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Abstract

We study the hyperbolic scaling limit for a chain of N coupled anharmonic oscil-
lators. The chain is attached to a point on the left and there is a force (tension) τ
acting on the right. In order to provide good ergodic properties to the system, we per-
turb the Hamiltonian dynamics with random local exchanges of velocities between the
particles, so that momentum and energy are locally conserved. We prove that in the
macroscopic limit the distributions of the elongation, momentum and energy, converge
to the solution of the Euler system of equations, in the smooth regime.

1 Introduction

The aim of this paper is to study the hydrodynamic limit for a non-equilibrium system
subject to an exterior time dependent force at the boundary. We consider the most
simple mechanical model with non-linear interaction, i.e. a one dimensional chain of
N anharmonic oscillators. The left side is attached to a fixed point, while on the right
side is acting a force τ (tension). For each value of τ there is a family of equilibrium
(Gibbs) measures parametrized by the temperature (and by the tension τ ). It turns
out that these Gibbs measures can be written as a product.

We are interested in the macroscopic non-equilibrium behavior of this system as N
tends to infinity, after rescaling space and time with N in the same way (hyperbolic
scaling). We also consider situations in which the tension τ depends slowly on time,
such that it changes in the macroscopic time scale. In this way we can also take the
system originally at equilibrium at a certain tension τ0 and push out of equilibrium by
changing the exterior tension.

The goal is to prove that the 3 conserved quantities (elongation, momentum and
energy) satisfy in the limit an autonomous closed set of hyperbolic equations given by
the Euler system.

We approach this problem by using the relative entropy method (cf. [12]) as already
done in [9] for a system of interacting particles moving in R

3 (gas dynamics).
The relative entropy method permits, in general, to obtain such hydrodynamic limit

if the system satisfy certain conditions:

A) The dynamic should be ergodic in the sense that the only conserved quantities
that survive the limit as N → ∞ are those we are looking for the macroscopic
autonomous behavior (in this case elongation, momentum and energy). More
precisely, the only stationary measure for the infinite system, with finite local
entropy, are given by the Gibbs measures.
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B) The macroscopic equations have smooth solutions.

C) Microscopic currents of the conserved quantities should be bounded by the local
energy of the system.

We do not know any deterministic Hamiltonian system that satisfy condition A),
and this is a major challenging open problem in statistical mechanics. Stochastic per-
turbation of the dynamics that conserves energy and momentum can give such ergodic
property and have been used in [9] (cf. also [8, 4, 3]). We use here a simpler stochas-
tic mechanism than in [9]: at random independent exponential times we exchange the
momentum of nearest neighbor particles, as if they were performing an elastic colli-
sion. Under this stochastic dynamics, every stationary measure has the property to be
exchangeable in the velocity coordinates, and this is sufficient to characterize it as a
convex combination of Gibbs measures (cf. [3] and [1]).

About condition B), it is well known that nonlinear hyperbolic equations in gen-
eral develop shocks also starting from smooth initial condition. Characterization and
uniqueness of weak solutions in presence of shock is a challenging problem in the the-
ory of hyperbolic equations. We expect that a shock will increase the thermodynamic
entropy associated to the profiles of the conserved quantities.

The relative entropy method compares the microscopic Gibbs entropy production
(associated to the probability distribution of the system at a given time) with the
macroscopic (thermodynamic) entropy production. If no shocks are present both en-
tropy productions are small. The presence of the boundary force changes a bit this
balance, since one should take into account the (macroscopic) change of entropy due
to the work performed by the force. It turns out that the right choice of the boundary
conditions in the macroscopic equation does compensate this large entropy production,
keeping the time derivative of the relative entropy small. It would be interesting to
prove similar cancellation of entropy productions when this is caused by shocks, as it
would allow to prove the hydrodynamical limit in these cases, and provide a micro-
scopic derivation of irreversible thermodynamic adiabatic transformations, between
thermodynamic equilibrium states that increase the thermodynamic entropy. Recent
efforts in this direction use different methods (cf. [5]). Similar results on isothermal
transformation are mathematically easier (cf. [10]).

About condition C), it created a problem in [9]: in the usual gas dynamics the energy
current has the convecting term cubic in the velocities, while energy is quadratic. This
was fixed in [9] by modifying the kinetic energy of the model: if the kinetic energy
grows linearly as a function of the velocity, also the energy current will grow linearly.
Since we work here in Lagrangian coordinates, our energy current does not have the
cubic convecting term. This allows us to work with the usual quadratic kinetic energy.

This paper has been partially supported by European Advanced Grant Macroscopic
Laws and Dynamical Systems (MALADY) (ERC AdG 246953) and by a grant of the
MAThematics Center Heidelberg (MATCH).

2 The Model and the Main Theorem

We will study a system of N + 1 coupled oscillators in one dimension. Each particle
has the same mass that we set equal to 1. The position of atom i (i = 0, . . . , N) is
denoted by qi ∈ R, while its momentum is denoted by pi ∈ R. We assume that particle
0 is attached to a fixed point and it does not move, i.e. (q0, p0) ≡ (0, 0), while on
particle N we apply a force τ (t) depending on time. Observe that only the particle 0
is constrained not to move, and that qi can assume also negative values.

Denote by q := (q0, . . . , qN ) and p := (p0, . . . , pN ). The interaction between two
particles i and i − 1 will be described by the potential energy V (qi − qi−1) of an
anharmonic spring relying the particles. We assume V to be a positive smooth function
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that grows quadratically at infinity, i.e. there exist strictly positive constants C+ and
C− such that for any r ∈ R:

V ′(r)2 ≤ C+(1 + V (r)), r2 ≤ C−(1 + V (r)), V (0) = 0. (2.1)

Energy is defined by the following Hamiltonian:

HN(q,p) : =
N
∑

i=1

(

p2i
2

+ V (qi − qi−1)

)

.

Since we focus on a nearest neighbors interaction, we define the distance between
particles by

ri = qi − qi−1, i = 1, . . . , N.

Consequently the phase space is given by (R2)N . We define the energy of particle
i ∈ {1, . . . , N} as

ei :=
p2i
2

+ V (ri)

so that HN (r,p) =
∑N

i=1 ei, where r := (r1, . . . , rN).
Given a smooth function τ (s) that represents the force applied to particle N at the

macroscopic time s, the dynamics of the system is determined by the generator

NG
τ(t)
N := NL

τ(t)
N +NγSN . (2.2)

Here the Liouville operator Lτ
N is given by

Lτ
N =

N
∑

i=1

(pi − pi−1)
∂

∂ri
+

N−1
∑

i=1

(

V ′(ri+1)− V ′(ri)
) ∂

∂pi

+
(

τ − V ′(rN)
) ∂

∂pN
, (2.3)

where we used the fact that p0 ≡ 0. Notice that the time scale in the tension is chosen
such that it changes smoothly on the macroscopic scale.

The symmetric operator SN is the generator of the stochastic part of the dynamics
that exchanges at random times velocities of nearest neighbors particles. For any
smooth function f , we define the operator Υi,i+1 by

Υi,i+1 = f
(

r,pi,i+1
)

− f (r,p) (2.4)

where pi,i+1 ∈ R
N is defined from p ∈ R

N by exchanging the coordinates pj and pj+1

pi,i+1
j =







pj if j 6= i, i+ 1
pi+1 if j = i
pi if j = i+ 1

.

Then SN is defined through

SNf(r,p) :=

N−1
∑

i=1

(

f
(

r,pi,i+1
)

− f(r,p)
)

= −1

2

N−1
∑

i=1

Υ2
i,i+1f(r,p) (2.5)

With this choice of the noise, the three balanced quantities, i.e. locally conserved, are
given by ri, pi, ei.

We define ζ(r, p) = (r, p,−e(r, p))T ∈ R
2 × R−, and the Gibbs thermodynamic

potential:

Θ(λ) := log

∫

R2

eλ·ζ(r,p) drdp. (2.6)
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By the condition imposed on V , this function is always finite.
For ζ ∈ R

2 × R− we define Φ : R2 × R− → R the Legendre transform of Θ(λ):

Φ(ζ) := sup
η∈R2×R+

{η · ζ −Θ(η)} . (2.7)

We denote by λ(ũ) and ũ(λ) := (r, p,−E)T the corresponding convex conjugate
variable, that satisfy

λ = DΦ(ũ) and ũ = DΘ(λ), (2.8)

where the operator D is defined by

Df(a) :=

(

∂f

∂a1
,
∂f

∂a2
,
∂f

∂a3

)

(2.9)

for any C1 function f : R3 → R and a := (a1, a2, a3) ∈ R
3.

On the one particle state space R
2 we define a family of probability measure

νλ(dr, dp) = eλ·ζ(r,p)−Θ(λ)drdp. (2.10)

Observe that
Eνλ [ζ(r, p)] = ũ

so we can identify ũ = (r, p,−E)T as respectively the average distance, velocity and
(negative) energy. We also define the internal energy e = E − p

2/2. We have the
relations

Eνλ(p
2)− p

2 = λ−1
3 := β−1, P (r, e) := Eνλ [V

′(r)] =
λ1

λ3
:= τ

that identify β−1 as temperature and τ as tension. This thermodynamic terminology
is justified by observing that, for constant τ in the dynamics, and any β > 0, with the
choice λ = (βτ, 0, β) the family of product measures given by:

νN(τβ,0,β)(dr, dp) =

N
∏

i=1

ν(τβ,0,β)(dri, dpi), β ∈ R
+

is stationary for the dynamics. These are the Gibbs measures at an average temperature
β−1, pressure τ and velocity 0. In what follows we need also Gibbs measure with average
velocity different from 0, and we will use the following notation:

νNλ :=
N
∏

i=1

eλ·ζi−Θ(λ)dridpi := gNλ (r,p)drdp,

where ζi := (ζi,1, ζi,2, ζi,3)
T := (ri, pi,−ei)T .

In a similar way we may introduce the local Gibbs measures: For any continuous
profile ũ(x), x ∈ [0, 1], we have correspondingly a profile of parameters λ(x), and we
define the inhomogeneous product measure

νNλ(·) :=

N
∏

i=1

eλ(i/N)·ζi−Θ(λ(i/N))dridpi,

that we call Local Gibbs measures.
We are interested in the macroscopic behavior of the elongation, momentum and

energy of the particles, at time t, as N → ∞. Notice that t is already the macroscopic
time, since we have already multiplied the generator by N . Taking advantage of the
one-dimensionality of the system, we will use lagrangian coordinates, i.e. our space
variables will be given by the lattice coordinates {1/N, . . . , (N−1)/N, 1}. Also observe

that at this time scale, the generator of the process is given by NGτ(t)
N .
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Consequently, we introduce the (time dependent) empirical measures representing
the spatial distribution (on the interval [0, 1]) of these quantities:

ηNα (dx, t) :=
1

N

N
∑

i=1

δ

(

x− i

N

)

ζi,α(t) dx, for α = 1, 2, 3.

We expect the measures ηNα (dx, t), α = 1, 2, 3 to converge, as N → ∞, to mea-
sures r(x, t)dx, p(x, t)dx, −E(x, t)dx being absolutely continuous with respect to the
Lebesgue measure and with density satisfying the following system of three conservation
laws:






















∂tr− ∂xp = 0

∂tp− ∂xP (r, e) = 0 ,







r0(x) = r(x, 0), p0(x) = p(x, 0), E0(x) = E(x, 0)

p(0, t) = 0, P (r(1, t), e(1, t)) = τ (t)
∂tE − ∂x(pP (r, e)) = 0

(2.11)
for bounded, smooth initial data r0, p0, E0 : [0, 1] → R and the force τ (t) depending on
time t. Here we denoted by r the specific volume, p the velocity, E the total energy and
e := E − 1

2
p
2 the internal energy. We also assume that the internal energy is always

positive: e(x, 0) > 0.
We need the solutions of the system (2.11) to be C2-solutions. To assure this, the

following additional compatibility conditions at the space-time edges (x, t) = (0, 0) and
(x, t) = (1, 0) have to be satisfied:

lim
x→0

p0(x) = p(0, 0) = 0 , lim
x→1

P (r0(x), e0(x)) = τ (0) (2.12)

lim
x→0

d

dx
P (r0(x), e0(x)) = 0 , lim

x→1

d

dt
P (r0(x), e0(x)) = τ ′(0) (2.13)

lim
x→0

d2

(dt)2
p0(x) = 0 , lim

x→1

d2

(dt)2
P (r0(x), e0(x)) = τ ′′(0). (2.14)

A proof of this can be adapted from Chapters 4.3, 7.5 and 3.5 of [7].
For any test function J : [0, 1] → R with compact support in (0, 1) consider the

empirical densities

ηNα (t, J) := 〈ηNα (dx, t); J〉 =
1

N

N
∑

i=1

J

(

i

N

)

ζα,i(t). (2.15)

Our goal is to show that, starting with an initial distribution such that there exist
smooth functions r0, p0 and E0 satisfying

{ηN1 (0, J), ηN2 (0, J), ηN3 (0, J)} →
{
∫

J(x)r0(x)dx,

∫

J(x)p0(x)dx,−
∫

J(x)E0(x)dx

}

(2.16)
in probability as N → ∞, then at time t ∈ [0, T ] we have the same convergence of
ηNα (t, J), α = 1, 2, 3 to the corresponding profiles r(x, t), p(x, t) and E(x, t) respectively,
that satisfy (2.11)–(2.14).

Here is the precise statement of our main result, where we make a stronger assump-
tion on the initial measure:

Theorem 2.1 (Main Theorem). For any time t ≤ ts, ts being the time at which the
solution u produces the first shock, denote by µN

t the probability measure on the config-
uration space R

2N at time t, starting from the local Gibbs measure νNλ(·,0) corresponding
to the initial profiles ũ0. Then for any smooth function J : [0, 1] → R and any δ > 0

lim
N→∞

µN
t

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

J(
i

N
)ζi −

∫ 1

0

J(x)ũ(x, t)dx

∣

∣

∣

∣

∣

> δ

]

= 0, (2.17)
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where u is a C2-solution to the system of conservation laws (2.11)–(2.14).

Remark 2.2. As our proof is based on the relative entropy method of [12], it is only
valid as long as the solution to (2.11) are C2. Since, even for smooth initial data, it may
happen that the solution develops shocks, we are forced to restrict our derivation to a
time 0 < t < ts, where ts is the time when the solution to the system of conservation
laws enters the first shock.

Remark 2.3. A proof for the existence of smooth solutions to the initial-boundary-
value problem (2.11) can be found in chapter 4.3, 7.5 and 3.5 of [7]. Notice that we
can rewrite the pressure P as a function of specific volume r and entropy s:

P̃ (r, s) := P (r, e).

Then we can rewrite the initial boundary value problem (2.11), in the smooth regime,
in terms of the unknown r, p and s(r, e) as follows:






















∂tr − ∂xp = 0

∂tp− ∂xP̃ (r, s) = 0

∂ts = 0

,







r0(x) = r(x, 0), p0(x) = p(x, 0), s0(x) = s(x, 0)

p(0, t) = 0, P̃ (r(1, t), s(1, t)) = τ (t)
, (2.18)

where we used the thermodynamic relation

P̃ (r, s) = −∂e(r, s)
∂r

.

Hence the specific entropy s does not change in time and for any x ∈ [0, 1] is given
through the initial data s(x, 0) := s0(x).

In the non-conservative form, equation (2.18) reads as:

∂t





r

p

s



−A(r, p, s)∂x





r

p

s



 = 0

where the 3× 3-matrix A is defined by

A :=





0 1 0
∂P̃
∂r

0 ∂P̃
∂s

0 0 0



 = S ·





c 0 0
0 −c 0
0 0 0



 · S−1

with c := c(r, s) =
√

∂P̃
∂r

and

S := S(r, p, s) =





1 1 − 1
c

∂P̃
∂s

c −c 0
0 0 c



 .

With these notations we can rewrite (2.18) in the characteristic form

S
−1 · ∂t





r

p

s



−





c 0 0
0 −c 0
0 0 0



 · S−1 · ∂x





r

p

s



 = 0

⇒
{ c(∂tr− c∂xr) + (∂tp− c∂xp) +

1
c
∂P̃
∂s

(∂ts− c∂xs) = 0

c(∂tr+ c∂xr)− (∂tp+ c∂xp) +
1
c
∂P̃
∂s

(∂ts+ c∂xs) = 0
∂ts = 0.

In this way we can apply the existence proof for C2 solutions to (2.11)–(2.14) for short
times from [7].
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3 The Hydrodynamic Limit

3.1 The Relative Entropy

On the phase space (R2)N we now have two time–dependent families of probability
measures. One of them is the local Gibbs measure νNλ(·,t) constructed from the solution
of the system of conservation laws (2.11)–(2.14). We denote its density by

gNt =

N
∏

i=1

eλ(i/N,t)·ζi−Θ(λ(i/N,t)) (3.1)

On the other hand we have the actual distribution µN
t , whose density fN

t (r,p) is a
solution, in the sense of distributions, of the Kolmogorov forward equation:











∂fN
t

∂t
(r,p) = NGτ(t),⋆

N fN
t (r,p)

fN
0 (r,p) = gN0 (r,p).

(3.2)

By Gτ,∗
N = Lτ,⋆

N +γSN we denote the adjoint operator of Gτ
N with respect to the Lebesgue

measure, where Lτ,⋆
N can be computed as Lτ,⋆

N = −Lτ
N .

The relative entropy of fN
t with respect to gNt is defined by

HN(t) =

∫

fN
t log

fN
t

gNt
drdp (3.3)

Our main result will follow from:

Theorem 3.1 (Relative entropy). Under the same assumptions as in Theorem 2.1,
for any time t ∈ [0, T ], T < ts,

lim
N→∞

1

N
HN (t) = 0.

Remark: Recall that the relative entropy H(α|β) of a probability measure α with
respect to a probability measure β can be rewritten as

H(α|β) = sup
ϕ

{∫

ϕdα− log

∫

eϕdβ

}

(3.4)

where the supremum is taken over all bounded measurable functions ϕ. It is easy to
see that the relative entropy has the following properties: H(α|β) is positive, convex,
and lower semi continuous function of α. It follows that for any measurable function
F and any σ > 0:

∫

F dα ≤ 1

σ
log

∫

eσF dβ +
1

σ
H(α|β). (3.5)

Proof of Theorem 2.1:
A useful special case of the entropy inequality can be stated if we set F := 1[A] to

be the indicator function on a set A. With the choice σ = log
(

1 + 1
β[A]

)

, we obtain

the inequality

Eα[1[A]] = α[A] ≤ 1

σ
log β[exp(σ1[A])] +

1

σ
H(α|β)

=
1

σ
log (β[A](eσ − 1) + 1) +

1

σ
H(α|β)

⇒ α[A] ≤ log 2 +H(α|β)
log
(

1 + 1
β[A]

) (3.6)
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Thus, if we define the set Aδ to be

Aδ :=

{∣

∣

∣

∣

∣

1

N

N
∑

i=1

J(
i

N
)ζi −

∫ 1

0

J(x)u(x, t)dx

∣

∣

∣

∣

∣

> δ

}

,

for any test function J : [0, 1] → R with compact support in (0, 1), then with inequality
(3.6), to prove that limN→∞ µN

t [Aδ] = 0, it is enough to show that for each δ > 0

log

(

1 +
1

νN
λ(·,t)

)

≥ C(δ)N,

for some constant C not depending on N , since from Theorem 3.1 we have thatHN(t) =
o(N). But this is satisfied if νNλ(·,t)[Aδ] is exponentially small, i.e

νNλ(·,t)[Aδ] ≤
1

eC(δ)N
. (3.7)

This is a result of the large deviation theory which can be adapted from [1, 6, 11].

3.2 Time Evolution of the Relative Entropy

In this Section we will prove Theorem 3.1. Notice that by the choice of the initial
distribution

HN(0) = 0.

The strategy is to show that for some constant C

HN(t) ≤ C

∫ t

0

HN(s)ds+

∫ t

0

RN (s)ds (3.8)

with

lim
N→∞

1

N

∫ t

0

RN (s)ds = 0. (3.9)

Then it follows by Gronwall’s inequality that limN→∞
HN (t)

N
= 0 which concludes the

proof of Theorem 3.1. We first prove the following inequality:

Lemma 3.2.

HN (t) ≤ −
∫ t

0

ds

∫

fN
s

(

NGτ(s)
N + ∂s

)

log gNs dr dp (3.10)

Proof. By convexity of the function φ(f) = f log f , since Lebesgue measure is station-

ary for the dynamics generated by Gτ(t)
N , we have that

∫

fN
t+h log fN

t+hdr dp ≤
∫

fN
t log fN

t dr dp (3.11)

Then, since gNs is smooth and HN(0) = 0, (3.10) follows.

Before we proceed in the proof, we have to introduce some further notations. For
any C1 function F := (f1, f2, f3)

T : R3 → R
3 we define

DF (a) := ((Df1)(a), (Df2)(a), (Df3)(a))
T ,

with Dfi(a), i = 1, 2, 3 defined by (2.9). Recall that ũ = (r, p,−E)T , e := E − 1
2
p
2 and

let us denote by

J̃(ũ) := (p, P (r, e),−pP (r, e))T =

(

p,
λ1(r, e)

λ3(r, e)
,−p

λ1(r, e)

λ3(r, e)

)T

(3.12)
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the flux of (2.11). Then the equation (2.11) can be rewritten as

∂tũ = DJ̃(ũ)∂xũ

with the Jacobian

DJ̃(ũ)













0 1 0

∂P
∂r

−p
∂P
∂e

∂P
∂e

−p
∂P
∂r

−P + p
2 ∂P

∂e
−p

∂P
∂e













. (3.13)

With the dual relation (2.8), λ is solution of the symmetric system

∂t[DΘ(λ)] = ∂x[DΣ(λ)], (3.14)

where
Σ(λ) = λ · J̃(DΘ(λ)).

Equation (3.14) can be rewritten as

(D2Θ)∂tλ = (D2Σ)∂xλ.

Since
D2Θ(λ(t, x))−1 = (D2Φ)(ũ(t, x)),

it follows that
∂tλ(D

2Φ) = (D2Σ)∂xλ.

Since
(D2Σ) = (D2Φ)(DJ̃(ũ))

the following system of partial differential equations is satisfied:

∂tλ(t, x) = (DJ̃)T (ũ)∂xλ(t, x). (3.15)

Let us define the microscopic fluxes:

Ji−1,i := (−pi−1,−V ′(ri), pi−1V
′(ri))

T i = 1, . . . , N − 1,

JN,N+1 := (−pN ,−τ (t), pNτ (t))T .
(3.16)

By the definition of the Liouville operator given by (2.3),

L
τ(t)
N ζi = Ji−1,i − Ji,i+1.

Finally let us define
vj := (0, pj ,−p2j/2)T .

Hence with the definition of the symmetric operator given by (2.5),

SN(ζj) = −2vj + vj+1 + vj−1, j = 2, . . . , N − 1

SN (ζN ) = −vN + vN−1, SN (ζ1) = −v1 + v2.

Lemma 3.3.

NL
τ(t)
N log gNt =

N
∑

i=1

∂xλ(
i

N
, t) · Ji−1,i +Nλ2(1, t)τ (t) + aN (t) (3.17)

where aN (t) is such that

lim
N→∞

1

N

∫ t

0

∫

aN(s)fN
s dpdrds = 0

9



Proof.

NLτ
N log gNt (r,p) = N

N
∑

i=1

λ(
i

N
, t) · (Ji−1,i − Ji,i+1)

= N

N
∑

i=1

(

λ(
i

N
, t)− λ(

i− 1

N
, t)

)

· Ji−1,i − λ(0, t) · J0,1 + λ(1, t) · JN.N+1

Taking into account the boundary conditions on λ we have

λ(0, t) · J0,1 = λ2(0, t)V
′(r1) = 0 (3.18)

and

λ(1, t) · JN.N+1 = −pNλ1(1, t)− λ2(1, t)τ (t) + λ3(1, t)τ (t)pN = −λ2(1, t)τ (t) (3.19)

because τ (t)λ3(1, t) = λ1(1, t). Since λ is a C2-function, we obtain (3.17) with

|aN(t)| = C

N

N−1
∑

i=1

‖Ji‖

It remains to show, that limN→∞

∫ t

0

∫ aN (s)
N

dµN
s ds = 0. This will be an easy conse-

quence of Lemma 3.15.

Lemma 3.4.

∂t log g
N
t =

N
∑

i=1

(DJ̃)T
(

ũ(
i

N
, t)

)

∂xλ(
i

N
, t) ·

(

ζi − ũ(
i

N
, t)

)

Proof.

∂

∂t
log gNt =

∂

∂t

N
∑

i=1

(

λ(
i

N
, t) · ζi −Θ

(

λ(
i

N
, t)

))

=
N
∑

i=1

∂tλ(
i

N
, t) ·

(

ζi −DΘ

(

λ(
i

N
, t)

))

By (2.8), DΘ
(

λ( i
N
, t)
)

= ũ( i
N
, t), and (3.15) the result follows.

Lemma 3.5. Recall the definition of the symmetric operator given by (2.5).

− lim
N→∞

1

N

∫ t

0

∫

(

NSN log gNs

)

fN
s dpdr ds ≤ lim

N→∞

1

σN

∫ t

0

HN(s)ds,

where σ is a constant independent of N with 0 < 2σ < infx,s λ3(x, s).
Observe that smoothness of the solution of (2.11) guarantees infx,s λ3(x, s) > 0.

Proof.

SN log gNs

=

N−1
∑

i=2

λ(
i

N
, t) · (vi−1 − 2vi + vi+1) + λ(

1

N
, t) · (−v1 + v2) + λ(1, t) · (vN−1 − vN)

=

N−1
∑

i=2

(

λ(
i− 1

N
, t)− 2λ(

i

N
, t) + λ(

i+ 1

N
, t)

)

· vi

+

(

λ(
2

N
, t)− λ(

1

N
, t)

)

· v1 +

(

λ(
N − 1

N
, t)− λ(1, t)

)

· vN
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In Lemma 3.15 we will show that the expectation of 1
N

∑

i ‖vi‖ is uniformly bounded
for all N and hence, since λ is in C2, the first term vanishes in the limit as N → ∞.

Recall that by the entropy inequality (3.5), for any σ > 0 we have for k ∈ {1, . . . , N}:

1

N

∫

p2kf
N
s dpdr ≤ 1

Nσ
log

∫

eσp2kνNλ(·,s) +
1

Nσ
H(s)

Since this inequality is true for any σ > 0, the integral on the right hand side of the
inequality is bounded as long as σ < infx

1
2
λ3(x, s) and hence the first term vanishes

as N → ∞. The expected value of pk can be controlled in a similar way.

So far we have from Lemma 3.3, 3.4 and 3.5

HN (t) ≤
∫ t

0

∫ N
∑

i=1

∂xλ(
i

N
, s)

[

Ji−1,i − (DJ̃)T (ũ(
i

N
, s))

(

ζi − ũ(
i

N
, s)

)]

fN
s dp dr ds

−
∫ t

0

Nτ (s)λ2(1, s)ds+
1

σ

∫ t

0

HN(s)ds+

∫ t

0

RN (s)ds (3.20)

where RN(t) is such that (3.9) holds.
By (3.12) we have

∫ 1

0

∂xλ(x, t) · J̃(ũ(x, t))dx =

∫

∂

∂x

(

λ1(x, t)λ2(x, t)

λ3(x, t)

)

dx = τ (t)λ2(1, t).

and consequently we can replace −Nτ (t)λ2(1, t) by

−
N
∑

i=1

∂xλ(
i

N
, t) · J̃(ũ( i

N
, t))

with an error uniformly bounded in N . It follows that from (3.20) we have

HN(t) ≤
∫ t

0

∫ N
∑

i=1

∂xλ(
i

N
, s)×

[

Ji−1,i − J̃

(

ũ(
i

N
, s)

)

− (DJ̃)T (ũ(
i

N
, s))

(

ζi − ũ(
i

N
, s)

)]

fN
s dp dr ds

+
1

σ

∫ t

0

HN (s)ds+

∫ t

0

RN (s)ds. (3.21)

Our next goal is to prove a weak form of local equilibrium. In view of this we
introduce microscopic averages over blocks of size 2k + 1: In what follows, for any
vector field Yi := (Y1,i, Y2,i, Y3,i)

T : (R2)3 → R
3 we denote by Yk

i := (Y k
1,i, Y

k
2,i, Y

k
3,i)

T ,
block averages over blocks of length 2k + 1, where k > 0 is independent of N . For
example

ζ
k
i = (ζk1,i, ζ

k
2,i, ζ

k
3,i)

T := (rki , p
k
i ,−eki )T :=

1

2k + 1

∑

|i−l|≤k

ζl. (3.22)

These blocks are microscopically large but on the macroscopic scale they are small,
thus N goes to infinity first and then k goes to infinity. We also need to introduce
another small parameter ℓ and consider small macroscopic blocs of length ℓN at the
boundaries.

For any smooth and bounded function F : [0, 1] → R and any bounded function
ψ : R2 → R, we obtain the following summation by parts formula

1

N

N
∑

i=1

F (
i

N
)ψ(ri, pi) =

1

N

N−[Nℓ]
∑

i=[Nℓ]

F (
i

N
)

1

2k + 1

∑

|j−i|≤k

ψ(rj , pj) +O(
k +Nℓ

N
). (3.23)
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Here we first restricted the sum to configurations over {[Nℓ], . . . , N − [Nℓ]}, for some
small ℓ > 0, such that ℓ → 0 after N → ∞ and ℓN >> k. In this way, we avoid
touching the boundary when we introduce the block averages. The error we made will
vanish in the limit since ℓ→ 0.

We also need to do some cut off in order to have only bounded variables:
Let Ci,b := {ei−1, ei ≤ b}, and define

J
b
i−1,i := Ji−1,i1Ci,b

and ζ
b
i := ζi1Ci,b

,

then these functions are bounded. Also denote J̃b(ũ) the corresponding expectation
with respect to the Gibbs measure of parameters λ(ũ), that converges to J̃(ũ) as b→ ∞.

Assumptions (2.1) on the potential assert that by the entropy inequality (3.5) with
reference measure dνNλ(·,t), the error we make by the replacement of Ji−1,i and ζi by

Jb
i−1,i and ζb

i respectively is small in N if we can show that 1
N
HN(s) → 0 as N → 0:

For any σ > 0 small enough

∫ N
∑

i=1

∂xλ(
i

N
, s)Ji−1,i1Cc

i,b
dµN

s

≤ 1

σ

N
∑

i=1

log

(
∫

e
σ∂xλ( i

N
,s)Ji−1,i1Cc

i,b dνλ(·,t)

)

+
HN (s)

σ

≤ 1

σ

N
∑

i=1

log

(

1 +

∫

Cc
i,b

eσ∂xλ( i
N

,s)Ji−1,idνλ(·,t)

)

+
HN(s)

σ

=
NC(b, σ)

σ
+
HN(s)

σ
(3.24)

where limb→∞ C(b, σ) = 0 for any σ > 0.
Using that λ and u are in C2 and formula (3.23), we arrive at

N
∑

i=1

∂xλ(
i

N
, s)

[

J
b
i−1,i − J̃

b

(

ũ(
i

N
, s)

)

− (DJ̃)T
(

ũ(
i

N
, s)

)(

ζ
b
i − ũ(

i

N
, s)

)]

=

N−[Nℓ]
∑

i=[Nℓ]

∂xλ(
i

N
, s)×

[ 1

2k + 1

∑

|l−i|≤k

J
b
l−1,l − J̃

b

(

ũ(
i

N
, s)

)

− (DJ̃)T
(

ũ(
i

N
, s)

)(

ζ
b,k
i − ũ(

i

N
, s)

)

]

+O(k +Nℓ).

The following theorem will be proved in Section 3.3.

Theorem 3.6 (The one-block estimate). For any ℓ, b:

lim
k→∞

lim
N→∞

1

N

N−[Nℓ]
∑

i=[Nℓ]

∫ t

0

∫

∣

∣

∣

∣

∣

∣

1

2k + 1

∑

|l−i|≤k

J
b
l−1,l − J̃

b
(

ζ
k
i

)

∣

∣

∣

∣

∣

∣

fN
s dp dr ds = 0. (3.25)

With this Theorem we obtain:

HN(t)

N
≤ 1

N

N−[Nℓ]
∑

i=[Nℓ]

∫ t

0

∫

Ω
(

ζ
k
i , ũ(

i

N
, s)
)

fN
s dp dr ds

+

∫ t

0

RN,k,ℓ,b(s)

N
ds+

∫ t

0

HN(s)

Nσ
ds (3.26)
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for some σ > 0. RN,k,ℓ,b is such that

lim
b→∞

lim
ℓ→0

lim
k→∞

lim
N→∞

∫ t

0

RN,k,ℓ,b(s)

N
ds = 0,

and we used (3.15) to define

Ω(z, ũ) := ∂xλ ·
(

J̃ (z)− J̃ (ũ)
)

− ∂tλ · (z− ũ) .

Hence
DzΩ(z, ũ) =

(

(DJ̃)T (z) · ∂xλ− ∂tλ
)

(3.27)

is equal to zero if z is a solution of (3.15) and consequently:

Ω(ũ, ũ) = 0, DzΩ(ũ, ũ) = 0.

Applying the entropy inequality (3.5) on the sum in (3.26), we obtain that for some
σ > 0 it is bounded above by

1

Nσ

∫ t

0

log

∫

exp







σ

N−[Nℓ]
∑

i=[Nℓ]

Ω(ζk
i , u(

i

N
, s))







gNs dp dr ds+
1

Nσ

∫ t

0

HN(s)ds (3.28)

Hence it remains to prove, that the first term of this expression is of order O( 1
N
).

This will be done using the following special case of Varadhan’s Lemma:

Theorem 3.7 (Varadhan’s Lemma). Let νnλ be the product homogeneous measure with
marginals νλ given by (2.10) and with rate function I : R2 × R− → R defined by

I(x) := Φ(x)− x · λ+Θ(λ).

Then for any bounded continuous function F on R
2 × R−

lim
n→∞

1

n
log

∫

enF (ζ)dνnλ = sup
x

{F (x)− I(x)}

Proof. A proof of this Theorem can be adapted from [1, 6, 11]

In order to apply this Theorem we arrange the sum in (3.28) as sums over disjoint
blocks and then take advantage of the fact that the local Gibbs measures are product
measures. Assume without loss of generality that 2k + 1 divides N − 2[Nℓ], then

N−[Nℓ]
∑

i=[Nℓ]

Ω(ζk
i , ũ(

i

N
, s)) =

∑

j∈{−k,...,k}

∑

i∈B
N−2[Nℓ],k
[Nℓ]

τjΩ(ζk
i , ũ(

i

N
, s))

where B
N−2[Nℓ],k

[Nℓ]
:=
{

r(2k + 1) + [Nℓ] + k; r ∈
{

0, . . . , N−2[Nℓ]−2k
2k+1

}}

. In this way,

for any fixed j, the terms in the sum over i ∈ B
N−2[Nℓ],k
[Nℓ] depend on configurations in

disjoint blocks. Thus the random variables

τjΩ(ζk
i , ũ(

i

N
, s))

are independent under νNλ(·,s).
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Using Hölder inequality, the first term in (3.28) is bounded above by

1

Nσ

∫ t

0

log

∫

∏

j∈{−k,...,k}

exp











σ
∑

i∈B
N−2[Nℓ],k
[Nℓ]

τjΩ(ζk
i , u(

i

N
, s))











gNs dp dr ds

≤ 1

Nσ(2k + 1)

∫ t

0

∑

j∈{−k,...,k}

log

∫

exp











σ(2k + 1)
∑

i∈B
N−2[Nℓ],k
[Nℓ]

τjΩ(ζk
i , ũ(

i

N
, s))











gNs dp dr ds

=
1

Nσ(2k + 1)

N−[Nℓ]
∑

i=[Nℓ]

∫ t

0

log

∫

exp

{

σ(2k + 1)Ω(ζk
i , ũ(

i

N
, s))

}

gNs dp dr ds.

Then, since all the functions in this expression are smooth and the family of local
Gibbs measures converges weakly, we obtain that

lim
k→∞

lim
N→∞

1

(2k + 1)Nσ

N−[Nℓ]
∑

i=[Nℓ]

∫ t

0

log

∫

exp

{

σ(2k + 1)Ω(ζk
i , ũ(

i

N
, s))

}

gNs dpdr ds

= lim
k→∞

1

σ(2k + 1)

∫ t

0

∫ 1

0

log

∫

exp
{

(2k + 1)σΩ(ζk
i , ũ(x, s))

}

dνλ(x,s)dxds.

So now for each x ∈ [0, 1], the distribution of the particles in a box of size k is given
by the invariant Gibbs measure with average u(x, s). such that we can apply Theorem
3.7 on this product measure to obtain that the last expression is equal to

1

σ

∫ t

0

∫ 1

0

sup
z

{σΩ (z, ũ(x, s))− I(z)}dx. (3.29)

To conclude Theorem 3.1 it thus remains to show that this is equal to zero. Since I and
Ω are both convex, and both functions and their derivatives are vanishing at z = ũ, it
follows from assumption (2.1) on the potential that σΩ(z, ũ) ≤ I(z) for σ small enough.
Hence there exists a σ such that the last expression is equal to zero.

This concludes the proof of Theorem 3.1:
Since

HN(t) ≤ C

∫ t

0

HN(s)ds+

∫ t

0

RN,k,ℓ,b(s)ds,

for some uniform constant C, it follows by Gronwall inequality that

HN(t) ≤ HN(0)eCt +

∫ t

0

RN,k,ℓ,b(s)e
C(t−s)ds

≤ eCt

(

HN(0) +

∫ t

0

RN,k,ℓ,b(s)ds

)

.

Hence the claim follows, since

lim
b→∞

lim
ℓ→0

lim
k→∞

lim
N→∞

∫ t

0

RN,k,ℓ,b(s)

N
ds = 0.
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3.3 The one block estimate (Theorem 3.6)

We define the space–time average of the distribution

f̄N,ℓ,k
t =

1

t

∫ t

0

1

[N(1− 2ℓ)]

N(1−ℓ)
∑

i=Nℓ

fN,k
s,i (r−k, p−k, . . . , rk, pk) ds (3.30)

where we defined the projections

fN,k
s,i (r̃−k, p̃−k . . . , r̃k, p̃k)

=

∫

fN
s (r1, p1,. . .,ri−k−1 , pi−k−1, r̃−k, p̃−k,. . .,r̃k, p̃k, ri+k+1, pi+k+1,. . .,rN , pN)

∏

|i−l|>k

drldpl.

(3.31)

and we denote
dµ̄N,ℓ,k

t := f̄N,ℓ,k
t

∏

|l|≤k

drl dpl (3.32)

3.3.1 Tightness

We have the following

Lemma 3.8 (Tightness). For each k fixed , the sequence (µ̄N,ℓ,k
t )N≥1 of probability

measures is tight.

Proof. From the definition of µ̄N,ℓ,k
t we have

∫





1

2k + 1

∑

|l|≤k

el



 f̄N,ℓ,k
t

∏

|l|≤k

drl dpl

=
1

t

∫ t

0

1

[N(1− 2ℓ)]

N(1−ℓ)
∑

i=Nℓ





∫





1

2k + 1

∑

|l|≤k

el



 fN,k
s,i dr−k dp−k . . . drkdpk



 ds

≤ 1

t

∫ t

0

∫

(

1

N(1− 2ℓ)

N
∑

l=1

el

)

fN
s

∏

l∈Z

drldpl ds ≤ C

by lemma 3.15, and this implies the tightness.

Lemma 3.8 asserts that for each fixed k there exists a limit point µℓ,k
t of the sequence

(µ̄N,ℓ,k
t )N≥1. On the other hand, since the sequence (µℓ,k

t )k≥1 forms a consistent family
of measures, by Kolmogorov’s Theorem, for k → ∞, there exists a unique probability
measure µ on the configuration space {(ri, pi)i∈Z ∈ (R2)∞}, such that the restriction
of µ on {(rj , pj)j∈{−k,...,+k} ∈ (R2)2k+1} is µℓ,k

t .

3.3.2 Proof of the one-block-estimate

Let us define the formal generator G of the infinite dynamics by

G := L+ γS , (3.33)

with the antisymmetric part

L :=
∑

j∈Z

{

pj

(

∂

∂rj
− ∂

∂rj+1

)

+
(

V ′(rj+1)− V ′(rj)
) ∂

∂pj

}

(3.34)
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and the symmetric part

S :=
∑

i∈Z

(

f
(

r,pj,j+1
)

− f(r,p)
)

(3.35)

In section 3.3.3 we will prove the following Proposition:

Proposition 3.9. Any limit point µ of µ̄N,ℓ,k
t , for N → ∞ and then k → ∞, satisfies

the following properties:

(i) it has finite entropy density: there exists a constant C > 0 such that for all subsets
Λ ⊂ Z

H
(

µ|Λ
∣

∣

∣
ν
|Λ|

(τβ,0,β)

)

≤ C|Λ|,

(ii) it is translation invariant: For any local function F and any j ∈ Z,

∫

F dµ =

∫

(τjF ) dµ

where τj denotes the spatial shift by j on the configurations.

(iii) it is stationary with respect to the operator G: For any smooth bounded local
function F

∫

(GF )dµ = 0.

With this Proposition, we can apply the ergodic theorem from [3]:

Theorem 3.10 (Ergodicity). Any limit point µ of µ̄N,ℓ,k
t (dr, dp) is a convex combina-

tion of Gibbs measures i.e

µ(dr, dp) =
∏

i∈Z

gλ(ri, pi)dridpi.

The proof of Theorem 3.10 is contained in [3], see also [1] for more details. The idea
of the proof is the following: by proposition 3.9 one can prove that µ is separately
stationary for L and S . This implies that the distribution of momenta conditioned on
position µ(dp|r) is exchangeable. This is the only point where we need the noise in the
dynamics.

Proof of Theorem 3.6:

Recall we need to prove (3.25). By Lemma 3.8 and (ii), (iii) of Proposition 3.9, it
is enough to show that for each b and ℓ

lim sup
k→∞

sup
µ∈G

∫

∣

∣

∣

∣

∣

1

2k + 1

k
∑

l=−k+1

J
b
l−1,l − J̃

b

(

1

2k + 1

k
∑

l=−k+1

ζl

)∣

∣

∣

∣

∣

dµ = 0

where G is the set of Gibbs measures. But this is just the law of large numbers and
holds in the limit as k → ∞.

�

3.3.3 Proof of Proposition 3.9

Lemma 3.11. Any limit probability µ of µ̄N,ℓ,k
t , for N → ∞ and then k → ∞, is

translation invariant.
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Proof. Let F be a bounded, local function depending on configurations only through
−m, . . . , m for some m ≥ 0. Then there exists for each z ∈ Z an integer k such that
|m+ z| ≤ k. Since (f̄N,ℓ,k

t )N is tight, it suffices to prove that for each z

lim
k→∞

lim
N→∞

∫

(F − τzF )f̄N,ℓ,k
t

∏

|l|≤k

drldpl = 0 (3.36)

that follows easily from the definition (3.32).

Lemma 3.12. Any limit measure µ is stationary in time with respect to the generator
G = L+ γS, that means for any bounded smooth local function F (r,p)

∫

GF dµ = 0. (3.37)

Proof. We have to show that for some k ≥ m

lim
k→∞

lim
N→∞

∫

GF f̄N,ℓ,k
t

∏

|l|≤k

drldpl = 0.

With (3.32), the integral is equal to

1

t

∫ t

0

1

[N(1− 2ℓ)]

N(1−ℓ)
∑

j=Nℓ

∫

GFfN,k
s,j

∏

|l|≤k

drldpl ds. (3.38)

Define the space average

F̄ :=
1

[N(1− 2ℓ)]

N(1−ℓ)
∑

j=Nℓ

τjF,

and observe that Gτ(t)
N F̄ = GF̄ , then we can rewrite (3.38) as

1

Nt

∫ t

0

∫

(NGτ(s)
N F̄ ) fN

s dr dp ds =
1

tN

∫ t

0

∫

F̄ ∂sf
N
s dr dpds

=
1

tN

{∫

F̄ fN
t dr dp−

∫

F̄ fN
0 dr dp

}

.

This expression converges to 0 when N → ∞, since F̄ is a bounded function.

3.3.4 Entropy density

For some integer n ≥ 1, define by Λn a box of length 2n+1 and by Λn
i a box of length

2n+ 1 and centered at i. Furthermore, let

ν∞(τβ,0,β)(dr, dp) :=
∏

i∈Z

ν(τβ,0,β)(dri, dpi)

and
HΛk(µ|ν∞(τβ,0,β)) := H(µ|Λk |νk(τβ,0,β)).

We obtain the following Lemma:

Lemma 3.13. The limit point µ has finite entropy density, that means there exists a
constant C > 0 such that for all subsets Λk

HΛk (µ|ν∞(τβ,0,β)) ≤ C|Λk|.

17



Proof. By convexity of the relative entropy, we have

H
(

µ̄N,ℓ,k
t

∣

∣

∣
νk(τβ,0,β)

)

≤ 1

[N(1− 2ℓ)]

N(1−ℓ)
∑

j=Nℓ

H

(

1

t

∫ t

0

fN,k
s,j dr−kdp−k . . . drkdpk ds

∣

∣

∣
νk(τβ,0,β)

)

=
1

[N(1− 2ℓ)]

N(1−ℓ)
∑

j=Nℓ

HΛk
j

(

µ̄N
t

∣

∣

∣
νN(τβ,0,β)

)

(3.39)

where µ̄N
t := f̄N

t dr dp with

f̄N
t :=

1

t

∫ t

0

fN
s ds. (3.40)

Relative entropy is superadditive in the following sense (see for example [1]): let
(Λi)i∈I⊂N be a family of disjoint subsets of Z. Then

H⋃
i∈I Λi

(

µ̄N
t

∣

∣

∣
νN(τβ,0,β)

)

≥
∑

i∈I

HΛi

(

µ̄N
t

∣

∣

∣
νN(τβ,0,β)

)

.

The sum in (3.39) can be rearranged in 2k + 1 sums of sums over disjoint blocks, then
applying the superadditivity (3.39) is bounded by

(2k + 1)

[N(1 − 2ℓ)]
H
(

µ̄N
t

∣

∣

∣
νN(τβ,0,β)

)

.

We will prove in Lemma 3.14, that there exists a finite constant C independent of N ,
such that

H
(

µ̄N
t

∣

∣

∣
νN(τβ,0,β)

)

≤ CN. (3.41)

By Lemma 3.8 the sequence (µ̄N,ℓ,k
t )N is tight. Since by Lemmata 3.11 and Theorem 3.12

each limit point µ of (µ̄N,ℓ,k
t )N is translation invariant and stationary, we can conclude

the proof by the lower semi continuity of the relative entropy.

To complete the proof of Lemma 3.13 it remains to show (3.41).

Lemma 3.14. If

H
(

fN
0 drdp | νN(τβ,0,β)

)

≤ C1N

for some uniform constant C1 > 0, then for any N ∈ N there exists a constant C2 > 0
such that

H
(

µ̄N
t | νN(τβ,0,β)

)

≤ C2N,

where µ̄N
t is defined by (3.40).

Proof. Recall from Lemma 3.2, that the relative entropy with respect to Lebesgue
measure is nonincreasing in time since the Lebesgue measure is stationary with respect
to the generator Gτ(t)

N (for any t). Therefore, as in the proof of Lemma 3.2 we can write

H
(

fN
t dr dp

∣

∣ gN(τβ,0,β) dr dp
)

−H
(

fN
0 dr dp

∣

∣ gN(τβ,0,β)dr dp
)

≤ −
∫

log gN(τβ,0,β)f
N
t dr dp+

∫

log gN(τβ,0,β)f
N
0 dr dp.

The last line is then equal to

= −
∫ t

0

∫

fN
s NG

τ(s)
N log gN(τβ,0,β)dr dpds

= −βN
∫ t

0

τ (s)

∫

fN
s pNdr dp ds.

18



Since the last line is equal to the expectation of β
∑N

j=1(ej(t)− ej(0)), by lemma 3.15
it is bounded by CN for some constant C.

Hence, by convexity of H(·|·),

H
(

µ̄N
t | νN(τβ,0,β)

)

≤ (C1 +C)N.

3.4 Energy Bound

We prove here a deterministic bound on the total energy inside the system, independent
of the realizations of the noise of the dynamics.

Lemma 3.15. If the initial configuration satisfy

N
∑

j=1

ej(0) ≤ CN

then there exists a constant C̃(t) independent of N such that

N
∑

j=1

ej(t) ≤ C̃(t)N (3.42)

Proof. Define

FN (t) =

N
∑

j=1

ej(t)− τ (t)qN(t) =

N
∑

j=1

(ej(t)− τ (t)rj(t))

Computing the time evolution of this function we have

FN (t) = FN (0)−
∫ t

0

τ ′(s)qN (s) ds (3.43)

Consequently

N
∑

j=1

ej(t) = τ (t)qN(t)− τ (0)qN (0) +
N
∑

j=1

ej(0) −
∫ t

0

τ ′(s)qN(s) ds (3.44)

By condition (2.1), we have that

|qN | ≤
∑

j

|rj | ≤
√
N

(

∑

j

|rj |2
)1/2

≤C1/2
−

√
N

(

∑

j

(1 + V (rj))

)1/2

≤ C
1/2
−

√
N

(

∑

j

(1 + ej)

)1/2

Then we can estimate

∣

∣

∣

∣

∫ t

0

τ ′(s)qN (s) ds

∣

∣

∣

∣

≤ ‖τ ′‖∞
∫ t

0

|qN (s)| ds ≤ ‖τ ′‖∞C1/2
−

√
N

∫ t

0

(

N
∑

j=1

(1 + ej(s))

)1/2

ds

Defining ēN(t) = 1
N

∑N
j=1 ej(t) we have then

ēN(t) ≤ C
1/2
− ‖τ‖∞

(

√

ēN (t) + 1 +
√

ēN (0) + 1
)

+ēN(0)+‖τ ′‖∞C1/2
−

∫ t

0

√

ēN(s) + 1ds

that implies (3.42).
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