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Advantages of rear steer in LTI and LPV vehicle stability control

Donald Selmanaj 1 Matteo Corno 1 Olivier Sename 2 and Sergio Savaresi 1

Abstract— In this paper, the advantages of the rear wheel
steer in robust yaw stability control of four wheeled vehicles
are shown. A MIMO vehicle dynamic stability controller
(VDSC) involving front steer, rear steer and rear braking
torques is synthesized. The comparison between a vehicle
with and without rear steer is done on avoidance maneuver
using both LTI and gain-scheduling LPV controller. Both
robust H∞ controllers are built by the solution of an LMI
problem. To better evaluate the influence of the rear steer
on the performance time domain indexes are introduced. The
simulation results show that active rear steer enhances vehicle
handling on a low friction surface.

Index Terms— LPV controller, four-wheel steering, rear
braking torques, yaw stability control

I. INTRODUCTION

In the last years active safety systems are widely spread

in commercial light vehicles and several solutions to global

chassis control can be found in literature. They can be

classified by control structure and actuators used to ensure

stability. The number of available actuators (control vari-

ables) is imposed by the mechanical layout.

In brake-based studies (see, e.g., [1], [2], [3]) the vehicle

behavior is controlled through torque distribution to the

four wheels. Brake-based solutions imply a relatively simple

mechanical layout, however the induced vehicle behavior

presents a strong dependence on the longitudinal velocity.

Furthermore solutions involving both braking and active

front steering (AFS) have been proposed (see [4],[5]). The

combined management of these actuators leads to improved

vehicle handling and stability, however the interaction be-

tween the front active steer controller and the driver might

influence the driveability of the vehicle.

To take full advantage of the tire grip, four wheel steering

(4WS) architectures combined with brake-based architec-

tures have been proposed. Mainly due to increased mechani-

cal complexity, these solutions are not spread in commercial

light vehicles, however many studies have evaluated the

advantages introduced by an active rear steering. In [6] and

[7] decoupling control architectures have been proposed in

order to reduce the interaction between the yaw rate and

lateral dynamics, while in [8], [9], [10] and [11] robust

control architectures are introduced in order to overcome

external disturbances, such as wind forces and parameter

variations due to the running vehicle condition. Among
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those tire cornering stiffness is a key influencing factor on

maneuverability.

The present work is an extension of the previous one in [12]

and [13] where a collaborative control of active front steer

and rear brake torques is proposed. Two kinds of controllers

are implemented: an LTI (Linear Time Invariant) controller

and an LPV (Linear Parameter-Varying) controller. The LTI

controller uses all available control variables in every con-

dition while the LPV controller allows to choose whenever

activate or deactivate a control input. The Activation criteria

can depend on the vehicle running condition or it can depend

on a fault detection system. For instance, if a failure occurs

and an input is not available anymore, the LPV controller can

switch to a different configuration still ensuring the stability

of the system. It is worth noting that an LTI controller does

not guarantee the system stability and performance if an

actuator fails.

Here the vehicle architecture is extended introducing the

active rear steering (ARS). Afterwards a LTI and a LPV

controller are designed in the H∞ framework, and the per-

formance of both controllers and both types of vehicles

(with and without rear steering action) are compared in a

critical driving condition. The aim of the work is to identify

the advantages introduced by the rear steering action in the

yaw rate stability control and to emphasize the differences

between the 2 types of controllers.

II. CONTROL ARCHITECTURE

The control structure is represented in Fig. 1 and derived

from [13]. It is a two-layer architecture. In the first layer

the VDSC generates the desired steering angles and wheel

torques; in the second level the ABS actuators at the rear

axle and the steering actuators generate the actual control

values. The control strategy implements a yaw reference

tracking philosophy where the desired yaw is generated by a

nominal model (here a bicycle model but some steady state

evaluations could be done). The front active steering input

is superimposed to the driver steering input. Two VDSC

controllers are designed: an LTI controller employing all

the available actuation and a LPV gain scheduled controller

designed to better coordinate the available actuation (as

explained later). Both controllers are designed following the

H∞ paradigm applied to the following extended bicycle



Fig. 1. Control architecture. AS are the active steering actuators and
ABS+EMB are the wheel torque actuators (at the left/right rear wheels).

model:
[

β̇
ψ̈

]

=

[

µ
−C f −Cr

mv
1+

lrCr−l f C f

mv2

lrCr−l f C f

Iz

−l2
f C f −l2

r Cr

vIz

][
β
ψ̇

]

+

[
C f

mv
Cr
mv

0 0 0
l f C f

Iz

−lrCr
Iz

1
Iz

Cλ tr
2Iz

−
Cλ tr
2Iz

]









δ f

δr

Mdz

Trl

Trr









(1)

where β is the vehicle slip angle, ψ̇ is the yaw rate, δ f

and δr are the front and the rear steering angles respectively,

Trl ,Trr are the rear breaking torques and Mdz is the yaw rate

disturbance (lateral wind effect for instance).

Fig. 2 shows the chosen H∞ control configuration, including

Fig. 2. Generalized plant used for synthesis.

some weighting functions that represent the desired closed-

loop performances and handle the different limitations on the

control inputs.

• WTbr j
( j = l,r) limits the use of the braking actuators at

high frequencies (10Hz).

• Wδ f is a band-pass filter witch allows the control to

act below the actuator bandwidth frequency (10Hz)

and above the drivers acting range of frequencies (we

consider [0,1]Hz).

• Wδ r penalizes the use of the rear steering actuator at

high frequencies (10Hz).

• Weψ̇ ensures the tracking performances at low frequency

• Wβ penalizes high side slip angles at low frequency.

It is worth noting that, in Fig. 2, the bicycle model and the

weighting functions are LTI systems. Nevertheless K will

be either an LTI controller as an LPV one. The first case

naturally arises following the control configuration in Fig.

2. On the other hand an LPV controller will be designed

imposing a specific parameter dependent structure to the

controller state space representation (as presented in [12]).

A. LTI controller structure

The output feedback LTI controller serves as a benchmark.

It is a fixed structure controller using all the control variables

in every situation. Two different versions of the controller

are designed, LTI1 uses front wheel steering and the brake

actuators; LTI2 uses in addition the rear wheel steer. Fig.
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Fig. 3. LTI controller, frequency response: LTI1 (black dotted), LTI2 (black
dashed). Weighting functions 1/Weψ̇

,1/Wβ ,1/Wδ+
r

(black solid).

3 shows the sensitivity functions of the two closed loop

systems (controller + bicycle model).The rear wheel steering

(which concerns only the LTI2) does not seem to improve

the closed loop nominal performances.

B. LPV controller structure and parameters choice

The LTI controller employs all the control variables indif-

ferently. Therefore all the actuators are used simultaneously,

which could be not optimal in an energetic sense, and could

be too obscure for car manufactures since the use of the

control actions are not related to the driving situations. As

shown preliminary in [12] the LPV approach is a solution to

a better coordination of the different control inputs (braking

and steering) since it allows to activate the actuators only

when requested by the driving situation (for instance the

vehicle state behavior). Here the control strategy extends

the previous works including the use of the rear steering

actuators. An LPV controller is then designed here, whose

parameters weight the use of the actuators. Indeed the



resulting output feedback LPV controller is chosen of the

form:

K (ρ1,ρ2,ρ3) :

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Rem. Note that U (ρ) is chosen and implies that K is LPV.

If U (ρ) = I4 the K will be LTI.

It depends on three parameters. ρ1 and ρ2 weight the

front and rear steer respectively, and ρ3 switches the torque

action from the left rear to right rear wheel and vice versa.

In the present work they take value 0 or 1 according to the

following criteria:

• ρ1: allows to activate the front steer (0 → no steering

action, 1 → full steering action);

• ρ2: the rear steer is only activated in critical con-

ditions, namely when the stability index (Sindex =∣
∣
∣9.5β + 2.49β̇

∣
∣
∣) is above a threshold limit (if Sindex >

0.3 ρ2 = 1 otherwise ρ2 = 1);

• ρ3: handles the over/under steering situations. Depend-

ing on the sign of the yaw rate error only one of

the two braking torque is allowed to act. Namely if

eψ̇ > 0 → ρ3 = 1 otherwise ρ3 = 0

The LPV controller structure (2) is very generic. It allows an

adaptive use of the front and rear steering actions. Only the

distribution of the left/right rear breaking torques is imposed

by the value of ρ3. In this paper a specific choise of the

parameters values is considered to emphasize the additional

use of the rear steering control action.

The LPV controller design problem can be cast into a set

of LMI’s [14] defined over the vertices of the polytope

identified by the parameter space. The employed criteria

effectively reduce the number of parameter to 2, yielding

4 vertices. Each vertex represent a specific combination of

the parameters. The final LPV controller is a combination of

four controllers, one for each of the vertices considered in the

parameter choice. In this following analysis (in simulations)

we have considered that the front steering is always active

(ρ1 = 1). Then the control is obtained as follows:

[
δ+

f δ+
r T ∗

brl T ∗
brr

]T
=ρ2ρ3K(,ρ2,ρ3)

+ρ2(1−ρ3)K(ρ2,ρ3)

+ (1−ρ2)ρ3K(ρ2,ρ3)

+ (1−ρ2)(1−ρ3)K(ρ2,ρ3)

(3)

The set of LMI’s are solved using SeDuMi and Yalmip

[15]. For further information and details about the LMI

optimization for H∞ synthesis refer to [13] [16] [14] [17]

[18]

On the other hand to more easily assess the advantages

of rear wheel steering two controllers have been designed:

LPV1 without rear wheel steering and LPV2 with rear wheel

steering. Fig. 4 plots the sensitivity functions in the nominal

design case for all vertices of the parameter space polytope.

Two observation are in place:
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Fig. 4. LPV controller, frequency response: LPV1 (black dotted), LPV2
(black dashed). Weighting functions 1/Weψ̇

,1/Wβ ,1/Wδ+
r

(black solid)

• The fact that no difference can be observed among the

sensitivity function at the vertices means that the LPV

design is indeed successful in maintaining the specified

performances throughout the parameter space.

• In the nominal case the addition of the rear wheel

steering does not bring any advantage.

As long as frequency responses are concerned (of the closed

loop system with LPV controllers and DRY road) we don’t

see any relevant differences between vehicle with and with-

out rear steer.

III. VALIDATION

In this section the proposed control strategies are vali-

dated in simulation using a full vehicle simulation model,

whose parameters are described in [13] and [16] and have

been validated on a real Renault Mégane vehicle. Unlike

the bicycle model the full model includes a nonlinear tire

characteristic, a nonlinear lateral and longitudinal dynamics

together with a nonlinear vertical dynamics. For the purpose

of this article the full model has been extended with the rear

steer input. An obstacle avoidance maneuver is illustrated.

The driver input is shown in Fig. 5 and the vehicle initial

speed is 90km/h. The simulation has been performed in 3

different road conditions: DRY (µ = 1), WET (µ = 0.5) and

ICY (µ = 0.3). This will emphasize the intrinsic robustness

property of the proposed approach.

A. Avoidance maneuver on icy road

To better understand the advantages and differences caused

by the use of the rear steering it is useful to analyze in details



0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

time [s]

δ d [d
eg

]

Fig. 5. Driver input: avoidance maneuver.

one maneuver in the time domain. The obstacle avoidance

presented maneuver on icy road is this in what follows. Fig. 6

shows the absolute value of yaw rate error, vehicle velocity

and the side-slip angle for the LTI case. Comparing the
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rear steer (dashed). Uncontrolled vehicle (black)

results of the LTI controllers with the ones of the LPV

controller presented in Fig. 8 it is evident that the LTI

controller achieves better performance. At the same time

Fig. 7 and Fig. 9 show the huge difference in the actuator

usage between the two types of controllers. While there is

no relevant difference in the peak values reached by the

wheels torques, the steering angles behavior between LTI

and LPV controllers is highly different. It is worth noting

that the LPV controllers through the coordination of the

control actions, induce a reduced use of the actuators. Indeed

the maximal rear steering angle reaches 3deg for the LPV

with rear steering controller and 10deg for the LTI with rear

steering. Moreover the front steering angle is less than 1deg

for the LPVrear controller and it reaches almost 3deg for the

LTIrear. Hence the interference with the driver action is also

reduced thanks to the LPV front and rear steering strategy.
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B. Performance indexes

To better show the advantages of the rear steer we intro-

duce three time domain indexes (4).

eψ̇index
=

∫ tend

t0

|eψ̇ (t) |dt (4a)

βindex = max
t

β (t) (4b)

Vindex =V0 −min
t

(V (t)) (4c)

The first index quantifies the yaw rate tracking error. The

second index penalizes high side-slip angles. It is well known

that non professional drivers cannot manage high side-slip

angle. The third index penalized loss of velocity, ideally one

would want to be able to stabilize the obstacle avoidance

maneuver without reducing the vehicle velocity. For all

performance indexes, a lower value is to be preferred. Fig.

10 and 11 show the simulation results of two vehicles (with

and without rear steer) controlled by both LTI and LPV

controllers in three different road conditions. The following
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Fig. 10. LTI controller: indexes comparison

comments can be drawn:

• All controllers considerably improve the yaw rate ref-

erence tracking in all conditions.

• All the controllers cause a velocity reduction at the end

of the maneuver. This is mainly caused by the use of

the brakes.

• In order to generate higher tire side slip (i.e. higher

lateral tire force) all the controllers cause higher vehicle

slip angle (in this case, the uncontrolled car is indeed

not able to remain in the trajectory bound).

• As predicted by the sensitivity analysis, rear wheel

steering does not bring any advantage on dry road.

• For both the LPV and LTI cases the use of rear wheel

steering proves advantageous on low friction surfaces.

The farther the vehicle is from the nominal design con-

dition, the more an additional lateral dynamics control

variable is useful.
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Fig. 11. LPV controller: indexes comparison

• It is also interesting to compare the LPV and LTI case.

In particular, as expected, the LTI controllers offer better

reference tracking performance. This is due to the fact

that they can access to all control variables, however this

freedom comes at the cost of reduced velocity at the end

of the maneuver. The LPV controllers achieve a slightly

worse reference tracking, but on the other side also a

reduced loss of velocity. This is due to the retarded use

of the braking actuator.

IV. CONCLUSIONS

In this paper the advantages for the rear wheel steering

action on the global chassis control was studied. The work

involved 2 kind of controllers: an LTI controller that uses

all the actuator simultaneously and an LPV controller that

switches between different configuration of the actuators in

relation to the driving situation. The main results can be

summarized as follows:

• The advantages of the rear steering action have been

emphasized in the yaw control case with avoidance

maneuver. Moving from a nominal condition (i.e. high

grip road surface) to a more critical one (i.e. ICY road)

the rear steering action becomes more relevant. It could

be further emphasized in harder driving situations like

braking and avoidance maneuver in a curve at high

speed.

• Still with more complex architecture (like the one with

rear steering) the LPV controller, compared to the LTI

allows lower and customizable usage of the actuators

leading to lower power consumption and lower interac-

tion with the driver action.
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