l] if j + q -1 ≥ b,
and otherwise it is equal to 1. It is therefore always less than or equal to u since i ≥ j (and we assume u ≥ 1). Now suppose that j ≤ a. In that case, consider first the subsequence x j , . . . , x i . On this interval, the cardinality of w is the same as that of -→ w , i.e.,

i l=j w[l] = i-1 l=j -→ w L-1 [l] + 1 = i l=j -→ w [l].
On the subsequence x i+1 , . . . , x j+q-1 , note that

|w[i + 1 : n]| = | -→ w [i + 1 : n]| = d -L, hence by Lemma 5, we have j+q-1 l=i+1 w[l] = j+q-1 l=i+1 ← - w d-L [l] ≤ j+q-1 l=i+1 -→ w [l]. Therefore j+q-1 l=j w[l] ≤ j+q-1 l=j -→ w [l] ≤ u. ⊓ ⊔

Algorithmic Complexity

Using Lemmas 3, 4, 6 and 7, one can design a filtering algorithm with the same worst case time complexity as leftmost. In this section, we introduce a linear time implementation of leftmost. We denote this algorithm leftmost count, since we use it to compute an array "count" containing the values of | -→ w [1 : i]| for all values of i. We give the pseudo code for this procedure in Algorithm 2. The key idea that allows to reduce the complexity is that, at each step, a single new subsequence is to be considered. However, we also need to compute the new maximum across current subsequences, and increment all subsequences when assigning the value 1 to w[i], both in constant time.

It is easy to see that leftmost count has an O(n) worst case time complexity.

In order to prove its correctness, we will show that the assignment computed by leftmost count is the same as that computed by leftmost. Lemma 8. Algorithms 1 and 2 return the same assignment w.

Proof (in Appendix). We give the full proof in Appendix.

The idea is to prove the following three invariants, true at the beginning of each step of the main loop:

-The cardinality of the

j th subsequence is equal to c[(i+j-2) mod q]+count[i-1]. -The number of subsequences of cardinality k is equal to occ[n -count[i -1] + k].
-The cardinality maximum of any subsequence is equal to max c . Then, it is easy to check that leftmost count computes the exact same assignment as leftmost. Furthermore, at the at the end of the algorithm, we will have count

[i] = | -→ w [1 : i]| for all i ∈ [1, n].
⊓ ⊔

Achieving Arc-Consistency on ATMOSTSEQCARD

Now, we can prove our main result, that AC on a constraint ATMOSTSEQCARD(u, q, d, [x 1 , . . . , x n ]) can be achieved in O(n) time by Algorithm 3. First, in Line 1, we achieve AC on ATMOSTSEQ(u, q, [x 1 , . . . , x n ]), so that the first condition for Lemma 2 holds. Achieving AC on ATMOSTSEQ can be done in linear time using a procedure essentially similar to leftmost count. Indeed, since the constraint ATMOST is monotone, we simply need to achieve AC on every ATMOST. Moreover, a constraint ATMOST(u, [x i1 , . . . , x iq ]) may prune the domain of a variable only if u other variables in [x i1 , . . . , x iq ]) are assigned to 1. To do that, we run a truncated version of leftmost count: the values of w[i] are never updated, i.e., they are set to the minimum value in the domain and we never enter the if-then-else block starting at condition 1 in Algorithm 2. Now, if at step i we have max c = u, then there are u variables assigned to 1 in at least one subsequence involving vari, hence it should be set to 0 if possible.

Second, in Line 2, we achieve AC on the cardinality constraint, in order to satisfy the second condition of Lemma 2.

Third, in Line 4 we compute the vector L that maps each index i to the value of | -→ w [1 : i]|. This is given by the array count returned by leftmost count on the sequence [x 1 , . . . , x i ]. Notice that, we work with the residual demand, computed in Line 3, rather than the original demand. At this point, the third condition of Lemma 2 can be checked, and we know whether the constraint is AC, inconsistent, or if some pruning may be possible.

In the latter case, we compute the vector R, that maps each index i to the value of

| ← - w [i : n]|, in Line 5.
Finally, we can activate the pruning rules that are shown to be correct and sufficient by Lemmas 3 and 6 for Line 6, and Lemmas 4 and 7 for Line 7.

Algorithm 3: AC(ATMOSTSEQCARD)

Data: [x1, . . . , xn], u, q, d Result: AC on ATMOSTSEQCARD(u, q, d, [x1, .., xn]) 1 AC(ATMOSTSEQ)(u, q, [x1, . . . , xn]);

2 AC( n i=1 xi = d); 3 dres ← d -n i=1 min(xi); 4 L ← leftmost count([x1, . . . , xn], u, q); if L[n] = dres then 5 R ← leftmost count([xn, . . . , x1], u, q); foreach i ∈ [1, . . . , n] such that D(xi) = {0, 1} do 6 if L[i] + R[n -i + 1] ≤ dres then D(xi) ← {0}; ; 7 if L[i -1] + R[n -i] < dres then D(xi) ← {1}; ; else if L[n]
< dres then return failure; return consistent; Theorem 1. Algorithm 3 achieves AC on ATMOSTSEQCARD with an optimal worst case time complexity.

Proof. The soundness of Algorithm 3 is a straight application of Lemmas 3 and 4. Its completeness is a consequence of Lemmas 2, 6 and 7.

Achieving AC on ATMOSTSEQ (Line 1) can be done with one call to leftmost count. Achieving AC on a simple cardinality constraint (Line 2) can be done trivially in O(n) time. Finally, pruning the domains requires at most two calls to leftmost count, plus going through the sequence of variable to actually change the domains, that is, O(n) time.

The worst case time complexity of Algorithm 3 is then O(n), hence optimal. ⊓ ⊔ Example 2. We give an example of the execution of Algorithm 3 in Figure 4 for computing the AC of constraint ATMOSTSEQCARD with u = 4, q = 8 and d = 12.

The first line stands for current domains, dots are unassigned variables (hence d res = 10). The two next lines give the assignments -→ w and ←w obtained by running leftmost count from left to right and from right to left, respectively. The third and fourth lines stand for the values of

L[i] = | -→ w [1 : i]| and R[n -i + 1] = | ← - w [i : n]|.
The fifth and sixth lines correspond to the application of, respectively, Lemma 3 and 4. Last, the seventh line gives the arc consistent domains. Bold values indicate pruning.

Extensions

In this section, we show that the filtering algorithm described in the previous section can be extended in a number of ways to enforce AC on more general constraints. Some generalizations are straightforward. For instance, the parameter u does not need to be the same for all subsequences. Indeed neither Algorithm 1 nor Algorithm 2 relies on the fact that u is constant across all subsequences. We can easily give a list of upper bounds, one for each subsequence. Another relatively straightforward generalization is to have a domain variable, rather than a single value, for the demand d.

The ATMOSTSEQ∆CARD constraint

Let δ be a domain variable, we define the ATMOSTSEQ∆CARD as follows:

Definition 9. ATMOSTSEQ∆CARD(u, q, δ, [x 1 , . . . , x n ]) ⇔ n-q i=0 ( q l=1 x i+l ≤ u) ∧ ( n i=1 x i = δ)
We show how one can achieve AC on the above generalization. The changes to Algorithm 3 required to handle this generalization are minimal. Indeed, tight lower and upper bounds on δ are easy to compute. They are given, respectively by n i=1 min(x i ), and | -→ w |. Moreover, by Lemma 2, we know there can be inconsistent values for a variable

x i only if | -→ w | ≤ d.
It follows that we only need to care about the lower bound of δ. We show these changes in Algorithm 4. The domain of δ is updated in Line 2 for the lower bound, and Line 5 for the upper bound. Also, the lower bound of δ (min(δ)) is used to compute the residual demand to reach in Line 3 instead of d.

Algorithm 4: AC(ATMOSTSEQ∆CARD)

Data: [x1, . . . , xn], u, q, δ Result: AC on ATMOSTSEQ∆CARD(u, q, δ, [x1, .., xn]) 1 AC(ATMOSTSEQ)(u, q, [x1, . . . , xn]); and extend it to an AC support of ATMOSTSEQ∆CARD(u, q, δ, [x 1 , . . . , x n ]). These bounds are therefore tight.

2 AC( n i=1 xi = δ); 3 dres ← min(δ) -n i=1 min(xi); 4 L ← leftmost count([x1, . . . , xn], u, q); 5 D(δ) ← D(δ) ∩ [0, L[n] + n i=1 min(xi)]; 6 if L[n] = dres then R ← leftmost count([xn, . . . , x1], u, q); foreach i ∈ [1, . . . , n] such that D(xi) = {0, 1} do if L[i] + R[n -i + 1] ≤ dres then D(xi) ← {0}; ; if L[i -1] + R[n -i] <
Second, we need to prune values in D(x i ) for all i in 1, . . . , n that are not supported by any value in D(δ). A naive algorithm for checking that would be to run leftmost for each value in D(δ) and compute the union of possible values for the variables x i . However, one can avoid this by distinguishing two cases after line 5. Suppose that |D(δ)| > 1, in this case, lines 1, 2 and 5 imply that Lemma 2 holds for d = min(D(δ)). Hence all values for the variables x i are consistent and in this case we will never enter lines 6 and 7. Suppose now that |D(δ)| = 1, in this case, we can simply apply the same filtering (Line 6) that we proposed previously for a fixed cardinality.

The whole procedure requires at most two calls to leftmost count, which takes O(n) time.

⊓ ⊔

The MULTIATMOSTSEQCARD Constraint

Here, we show that we can easily modify Algorithm 3 (or Algorithm 4) to achieve AC on the conjunction of several ATMOSTSEQCARD constraints. For instance, in crew-rostering problems, the work pattern of an employee might require a conjunction of ATMOSTSEQCARD: one to limit the number of shifts per day, and another to limit the number of shifts per week. In the crew-rostering benchmarks that we consider in Section 5, we have a variable x i for each working shift i. Moreover, we want each employee to work at most one shift per day, at most five shifts per week, and between 17 and 18 shifts on the whole period. We model this with two ATMOSTSEQ∆CARD constraints: ATMOSTSEQ∆CARD(1, 3, δ, [x 1 , . . . , x n ]) and ATMOSTSEQ∆CARD(5, 21, δ, [x 1 , . . . , x n ]) s.t. D(δ) = {17, 18}. However, AC on these two constraints is not equivalent to AC on their conjunction. We illustrate this in Example 3 (using smaller instances of the constraints).

Example 3. Consider the conjunction of the two following ATMOSTSEQCARD constraints:

ATMOSTSEQCARD ( ). It is obtained using the same principle as leftmost, however by checking two sets of subsequences, one for each ATMOSTSEQCARD constraint. It is easy to see that the arguments of Lemma 1 are still valid when considering any number of subsequences. Therefore, the total cardinality of 8 is a valid upper bound, and since d is equal to 9, the conjunction of the two constraints has no solution. We define the constraint MULTIATMOSTSEQCARD, and show that the algorithm introduced in this paper can be adapted to enforce AC on this constraint in O(nm) time, where m is the number of chains of ATMOST constraints.

Definition 10. MULTIATMOSTSEQCARD(u 1 , .., u m , q 1 , .., q m , d, [x 1 , . . . , x n ]) ⇔ m k=1 n-q k i=0 ( q k l=1 x i+l ≤ u k ) ∧ ( n i=1 x i = d) Theorem 3. One can achieve AC on MULTIATMOSTSEQCARD in O(nm) time.
Proof (sketch). The main argument to show that this theorem holds is that all previous proofs and algorithms can be easily lifted to this case. We therefore only sketch its proof.

First, note that one can modify the procedure leftmost (or leftmost count) to handle a conjunction of ATMOSTSEQ constraints instead of a single one. All we need to do is to duplicate m times the structures maintaining the cardinalities of the subsequences. We obtain a procedure that checks m chains in O(nm) if we use Algorithm 2.

Second we show that Lemma 1 still holds with this new procedure, and with respect to several chains of ATMOST constraints. In other words, greedily assigning the value "1" while respecting m chains of ATMOST will produce a sequence of maximal cardinality. The argument used in the proof of Lemma 1 generalizes without modification to several chains. We show that if we make the hypothesis that an assignment w of cardinality higher than of | -→ w | found by the greedy procedure leads to a contradiction. For each value of q, the same three cases arise, and can be analyzed in exactly the same way. Hence we can show that w can be made equal to -→ w without changing its cardinality, hence a contradiction.

Indeed, in all subsequent proofs, we check subsequences of length q and show that they do not violate capacity constraints. Obviously, these proofs hold for any value of q (within [1, n]). Actually, the only difference is that when considering multiple chains, we might have to check subsequences of different lengths.

⊓ ⊔

Experimental Results

We tested our filtering algorithm on two benchmarks: car-sequencing and crew-rostering.

All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. All models are implemented using Ilog-Solver. Since we compare propagators, we averaged the results across several branching heuristics to reduce the bias that these can have on the outcome. Moreover, these heuristics were randomized and for each instance and each heuristic we launched 5 randomized runs with a 20 minutes time cutoff. 2 For each considered data set, we primarily compare the total number of successful runs, denoted "#solved". We say that a run was successful if either a solution could be found or unsatisfiability could be proven. Then, we also consider the CPU time in seconds and number of backtracks, denoted #backtracks, both restricted to successful runs. When appropriate, we emphasize the statistics of the best method using bold face fonts.

Car-sequencing

Problem description. In the car-sequencing problem [START_REF] Dincbas | Solving the Car-Sequencing Problem in Constraint Logic Programming[END_REF][START_REF] Solnon | The car sequencing problem : Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem[END_REF], n vehicles have to be produced on an assembly line, subject to capacity and demand constraints. There are k classes of vehicles and p types of options. Each class c is associated with a demand D c , that is, the number of occurrences of this class on the assembly line, and a set of options. Each option is handled by a working station able to process only a fraction of the vehicles passing on the line. The capacity related to an option j is defined by two integers u j and q j , and enforces that no subsequence of size q j contains more than u j vehicles requiring option j. We define also for each option j, the corresponding set of classes of vehicles requiring this option C j = {c | j ∈ O c }, and the option's demand

d j = c∈Cj D c .
Models and heuristics. We use a standard CSP model with two sets of variables. The first set corresponds to n integer variables {x 1 , . . . , x n } taking values in {1, . . . , k} and standing for the class of vehicles in each slot of the assembly line. The second set of variables corresponds to np Boolean variables {y 1 1 , . . . , y p n }, where y j i stands for whether the vehicle in the i th slot requires option j. Regarding the constraints, first, the demand for each class is enforced with a GCC [START_REF] Régin | Generalized Arc Consistency for Global Cardinality Constraint[END_REF]. Second, to ensure the capacity constraints, we consider four models:

1. sum: we use the default decomposition into a chain of ATMOST constraints. 2. gsc: Let card be a mapping on integers such that card(c) = D c , ∀c ∈ {1, . . . , k}.

For each option j, we post the following GSC constraint: GSC(0, u j , q j , card, card, [x 1 , . . . , x n ], C j ) 3. amsc: For each option j, we post the following ATMOSTSEQCARD constraint: ATMOSTSEQCARD(u j , q j , d j , [y j 1 , . . . , y j n ]) 4. gsc+amsc: we combine GSC with ATMOSTSEQCARD for each option.

Last, we channel integer and Boolean variables: ∀j ∈ {1, ..., p}, ∀i ∈ {1, ..., n},

y j i = 1 ⇔ x i ∈ C j .
We use 42 search heuristics obtained by combining different ways of exploring the assembly line either in lexicographic order or from the middle to the sides; of branching on affectation of a class to a slot or of an option to a slot; of selecting the best class or option among a number of natural criteria (such as maximum demand, minimum u/q ratio, as well as other criteria described in or derived from [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF], [START_REF] Siala | A study of Branching Heuristics for the Carsequencing Problem[END_REF], [START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF]).

Benchmarks. We use benchmarks available in the CSPLib [START_REF] Gent | CSPLib: a benchmark library for constraints[END_REF]. The first group of the CSPLib contains 70 satisfiable instances involving 200 cars, it is denoted by set1. The second group of the CSPLib corresponds to 4 satisfiable instances with 100 cars, denoted by set2 and 5 unsatisfiable instances with 100 cars denoted by set3. The third group of the CSPLib contains 30 larger instances (ranging from 200 to 400 vehicles). set4 concerns the 7 instances from this group that are known to be satisfiable. The status of the 23 remaining instances (set5) are still unknown. However, these instances are often treated as optimization problems. We therefore consider them separately later.

For each method, we report the average number of solved instances in Table 2, the average CPU time on solved instances in Table 3 and the average number of backtracks in Table 4. In each table, we also report the minimum and maximum value (for any heuristic, though averaged over randomized runs) as well as the standard deviation over the different heuristics. Table 2 shows that in all cases, the best method is either gsc+amsc or amsc. In some cases a stronger filtering seems to be key and gsc+amsc solves more instances than other methods: 95.46% of set1 and 3.04% of set3. In other cases, exploration speed is more important and amsc is better: 55.95% and 14.55% of solved instances for set2 and set4, respectively. Overall, as witnessed by Table 4, gsc and gsc+amsc usually require exploring a much smaller tree than amsc. However, the propagator for GSC slows down the search by a substantial amount. Considering Table 3 as well as data from unsolved instances, we observed a factor 12.5 on the number of nodes explored per second between these two models. Moreover, the level of filtering obtained by these two methods are incomparable. Therefore combining them is always better than using GSC alone.

In [START_REF] Van Hoeve | New Filtering Algorithms for Combinations of Among Constraints[END_REF] the authors applied their method to set1, set2 and set3 only. For their experiments, they considered the best result provided by 2 heuristics. When using COST-REGULAR or GEN-SEQUENCE filtering alone, 50.7% of problems are solved and when combining either COST-REGULAR or GEN-SEQUENCE with GSC, 65.2% of problems are solved (with a time out of 1 hour). In our experiments, in average over the 42 heuristics and the 5 randomized runs, ATMOSTSEQCARD and GSC solve respectively 84.29% and 87.19% of instances and combining ATMOSTSEQCARD with GSC solves 87.42% instances in a time out of 20 minutes. Moreover, using the model gsc+amsc, the best heuristic was able to solve 96.20% of these instances.

Next, we considered an optimization version of the same problem, introduced in [9] and used for instance in [START_REF] Perron | Combining Forces to Solve the Car Sequencing Problem[END_REF][START_REF] Perron | Propagation Guided Large Neighborhood Search[END_REF]. Here, the objective is to minimize the number of empty slots in the assembly line. In other words, we want to find the minimum value of n such that the standard model is satisfiable. With this setting, we can tackle the 23 instances of set5, for which no solution has been found.

We consider three groups of instances with the same (original) number of variables, respectively 200, 300 and 400. For each model, we report the minimum and average objective values, as well as CPU time, all averaged across the instances in each group. In Table 5, we observe an outcome similar to the satisfaction case for the two smaller groups, where, gsc+amsc and amsc give better solutions for the first and second group, respectively. However, for larger instances, the extra pruning does not seem to help to get better solutions, and sum is as good as amsc, and in fact a little bit better on average.

Crew-rostering

Problem description. In this problem, working shifts have to be attributed to employees over a period, so that the required service is met at any time and working regulations are respected. The latter condition can entail a wide variety of constraints. Previous work [START_REF] Menana | Sequencing and Counting with the multicost-regular Constraint[END_REF] [15] used allowed (or forbidden) patterns to express successive shift constraints. For example, with 3 shifts of 8 hours per day: D (day), E (evening) and N (night), ND can be forbidden since employees need some rest after night shifts. In this paper, we consider a simple case involving 20 employees with 3 shifts of 8 hours per days where no employee can work more than one 8h shift per day, no more than 5 days per period of 7 days, and the break between two worked shifts must be at least 16h. The planning horizon is of 28 days, and each employee must work 17 shifts over the 4 weeks period (i.e. 34 hours per week in average).

Models and heuristics.

We use a model with one Boolean variable e ij for each of the m employees and each of the n shifts stating if employee i works on shift j. The demand d s j on each shift j is enforced through a sum constraint m i=1 e ij = d s j .The other constraints are stated using two ATMOSTSEQCARD constraints per employee, one with ratio u/q = 1/3, another with ratio 5/21, and both with the same demand d = 17. We compare four models. In the first (sum), we use a decomposition in a chain of ATMOST constraints. In the second (amsc) we use two ATMOSTSEQCARD constraints per employee j, of the form: ATMOSTSEQCARD(u, q, d, [e i1 , . . . , e in ])

In the first constraint we have u = 1, q = 3, d = 17 and in the second constraint we have u = 5, q = 21, d = 17. Both are propagated using Algorithm 3. In the third model (gsc), we use the following GSC constraint to encode the constraint ATMOSTSEQCARD(u, q, d, [e i1 , . . . , e in ]):

GSC(0, u, q, {0 : n -d, 1 : d}, {0 : n -d, 1 : d}, [e i1 , . . . , e in ], {1})
Note that in this case, since the domains are Boolean, the GSC is in this case equivalent to ATMOSTSEQCARD. Therefore, it cannot prune more since the latter enforces AC. However, it is stronger than the decomposition. Last, in the fourth model (mamsc) the conjunction of the the two ATMOSTSEQCARD constraints is propagated using Algorithm 4.

We used the following four variable ordering heuristics.

1. Lexicographic: Explores shifts chronologically and pick an employee at random; 2. Middle: Similar as above, however we start exploring shifts from the middle; 3. Employee: Picks an employee with min slack, then a possible shift of max demand; 4. Shift: Similar as above, however, the shift is selected first, then the employee.

In all cases, we branch by assigning the value 1 to the chosen pair (employee, shift).

Benchmarks. We generated 341 instances, with worker availability ranging from 82% to 48% by increment of 0.1. This value denotes the probability that a given employee is willing to work during a given shift. It allows to vary the constrainedness of the problem. 228 of these instances were found feasible, 77 infeasible and 36 remain open. We report results for the satisfiable and unsatisfiable sets with 5 random runs per instance.

We report the results for the static heuristics in Table 6 and for the dynamic heuristics in Table 7. The first column indicates the total number of successful runs (#sol), then we report CPU time and number of backtracks, averaged over all instances and runs, as well as the standard deviation on this sample. Clearly, achieving AC on the (MULTI)ATMOSTSEQCARD constraint have a significant impact on the efficiency of the model. The decomposition into sum constraints cannot solve any satisfiable instance with lexicographic branching, and only one when starting from the middle of the sequence. The model using GSC offers a much more potent filtering, however, it is not as strong as AC on the ATMOSTSEQCARD constraint and moreover, it is much slower. On the other hand, the model using Algorithm 3 for the ATMOSTSEQCARD constraint achieves AC whilst being as fast as the decomposed model in terms of exploration. Moreover, combining the two ATMOSTSEQCARD constraints and using Algorithm 4 allows to solve about four times more satisfiable instances with Lexicographic branching and six times more with Middle branching. The COST-REGULAR constraint could be used to enforce the same level of consistency as the combination of two ATMOSTSEQCARD constraints. The possible patterns can be encoded through a finite automaton whilst the overall cardinality is encoded by the counter. Notice that using a REGULAR constraint (i.e., without cost) and modeling the overall work load with a cardinality constraint would not enforce a higher level of consistency than the decomposition into cardinality constraints (i.e., model sum) since ATMOST constraints are monotone. A worst case analysis would indicate that the number of states in the automaton is too large. However, using the O.D.E.N alphabet, standing for Off, Day, Evening and Night shift, respectively, the two ATMOSTSEQ constraints can be encoded using an automaton involving no more than 41 states. 3 Transitions labeled D,E or N have a cost 1, whilst transitions labeled O have a null cost. The target cost is set to the required working load. We do not compare our approach against such a COST-REGULAR encoding, although it would be interesting to empirically assess the computational overhead of this latter method. It is possible, however, to get an idea of this overhead by considering the similar approach used in [START_REF] Van Hoeve | New Filtering Algorithms for Combinations of Among Constraints[END_REF] on car-sequencing benchmarks. In this case, the COST-REGULAR encoding seems very close in CPU time and overall behavior to the cubic algorithm used for propagating the GEN-SEQUENCE constraint. Since the level of consistency would be strictly the same as in the model using the MULTIATMOSTSEQCARD constraint, we might expect similar results, albeit with slightly larger CPU times. When using dynamic heuristics (see Table 7), the difference between the different models becomes much less spectacular. However, the trend is the same, with the model combining the pairs of ATMOSTSEQCARD constraint dominating the other models.

Conclusion

We have introduced a linear time algorithm for achieving arc consistency on the constraint ATMOSTSEQCARD, a particular case of sequence constraint useful for instance in car-sequencing and crew-rostering applications.

Previously, the best AC algorithm for that constraint had an O(n 2 ) time complexity [START_REF] Maher | Flow-Based Propagators for the SEQUENCE and Related Global Constraints[END_REF]. However, it ran in O(n 2 log n) time down a branch since subsequent calls cost O(n log n), whilst our algorithm is not incremental hence requires up to O(n 2 ) steps down a branch.

We also proposed some extensions of ATMOSTSEQCARD and showed that one can easily adapt the initial algorithm to achieve arc consistency on these constraints.

In particular, we have shown that it is possible to achieve AC on a conjunction of ATMOSTSEQCARD constraints on the same scope with the same complexity as achieving AC on each conjunct.

Our empirical evaluation shows that current models for car-sequencing and crewrostering problems can take advantage of this constraint. On car-sequencing problems, the filtering of our propagator is incomparable with that of GSC, albeit much less computationally costly. For some instances, it is thus worth combining both constraints. In other cases, a model using only the ATMOSTSEQCARD constraint is better. On crewrostering problem, the REGULAR constraint is often used since it can model arbitrary working patterns. However, ATMOSTSEQCARD can model useful patterns and provide efficient and cheap filtering for them. Moreover, several such patterns can be combined to obtain a stronger filtering without degrading the time complexity.
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 1 Fig. 1: Example of the execution of leftmost for ATMOSTSEQ(2, 4, [x1, . . . , xn]) with maximal cardinality.

  and suppose that there exists a consistent assignment w such that w[i] = 0 and |w| = d.By Lemma 1 on the sequence x 1 , . . . , x i-1 we know that i-1 l=1 w[l] ≤ | -→ w [1 : i -1]|. By Lemma 1 on the sequence x n , . . . , x i+1 we know that n l=i+1 w[l] ≤ | ←w [i + 1 : n]|. Therefore, since w[i] = 0, we have |w| = n l=1 w[l] < d, thus contradicting the hypothesis that |w| = d. Hence, there is no support for

  thus contradicting the hypothesis that |w ′ | = d. Hence there is no support for x i = 1. ⊓ ⊔ Lemmas 3 and 4 entail a pruning rule. In a first pass, from left to right, one can use an algorithm similar to leftmost to compute and store the values of | -→ w [1 : i]| for all i ∈ [1, . . . , n]. In a second pass, the values of | ←w [i : n]| for all i ∈ [1, . . .

Fig. 2 :

 2 Fig. 2: Illustration of Lemma 6's proof. Horizontal arrows represent assignments.

Fig. 3 :

 3 Fig. 3: Illustration of Lemma 7's proof. Horizontal arrows represent assignments.

Theorem 2 .

 2 Algorithm 4 achieves AC on ATMOSTSEQ∆CARD with an optimal worst case time complexity. Proof. First, we need to prune inconsistent values from the domain of δ. By Lemma 1, the cardinality | -→ w | of the assignment returned by leftmost is a valid upper bound for δ. Moreover, because of the cardinality constraint, n i=1 min(x i ) is a valid lower bound. It is easy to see that any value d within these bounds satisfies the conditions of Lemma 1. In other words, we can assign δ to any value in the interval [ n i=1 min(x i ), | -→ w |]

  xi: . . . . . . . 0 . . . . . 0 . . . . . 0 . . -→ w on 4.1

  1, 2, 9, [x 1 , . . . , x 22 ]) &

		(4.1)
	ATMOSTSEQCARD(2, 5, 9, [x 1 , . . . , x 22 ])	(4.2)

Now, suppose that D(x 8 ) = D(x 14 ) = D(x 20 ) = {0}, whilst all other domains are equal to {0, 1}. The first line of Table

1

shows the domains of [x 1 , . . . , x 22 ], with a dot (.) standing for a full domain ({0, 1}) and the value 0 standing for the domain reduced to the singleton {0}. The second and third lines show the results of leftmost on [x 1 , . . . , x 22 ] for u/q = 1/2 and u/q = 2/5, respectively. Since the demand d is equal to 9, both constraints 4.1 and 4.2 are AC. Last, the third line shows an assignment of maximum cardinality respecting simultaneously ATMOSTSEQ

(

1, 2, [x 1 , . . . , x 22 ]) and ATMOSTSEQ(2, 5, [x 1 , . . . , x 22 ]

Table 1 :

 1 Maximal cardinality assignments.

Table 2 :

 2 Evaluation of the filtering methods (solved instances count)

	propagation	#solved in set1 (70 × 5) avg min max dev	#solved in set2 (4 × 5) avg min max dev
	sum	268.33 70.00 350.00 88.95 2.95 0.00 15.00 3.66
	gsc	333.52 154.00 350.00 42.16 10.11 0.00 20.00 5.25
	amsc	321.35 80.00 350.00 64.05 11.19 0.00 20.00 5.22
	gsc+amsc 334.11 154.00 350.00 41.88 10.45 0.00 20.00 5.06
	propagation	#solved in set3 (5 × 5) avg min max dev	#solved in set4 (7 × 5) avg min max dev
	sum	0.00	0.00	0.00 0.00 2.35 0.00 9.00 2.65
	gsc	0.73	0.00 10.00 2.35 4.64 0.00 10.00 3.69
	amsc	0.38	0.00	5.00 1.21 5.09 0.00 10.00 3.75
	gsc+amsc	0.76	0.00 10.00 2.41 4.80 0.00 10.00 3.65

Table 3 :

 3 Evaluation of the filtering methods (CPU time on solved instances)

	propagation	CPU time (in sec.) on set1 (70 × 5) CPU time (in sec.) on set2 (4 × 5) avg min max dev avg min max dev
	sum	10.49 0.02 1145.20	80.39 58.74 0.01 766.25	178.88
	gsc	3.16 0.52 1100.54	33.17 109.45 0.11 1096.37	237.46
	amsc	3.79 0.03 1197.88	51.49 70.56 0.01 1014.57	186.87
	gsc+amsc	3.03 0.53 1017.74	33.60 99.71 0.11 1155.40	222.85
	propagation	CPU time (in sec.) on set3 (5 × 5) CPU time (in sec.) on set4 (7 × 5) avg min max dev avg min max dev
	sum	-	-	-	-30.85 0.03 985.75	136.43
	gsc	276.06 29.22 988.79	308.64 53.61 1.63 975.03	147.35
	amsc	8.62 1.06	18.07	6.72 38.45 0.03 1171.78	124.29
	gsc+amsc 285.43 6.01 1131.19	337.24 61.61 1.62 1180.53	175.23

Table 4 :

 4 Evaluation of the filtering methods (search tree size on solved instances)

	propagation	#backtracks on set1 (70 × 5) avg min max	dev	#backtracks on set2 (4 × 5) avg min max	dev
	sum	174017 148 25062202 1341281 1101723 78 15324348 3439897
	gsc	1408	99 2320312	34519 131062 58 1595137 306448
	amsc	33600	92 13888040 468527 665205 61 10254401 1827516
	gsc+amsc	1007	92 1180605	23649 104823 56 1055307 244135
	propagation	#backtracks on set3 (5 × 5) avg min max	dev	#backtracks on set4 (7 × 5) avg min max	dev
	sum	-	-	-		-378475 170 13767766 1754180
	gsc	55365 5852	218590	63211	23897 151	467396	75097
	amsc	40326 5991	83454	29690 215349 146 5624744 653498
	gsc+amsc	57725 1120	244787	69705	22974 146	428523

Table 5 :

 5 Optimization on set5. .62 12.37 53.04 11.87 12.77 99.19 11.50 12.47 129.04 11.87 12.57 42.49 pb 400 10.57 11.45 10.28 11.14 11.74 185.44 11.00 11.71 175.28 10.57 11.34 6.58

	Instance	amsc Empty slots time (s) Empty slots time (s) Empty slots time (s) Empty slots time (s) gsc gsc+amsc sum
		min avg	avg min avg	avg min avg	avg min avg	avg
	pb 200	7.75 8.32 13.06 7.87 8.35 44.03 7.62 8.27 53.09 7.75 8.32 21.52
	pb 300 11			

Table 6 :

 6 Evaluation of the filtering methods: static branching (highest success counts are in bold fonts)

					Lexicographic		
			satisfiable (1140)			unsatisfiable (385)
	Model	#sol	CPU time avg dev	#backtracks avg dev	#sol	CPU time avg dev	#backtracks avg dev
	sum	0	-	-	-	-170 0.05 0.02	86	452
	gsc	25 308.93 344.29	74074	84301 175 2.56 9.71	262	1794
	amsc 125 164.36 239.56 1828347 2759080 213 1.76 21.95 22621 292152
	mamsc 534 87.29 188.81 685720 1491867 271 2.80 45.02 27150 444913
				From the middle to the sides	
	Model	#sol	satisfiable (1140) CPU time #backtracks avg dev avg dev	#sol	unsatisfiable (385) CPU time #backtracks avg dev avg dev
	sum	1 166.76	0.00 5716015	0 160 0.04 0.00	0	0
	gsc	7 253.20 301.63	53763	63110 165 1.07 0.08	0	0
	amsc	57 161.38 267.23 2207676 3621762 201 0.20 1.46 1622 15809
	mamsc 336 134.95 239.11 1410458 2525422 265 0.05 0.00	0	0

Table 7 :

 7 Evaluation of the filtering methods (dynamic branching) .07 65.02 90247 593928 362 12.19 77.37 108797 736775 mamsc 1074 10.94 77.37 91222 667176 377 14.63 107.58 110244 834887

				Most constrained employee
			satisfiable (1140)			unsatisfiable (385)
	Model	#sol	CPU time avg dev	#backtracks avg dev	#sol	CPU time avg dev	#backtracks avg dev
	sum	772 21.93 104.91 205087 1000794 165 0.06	0.00	0	2
	gsc	746 65.75 180.29 14133	42235 175 0.98	0.09	0	3
	amsc	818 20.51 103.76 147479 761261 215 0.13	0.55	330	2582
	mamsc 842 20.78 111.00 125886 676061 270 0.05	0.01	0	2
				Most constrained shift	
			satisfiable (1140)			unsatisfiable (385)
	Model	#sol	CPU time avg dev	#backtracks avg dev	#sol	CPU time avg dev	#backtracks avg dev
	sum	987 20.76 102.53 169964 853020 352 19.74 99.61 180161 967933
	gsc	1006 33.30 107.08	8875	31586 335 15.97 95.36	5145 35824
	amsc 1061 10				

This modeling choice is used in[START_REF] Van Hoeve | New Filtering Algorithms for Combinations of Among Constraints[END_REF] on car-sequencing.

For a total of approximately one year of CPU time.
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Appendix

Complete proof of Lemma 8 Proof. We prove the following three invariants, true at the beginning of each step of the main loop:

-The cardinality of the j th subsequence is equal to c[(i+j-2) mod q]+count[i-1].

-The number of subsequences of cardinality k is equal to occ

-The cardinality maximum of any subsequence is equal to max c .

Cardinality of the subsequences.

Let w i denote the assignment w after i-1 steps of the loop. Notice that at the beginning and the end of the sequence of variables, subsequences are truncated. However, to simplify the notations, we will consider that w[-q], w[-q + 1], . . . , w[-1] exist and are equal to 0. Thus we can write that the cardinality of the j th is equal to

We prove the first invariant by induction, i.e., let P (i) denote the fact that the following equalities hold at the beginning of a step i:

The base case P (1) is easily checkable from the initialization of c. Now suppose that P (i) holds, and consider the state of c at the beginning of step i + 1. First, note that at step i of the loop, only the value of c[i -1 mod q] changes. Consider j ∈ [1, . . . , q -1]. In this case, ((i + 1)+ j -2 mod q) = (i + j -1 mod q) = (i -1 mod q). Therefore, c[(i + 1) + j -2 mod q] has not changed between step i and step i + 1, and since P (i) holds, we have:

which can be rewritten as follows:

Now there are two possibilities. Either count is incremented, i.e., count[i] = count[i -1] + 1, and in that case w i+1 [i] = w i [i] + 1. Or count is not incremented, and in that case

In both cases we have:

for all l = i. Hence we obtain:

which can be rewritten as:

Thus P (i + 1) holds. Now we look at the last case: j = q. Here, at step i the value of

, so at the beginnning of step i + 1 we have:

We have shown that P (i) implies P (i + 1), and we can therefore conclude that at the beginnig of each step i of the loop P (i) (that is, the first invariant) holds.

Occurrences of each cardinality.

We proceed as for the first invariant, and prove it by induction. The base case is easy to check. Since count[0] = 0, and since the array c is properly initialized. Now we assume that there are exactly occ[n -count[i -1] + k] subsequences involving x i which cardinility is equal to k in w i , and we show that at the beginning of step i + 1 there will be occ[n-count[i]+ k] subsequences involving x i+1 of cardinality k in w i+1 .

There are two reasons for cardininalities to change.

First, when moving up to the next step in the loop, we move from subsequences involving x i to subsequences involving x i+1 . There are q -1 subsequences involving both x i and x i+1 . So we simply need to make sure that the occurrences are updated to reflect the fact that the subsequence x i-q+1 , . . . , x i should not be counted anymore, whilst the subsequence x i+1 , . . . , x i+q should now be. Let k 1 (resp. k 2 ) be the cardinality of the former (resp. latter) subsequence. As established by the first invariant,

. However, this is precisely what is done in Line 4 and 5.

Second, when the conditions in Line 1 are met, the value of w[i] is set to 1. Since its value was previously 0, the cardinality of every subsequence involving w[i] should be incremented before starting the next step (i + 1). This happens automatically because in this case the value of count[i] will be set to count[i -1] + 1. Indeed, for any integer k, the number of occurrences of subsequences of cardinality k -1 at the beginning of

Cardinality maximum.

Here we show that the maximum value of the cardinalities of the current subsequences is properly maintained. When the number of occurrences of a cardinality k becomes non-null and if k > max c , then max c is set to k. Similarly, When the number of occurrences of a cardinality k becomes null and if k = max c , then max c is decreased. Last, when the cardinality of all subsequences is incremented, max c is incremented too.

These operations are correct because from one step i to i + 1, the value of max c cannot change by more than 1. Indeed, only the first subsequence is removed, the other q -1 subsequences remain unchanged. Moreover, the first subsequence is replaced by the last subsequence to which a value a ∈ [0, 1] is added, and another value b ∈ [0, 1] is substracted. Therefore its value cannot change by more than 1, hence max c . Now having these three invariants, one can check that at each step i the values of w[i] will be the same as in Algorithm