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ABSTRACT
A method for time domain simulation of single reed
wind instruments is presented, based on measured input
impedance. The results of internal pressure simulations
are compared with earlier experimental results obtained
from a saxophone. The G fingering (first register) is

waveguide filters techniques, Today, it
be very interesting to develop .@:Enwmm. in
to build a system to be used as a design
for instrument makers, For such an app

compared with the experimental results in

studied and various oscillation regimes are presented, to verify the validity of the method. In thig

according to geometrical modifications on the saxophone
neck. Sound examples illustrating the method are
presented.

1. INTRODUCTION

For many years, the input impedance of
single reed wind instruments has been a
common tool used to evaluate the playing
frequency of such instruments. During the past
decade, the development of numerical
simulations using physical modelling enabled
doing synthesis from the knowledge of the
resonator input impedance or with the help of

Gilbert (1993).

results applied to the saxophone.
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the results obtained from the mode] should

we present simulation results obtained with ¢
help of measured input impedance of an alp

experimental results presented by Dalmont and

Following this introduction, we give briefly
in section two, the basic physical model used for
the numerical simulation and the generdl
technique developed to calculate the intersal
pressure. In the third section, we present the

. An elementary physical model of
Ldwinds.

. pumerical simulation of a musical
ent needs a physical model to represent
ioning. This physical model is described
.. It has been chosen to be very simple in
¥ to describe the basic behaviour of the auto
ng  system creating a
cated numerical algorithm (see for
sle Gazengel et al., 1994, Dalmont et al.,
. We give here a set of non-linear and
classical equations governing the
etioning of a single reed instrument.

without

fhe resonator is considered to be a linear
n, whose properties can be described by its
lgput impedance Z(j®) :

©) =Z(jo) U (jo), ey
p(jm) is the acoustic pressure and U;, (jw)
e volume velocity at the input of the tube in
he frequency domain.

- The modelling of the air flow entering from
¢ player's mouth to the instrument is a delicate
cct which has been dealt carefully by
berg et al, (1990) for a static position of the
- 'We give here only a simple model. If P, is
Static pressure in the player's mouth, the
dustic - flow- entering the instrument U(t), is
°d 1o the pressure jump P-p(t) by
oulli's law :

b . i U 2
P = —p{ ", 2
4 m ﬁ:uu—. Nﬂ*vﬁ_.m%mﬂv.?m”_* _H w

where p is the air density, w the width of the
reed, H the height of the air gap when the
instrument does not play and y(t) the position of
the extremity of the reed. Moreover U(t) is set
equal to zero when the reed is completely
closed. This condition is fulfilled if the position
of the tip of the reed verifies y < -H. .

Uty = gw.e.%a -p(0)] [y(0+H] Sgn,

Sgn=1 if Py-p(t) =2 0, 3).
Sgn=-1if P -p(t) < 0.

Ut)=0ify(t) < -H.

For simplicity, we write U(t) =NL[p(t),y(t)],
where NL is the non linear function expressed
by equation (3). The total acoustic flow U, (t)
entering the bore is also due to the acoustic flow
Ur produced by the reed movement :

Fﬁcuma%. )

where 8, is an effective area of the reed.
The total acoustic flow Uj,(t) can then be
written :

Ui () =U() - U, (1). &)

Moreover, we suppose the reed does not bend
against the curved lay of the mouthpiece but
simply displaces, therefore obeying a simple
harmonic oscillator equation without non
linearity. In fact, even if it is not beating against
the mouthpiece, the reed may not behave as a
linear oscillator, but, at least far from its
resonance frequency, the reed acts like a linear
oscillator driven below resonance. The collision
that occurs when the oscillator strikes the
mouthpiece is made inelastic by setting the
velocity to zero and the position y(t) to -H :

dy® , PPy

20ty = PO =P
dt? & ey Br ©2

+8r
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dy(t) if y(t)<-H (6b)
where g, is the reed damping factor, o, its
natural resonance frequency and p, its mass per
area.

2.2. Solving the problem in the discrete
time domain

In the time domain, the behaviour of the
resonator can be expressed with the help of h(t),
the inverse Fourier Transform of Z(jw), but the
use of h(t) consumes much calculating time
because of the temporal length of this function.
An alternative method consists of calculating the
equivalent plane wave reflection function (1) =
FT -1 [ WﬂB ], where muB is the plane wave
reflection coefficient defined by Schumacher
(1981) as :

-z,
f)= 8
Rilfi=pmret ®)
Z, being the characteristic impedance of the
wave guide, defined by Z, = _umo

Supposing that p,(t) and p_(t) represent
respectively the outgoing and incoming waves
in the input of the resonator, equation (1) can be
written in the time domain :

P(t) = Ppast + ZcUjp (1),

Ppast = 2P~ (1) =1,()*2p, (1),

where 2p, (t) = p(t) + Z,. Uy, (1)’

where * represents the convolution operation.

®

The set of equations (3), (4), (5), (6) and (9)
is solved inthe discrete time domain using the
compensated bilinear transformation (for more
details see Gazengel et al., 1994) for which y[n]
and U[n] can be written :
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g3) show that these two tubes can realise two
functions. On one hand, they can modify
first resonance frequency value without
ing the second resonance frequency
cation 1). On the other hand, they can
.« the two first resonance frequencies without
ing  their relative  inharmonicity
_pecation 2). For the low G fingering, the
__rude of the two first impedance peaks are
p ....‘_.a equal. When playing the G fingering, the
.« modification creates a quasi periodic tone

the second ome changes only the
: mental frequency and the spectrum of the

yln]=yo +yip[n] 3
Ur[n]=U;, + Uy pln] (19

This set of equation leads to the ngy
equation : :

P[n]= Ppast + ZNL(p[n]; y[n])- Nncq_”#%_

which is solved using the Zosﬁo:.
method (see Table I. below),

Calculation of an approximation of the 1
discrete reflection function using an FFp
algorithm on 2NFFT points from the
measured input impedance (Dalmont and
Bruneau, 1991).

4
; —
Calculation of the "past" of the Iesonator:

Ppealn]= wm M._ _H_n“_?_un -k]+Z.U, [n ..,_Lw :

[+
|
€3
2
|

thpiece internal pressure. Moreover these

qlts depend on the musician’s embouchure.
¢ 4 tight embouchure, modification 1 creates a
i periodic oscillation, for a relaxed one, this
ification changes the fundamental frequency

i ;
: : - ad the spectrum of the pressure signal.
Evaluation of the discrete response of the We wish to know if the simulation process
reed using the compensated bilinear \we developed can reproduce these effects when
”gmmo:m_wmmos. measured input impedance of the G

ing modifieded with the modifications
tioned above.

 For the simulation, we use the measured
t impedance of the G fingering (no

Calculation of the discrete solutions of the

system: p[n], U, [n], y[n] using the Newton

| Raphson technique applied on equation (11). .

Table 1: General method of simulation (see
Gazengel et al., 1994)

3. APPLICATION TO THE

W, =0,0231 kg/m?,
@, =20000 rad /s, g, =3000s™".
(parameters obtained from Worman, 1971).

We use three different values for the reed
area S, in order to show the effects of the
musician's embouchure on the calculated
pressure signal :

S, =4.107, 6.107, 8.10° m?,
which correspond respectively to the three
following length correction :

Al=3,5mm; 5,2 mm; 7 mm (see Dalmont
et al.,, 1994 for the estimation of these three
values).

We present in Figure (la) the simulation
results obtained for the G fingering without
modification and the G fingering modified with
modification 2. Figure (1b) shows the pressure
calculated for the G fingering modified with
modification 1. Figure (2) the
embouchure effects on the resulting discrete
pressure signal calculated with the G fingering
modified with modification 1 (quasi periodic
oscillation). These results show that the
simulation process enables obtaining oscillation
regimes whose characteristics are very near
those observed during the experiment (Dalmont
et Gilbert, 1993).

shows

SAXOPHONE
We use the simulation process described i
section 2 and apply it to the low G fingering o
an alto saxophone. This saxophone is modified
in order that it can be played a quarter top€

Relative [}
pressure p{a}Pm

i|_

J 06 _.ﬁ -
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Relative o
pressure pla}/Pm '
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105

u\a_wnﬂn fsl

lower than usual. This was done with two tubes g
branched on the neck. Dalmont and Gilbert ¥

- Figure (1a) - simulation results (mouthpiece internal pressure) for the _MSNQ fingering of §. alto
Saxophone. The mouth pressure is P, =1500 Pa, the reed area S, =4.107m". Result A : the input
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impedance is not modified, the fundamental frequency is f =229,9 Hz. Result B ; the input _Em.anmboa
is modified such that the harmonicity does not change (modification 2), the fundamental frequency j,
f=212,9 Hz.

3 ;
Relative L W gk f i 1
pressure p[n}/Pm 0

1.08 1.1 112

Time [s]

Figure (1b) : simulation results (mouthpiece internal pressure) for the low G fingering of an &8 1
mmMOm.:ouo The mouth E.nmmﬁm is Py =1500 Pa, the reed area S, =4. 5|m§~ The .um.: _Enanﬁ_oo is

A B

2,003

Time (5] Time [s]

Relative
pressure

plnlPm

Time [5]

Figure 2 : effects of the musician's embouchure on the resulting pressure signal calculated with the input
impedance modified with modification 1 (change of harmonicity). The mouth pressure is P, = 1500 Pa-
Result A : S, = 41075 m?. muc.mﬁaoo of a quasi periodic regime for which the "beating frequency” is
high. Result B : S, =6.10°m mﬁmﬁaoo om 2 quasi periodic regime for which the "beating frequency”
islow. Result C: S, =8. 10> m?. There is not any quasi periodic regime any more.
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