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BRAVERMAN AND YAMPOLSKY: COMPUTABILITY OF

JULIA SETS

ALGORITHMS AND COMPUTATIONS IN MATHEMATICS

VOLUME 23, SPRINGER

ARNAUD CHÉRITAT

1. Introduction

Most of us have seen computer generated pictures of Julia sets. They are fractal
compact subsets of the plane of complex numbers, generated by the iteration of
polynomials with complex coefficients, or of rational maps, or other holomorphic
maps. There is a great variety of Julia sets and there is a great variety of ways of
illustrating a single one. Color pictures certainly have an aesthetic aspect, notwith-
standing the fact that the color scheme is often chosen so as to have a meaning in
terms of the underlying dynamical system. Black and white pictures usually show
the Julia set itself, which is closed: it is the place where the dynamical system is
chaotic. For some rational maps, it is quickly drawn. For others, the known algo-
rithms are very slow. There are even some for which no convincing pictures has
ever been produced, like those with a Cremer point1. Braverman and Yampolsky
have studied the theoretical aspects of the computability of Julia sets of rational
maps, as functions of the parameter, and the complexity of this computation: for
instance they proved that there are polynomials whose coefficients are computable
but whose Julia sets are non-computable, and some others that are arbitrarily hard
to compute. Their results are interesting in that they may contradict the naive
intuition of those familiar with complex dynamics: they proved the computability

1see the definition in further sections

Figure 1: Example of Julia set of a rational map, represented as a black set on the
Riemann sphere.
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2 A. CHÉRITAT

of some Julia sets with Cremer points, which are not well understood, and non-
computability of some other Julia sets that nevertheless possess a nice and well
understood locally connected topological model.

2. Julia sets

We will restrict the discussion to rational maps and later focus on polynomi-
als. Classical introductions to the topic include Beardon [1991], Carleson and
Gamelin [1993], Milnor [2006], Morosawa et al. [2000], Steinmetz [1993], alpha-
betically sorted.

A rational map is a quotient of two polynomials: R(z) = P (z)/Q(z). It gives a

well defined map from the Riemann sphere Ĉ = C∪{∞} to itself. There is a integer

number d, called the degree2 of R, such that all but finitely many points in Ĉ have
exactly d preimages by R. If the fraction P/Q is in its lowest terms, i.e. there is no
common root between P and Q, then deg(R) = max(deg(P ),deg(Q)). Moreover,

all points z ∈ Ĉ have exactly d preimages if we count them with multiplicity. The
multiplicity m of a point w is the local degree of R near the w: there are local
changes of variable φ, ψ mapping respectively w to 0 and R(w) to 0 and such that
ψ ◦ R ◦ φ−1(z) = zm holds near 0. The critical points are the points where the
derivative of R vanishes (if z or R(z) is ∞ then a change of variable must be used
to check this). There are 2d − 2 critical points, counted with multiplicity, where
the multiplicity of a critical point is the multiplicity of z as a solution of R′(z) = 0,
and it is also equal to one subtracted from the local degree of R at z.

To a rational map R is associated a discrete dynamical system, i.e. from an initial

point z0 in the Riemann sphere Ĉ = C ∪ {∞}, one defines a sequence inductively
by

zn+1 = R(zn).

Then zn = Rn(z0) where Rn = R ◦ · · · ◦R denotes the n-th iterate of R.

A periodic point is a z ∈ Ĉ such that Rn(z) = z for some n > 0. Its period p is
the minimal value of n. Its multiplier is the quantity λ = (Rp)′(z). It is invariant
under an analytic change of variable of the form φ ◦ R ◦ φ−1. The periodic point
is called repelling if |λ| > 1, attracting if |λ| < 1, neutral (or indifferent) if |λ| = 1
and superattracting if |λ| = 0 (which we choose to consider as a particular case of
attracting points).

The Julia set J(R) of a rational map has two equivalent definitions. First it is the
complement of the Fatou set, which is the set of points which have a neighborhood
where the sequence of iterates Rn form an equicontinuous family. The Julia set is
also and more simply the closure of the set of repelling periodic points of R. These
definitions and their equivalence are part of the founding works of Fatou and Julia
in the early 20th century: Julia [1918], Fatou [1917a,b]. From the second definition
follows at once that J(Rn) = J(R) for n ≥ 1.

From now on, we will restrict to rational maps of degree at least 2. Then the
Julia set is a nonempty compact subset of the plane, and it is perfect (there is no
isolated point).

2This notion of degree coincides with the topological degree (R induces multiplication by d on

the second homology group of Ĉ, which is isomorphic to (Z,+)).
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The Fatou set is open, so its connected components are open. It may be empty.
The image of a connected component is a whole connected component. Fatou
classified periodic Fatou components:

Theorem. Every periodic Fatou component is of one of the following types:

• The immediate basin of an attracting periodic point.
• The immediate basin of a petal of a parabolic periodic point.
• A rotation domain: a Siegel disk or a Herman ring.

The terminology used in this theorem has to be explained. The set of iterates
Rn(z) of a given point z is called its orbit. The orbit of a periodic point is called a
cycle. Every point in a cycle has the same multiplier. The set of points tending to
a given attracting cycle is open and nonempty and called its basin. The connected
component of a basin containing a given point in the cycle is called the immediate
basin of this point. A parabolic periodic point is one whose multiplier is a root
of unity. Since the degree of R is at least 2, one can prove that parabolic points
must belong to the Julia set. Yet, locally, a parabolic point still attracts a finite
number of large connected open regions attached to it, called petals. Petals are
stable3 under some iterate Rm of R (with m ≥ 1). These regions are separated by
fjords where points are repelled from the parabolic point. Each petal is contained
in the Fatou set and the connected component of the Fatou set containing a given
petal is called its immediate basin. A Siegel disk is a simply connected component
of the Fatou set where the dynamics of an iterate of R is conjugated to a rotation.
A Herman ring is the same but for an open region homeomorphic to an annulus.
Immediate basins and rotation domains are subsets of the Fatou set.

The following theorem was proved much later, by Sullivan: [Sullivan, 1982, 1985]

Theorem (Sullivan, 1982). Every Fatou component is eventually periodic.

Which means that one of its iterates is periodic. This theorem is often referred
to as the no wandering domain theorem. In other words, the union of all attracting
and parabolic basins and all iterated preimages of rotation domains is the whole
Fatou set. The main tool of the proof is quasiconformal deformations. It is an
adaptation to rational maps of the Ahlfors finiteness theorem in the domain of
Kleinian groups. These two domains have many similarities.

When the rational map is a polynomial, then there is a third well known equiv-
alent definition of the Julia set, as the boundary of the filled-in Julia set, that we
will now define. First note that since R is a polynomial and has degree at least 2,
infinity is fixed and super attracting. Using the maximum principle one can prove
that the basin of infinity, i.e. the set of points attracted to infinity, is connected. Its
complement is thus called the filled-in Julia set because it is the union of the Julia
set and of all the bounded connected components of its complement. The filled-in
Julia set of the polynomial P is denoted K(P ).

There are many other definitions of the Julia set. For instance, it is the support
of the unique measure of maximal entropy (a.k.a. the Brolin-Lyubich measure).

A rational map is hyperbolic when it is repelling on its Julia set in the following

sense: identify4 Ĉ with a euclidean 2-sphere, and let R be hyperbolic whenever
there exists an iterate Rn such that the infimum over z ∈ J(R) of the norm of

3A set X is called stable if R(X) ⊂ X and invariant if R(X) = X.
4conformally, i.e. via a stereographic projection
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the differential of Rn is > 1. Hyperbolicity does not depend on the identification;
changing it just changes the valid values of n. There is one very striking classical
result of Fatou:

Theorem. A rational map of degree ≥ 2 is hyperbolic if and only if all critical
orbits tend to attracting cycles.

Let us focus again on periodic points of rational maps: we have seen that if the
multiplier λ satisfies |λ| < 1 then the periodic point z belongs to the Fatou set and
attracts nearby points, that if |λ| > 1 then it belongs to the Julia set, and that if
λ is a root of unity and deg(R) > 1 then it also belongs to the Julia set, attracts
big nearby domains called petals and repels between them. What if |λ| = 1 but
λ is not a root of unity? Let us write λ = e2πiθ with θ ∈ R − Q which is called
the rotation number. If there exists a local change of variable for which the map
becomes a rotation, we will say that the periodic point is linearizable. If not, it will
be called a Cremer point. The question of linearizability turns out to be a subtle
one.

• Pfeiffer, around 1917, proved the existence of maps with non-linearizable
fixed points with irrational rotation number.
• Cremer, around 1927, found for all d ≥ 2 an explicit condition on θ, suffi-

cient for polynomial of degree d to be non-linearizable.
• The first results in the opposite direction occurred only in 1942, when Siegel

proved in an major article that there exist rotation numbers for which all
maps are linearizable: diophantine numbers.
• Brjuno and independently Rüssman, in the 1960’s, found a more general

class of rotation numbers for which this is the case.
• The last step is when Yoccoz proved in the late 1980’s that this condition is

optimal, and that for the other irrational rotation numbers, the polynomial
Pθ(z) = e2πiθz + z2 is not linearizable at the origin.

This is of course not the end of the story. For instance Douady conjectured that a
linearizable periodic point of a rational map (of degree at least 2) necessarily has a
rotation number satisfying Brjuno’s condition. This question is still open today.

The number of non-repelling cycles is always bounded:

Theorem. If the rational map R has degree d ≥ 2, then

• (Fatou) there are at most 4d− 4 non-repelling cycles,
• (Shishikura) the sharp bound is 2d− 2.

The most extensively studied family of rational maps is the family of quadratic
polynomials: Pc(z) = z2+c. Every polynomial of degree 2 is conjugated to a unique
Pc by a complex affine map z 7→ az + b. It can have at most one repelling cycle.
Note that if this cycle is of Cremer type (i.e. neutral but neither parabolic nor
linearizable) then by the classification of components, the only Fatou component is
the basin of infinity (which we recall is connected) and thus K(P ) = J(P ).

3. The notion of computability

Most readers of this journal are likely to be familiar with the notion of com-
putability and they can skip the present section. For the others, let us warn that
we will be a bit vague here.



BRAVERMAND AND YAMPOLSKY: COMPUTABILITY OF JULIA SETS 5

A sequence of integers is said to be computable if there is a finite computer
program able to compute these numbers. There is no bound on the amount of
memory or time available to the program.5

A completely rigorous treatment of these notions is given by Turing machines,
but this is out of the scope of the present review.

Since the set of all integer sequences is uncountable and the set of all finite
programs is countable, it means that most integer sequences are not computable.
On the other hand, many sequences we are familiar with are computable, and
usually their definition provides the algorithm for computing them.

A computable subset of the integers is just a set whose characteristic function is
computable, i.e. there is a program which for all input n stops and outputs 1 if n is
in the set and 0 if not. One fascinating feature is that is possible to explicitly and
unambiguously define sets that are not computable (this is related to the halting
problem).

The data of a real number is equivalent to the data of its (proper) decimal ex-
pansion, so it is tempting to define a computable real number as one whose decimal
expansion is a computable sequence. This is correct but contains subtle aspects.6

The two following definitions of a computable real number x are equivalent:

(1) the proper decimal expansion of x is computable,
(2) there exists a program with input an integer n and output a rational number

xn with |xn − x| < 1/10n.

In particular, computability does not depend on the base chosen, decimal, binary,
etc. . . The first definition is more straightforward but the second one is more rea-
sonable.

Many usual mathematical constants like e (the basis of Napier’s natural loga-
rithm), the constant π, Feigenbaum’s constant δ, all algebraic numbers, etc. . . are
computable.

Remark. It is important to note that if x is a real number and if there exists some
program with input n ≥ 0 and output a rational xn, and if moreover xn −→ x as
n −→ +∞, this does not imply that x is computable: the definition of computabil-
ity includes a control on the distance from x to its approximation xn, and there

5More precisely the program has an input and an output. When an integer n is given as an

input, then the output should be the term un of the sequence. The machine is also supposed to
halt once it has given the output. For this definition to be sensible, one must allow for arbitrarily

large integers n as an input, because all finite sequences are computable: just encode the values of

the sequence within the program and let the latter retrieve them. Note that integers are encoded
for instance by their decimal or their binary expansion: this means that larger integers take more
memory to encode and more time to handle.

6Consider for instance the Euler-Mascheroni constant γ. It is not known if it is rational or

not. But an algorithm for computing approximations exists, with an error bound. More precisely,

there exists a program with input an integer n and output a decimal (or binary or rational, etc. . . )
real number xn with |xn − γ| < 1/10n. If γ is irrational, or is rational but not decimal, then
this algorithm can be used to write another algorithm providing the decimals of the number. If
γ is a decimal rational, then there also exists an algorithm giving the decimals, but it does not
use the original one: since every rational has an eventually periodic decimal expansion, the initial

segment and the periodic part of the sequence of its decimals can be encoded within a program.
Therefore we know that the decimals of γ are computable, event if we do not know which program
will do it!



6 A. CHÉRITAT

indeed exist non-computable numbers that are limits of programmable sequences
of rationals. 7

4. Computability of a compact subset of the plane

We switch to base 2 to stay closer to the book. The plane is identified both with
R2 and with the set of complex numbers C and its elements will be often denoted
as z.

The definition of a computable compact subset of the plane is similar to the
second definition of a computable real number. On the set C of all nonempty
compact subsets of the plane is defined the Hausdorff distance as follows:

d(K,L) = max(δ(K,L), δ(L,K))

where

δ(K,L) = sup
z∈K

d(z, L) d(z, L) = inf
w∈L

d(z, w).

Another definition of δ is the following:

δ(K,L) = inf
{
ε > 0

∣∣K ⊂ L+B(0, ε)
}
.

where L + B(0, ε) =
{
z + w

∣∣ z ∈ L and |w| < ε
}

is also the ε neighborhood of L,
i.e. the set of all points at distance < ε of L.

Let F be the collection of finite sets of points with rational coefficients. Then
F is a dense subset of C. An element C of C is called computable if there exists a
program which on input n outputs some Cn ∈ F , such that d(Cn, C) < 1/2n. An
encoding of these finite sets must be fixed in advance but the notion of computability
will not depend on it.

Dyadic numbers are rational numbers of the form k/2n with k ∈ Z. They are
thus represented on computers by a pair of integers.8 An equivalent definition of
computability for compact subsets of the plane, slightly closer to the behavior of
actual programs used to produce pictures of Julia sets, is the following: choose a
real b > 1. Call C computable if and only if there exists a program such that:

(1) the input is dyadic numbers x, y and r
(2) on each input r > 0 and x, y the program stops and outputs (where z =

x+ iy): 1 if d(z, C) < r, 0 if d(z, C) > br, either 0 or 1 otherwise.

This is reminiscent of distance estimator algorithms. The actual value b is not
important as long as b > 1, since a computable compact for some b with some
algorithm is computable for any other b′ > 1 with another algorithm which uses the
first one. One possible proof uses the equivalence with “z 7→ d(z, C) is computable”
(see the next section).

As a simple yet instructive example, let z = x+ iy be a point in the plane. The
set {z} is computable if and only if both coordinates x and y are computable.

7The set of real numbers satisfying this weaker definition is still countable.
8It is not necessary to have a unique representation of objects as long as one can program a

comparison function: for instance k/2n = l/2m iff 2mk = 2nl.
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5. Computability of functions

This notion is a bit subtle and may not match first intuition. We first need
to introduce oracles. Consider a real variable x (9) and a sequence un of dyadic
numbers such that |x − un| ≤ 1/2n. An algorithm/program/Turing-machine with
oracle access to x is the same as a standard program but it is allowed to query un,
i.e. it can call a special function φ(n), which is not computed by a Turing machine,
that returns un to the program. It can call it many times and with any value of
n it has been able to compute so far. It is useful to imagine, though of course not
necessary, and debatable, that φ is a function that asks a human user to type un
on a keyboard. For complexity considerations, one should require moreover that
the size of the encoding of un is O(n). Typically one could require un to be of the
form p/2n where p is an integer. 10

Let S be any subset of R. A function f from S to R is computable if there exists
an algorithm with oracle access to x that for all value of x ∈ S, given n outputs a 2−n

dyadic approximation of f(x), i.e. some y = p/2q such that |f(x) − y| < 2−n. (11)
If f is defined on a bigger set than S we say it is computable on S if its restriction
to S is computable.

One consequence of this definition is that computable functions are continuous!
And if f is computable on S then the restriction of f to S is continuous.

For instance, the step function H : R→ R, H(x) = 0 if x < 0, H(x) = 1 if x > 0,
H(0) = 1/2, is not computable on R but it is on R − {0}. It may seem annoying
at first, that such a simple and familiar function be non-computable. But it makes
sense if we think in experimental terms. Assume we are given a real quantity x,
for instance the result of a physical measure, which we can know only up to some
approximation. Computing H(x) amounts to determining whether x is positive,
negative, or 0. How are we ever going to know that x = 0 if we can only get
finite approximations of x? This information, that x = 0 or not, must be given in
addition. On the opposite, if we are sure for some reason that x 6= 0, then we know
that if we measure it finely enough, we will know its sign.

Let x0 and y0 be real numbers. Saying that the function defined on S = {x0}
with value y0 is computable is the same as saying that there is exists an algorithm
with an oracle φ, that computes y0 when φ gives approximations to x0.

There are still only countably many Programs/Turing-machines with the ability
to call oracles.

The notion of computable functions extends to many other spaces, in particu-
lar to functions from Rm to Rn. For instance a nonempty compact subset C of
Rm is computable if and only if the distance function Rm → R, x 7→ d(x, C) is
computable.

One should be aware that programs for computing sets must give an output that
is certified to be an approximation of the set up to a bound fixed by the user. Most
actual programs found today for plotting Julia sets, if not all, do not bound the

9it may also be a subset of the integers, or any infinite structure encodable by a sequence of
finite structures un, together with a notion of approximation and an controlled bound on this

approximation
10I suppose this may be relaxed in some situations to un having an encoding length with an

upper bound that is polynomial in n.
11The program may ask for φ(k) for values of k bigger than n, in fact for any k it has been

able to compute so far.
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roundoff errors when manipulating approximations of real and complex numbers,
nor is their output certified to be an approximation of the Julia set within some
given error. Also, many of them draw a colour encoding of some potential functions
in the Fatou set instead of the Julia set itself.

6. Computability of Julia sets

We will list here some of the most striking results proved in the book. They
are cited almost faithfully: we just adapted here or there the vocabulary or the
formulation for more uniformity in the review.

Theorem (3.1 page 39). For all d ≥ 2 there exists an algorithm with oracle access
to the coefficients of a rational mapping of degree d which computes the Julia set of
every hyperbolic rational map of degree d.

This means that the map R 7→ J(R) is computable over S = the set of all
hyperbolic rational maps of degree d. (12) In particular, if R has computable
coefficients and is hyperbolic, then J(R) is computable: there is no need for an
oracle since the coefficients can be computed inside the program. 13

We did not speak of complexity in the introduction but the algorithm computes
J(R) in a reasonable time (see the next theorem).

To handle parabolic points, some supplementary information must be given to
the algorithm:

Theorem (3.16 page 59). Given

• a rational function R(z) such that every critical orbit of R converges to an
attracting or a parabolic cycle; and
• some finite combinatorial information about the parabolic cycles of R;

there is an algorithm M that produces an image of the Julia set J(R). It takes M
at most time CR ·nc to decide one pixel in J(R) with precision 2−n. Here c is some
(small) constant and CR depends on R but not on n.

And M does not depend on R. Deciding a pixel refers to the second definition
of computable subsets of R2 we presented in §4: it is calling the program with
supplementary inputs x, y, r, with r = 2−n and x, y two dyadic numbers whose
encoding is not much bigger than n, and the program is supposed to terminate and
output 0 or 1 according to rules explained in §4. The combinatorial data include
the number of parabolic cycles, their periods, rotation numbers and their number
of petals. This information has to be known a priori because a program cannot
determine whether an equality holds between quantities that depends on real or
complex numbers given by oracles.

Another way to realize that a program cannot work without this information
is based on the continuity of computable functions: there is a phenomenon, called
parabolic implosion Douady [1994], that implies that R 7→ J(R) is not continuous

12This set S is an open subset of the set of rational maps of degree d (hyperbolicity is a stable
property), and one of the biggest conjectures in one-dimensional holomorphic dynamics is that it

is dense: this is referred to as the Fatou conjecture.
13It would not be reasonable to expect J(R) to be computable for all R, since there are

uncountably many different Julia sets but only countably many programs. This is a bit analogous
to the fact that the set {x} is computable if and only if x is computable, though it is trivially

computable with oracle access to x for all x.
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at rational maps R0 with a parabolic cycle (and this holds even when R 7→ J(R) is
restricted to hyperbolic maps union {R0}).

This has a consequence : since the function R 7→ J(R) is not continuous on the
set of all rational maps, there is no algorithm for computing all Julia sets, with
oracle access to R. However, we will see that Braverman and Yampolsky have
stronger negative results (the labelling does not reflect that of the book):

Theorem A (extracts of Chapter 5). There exist rational maps R whose Julia set
is not computable by any algorithm even with oracle access to the coefficients of R.
The map R can be chosen to be a quadratic polynomial, moreover with computable
coefficients.14

In fact they give much more precise statements. But first let us state the following
theorem, which in comparison of the previous one, may come as a surprise:

Theorem (4.1 page 65). For all polynomials P there exists an algorithm with oracle
access to the coefficients of P that computes the filled-in Julia set K(P ). In other
words, the function P 7→ K(P ) is computable over {P0} for all P0.

Here also the statement hides subtleties: different polynomials require different al-
gorithms. There is a countable yet infinite number of algorithms required. However
one algorithm is sufficient if one allows for entering as an input a finite amount of
supplementary information about P , like the number of parabolic cycles, the num-
ber of linearizable neutral cycles and of Cremer cycles, a way to locate them, and
some other bits of information (finitely encodable).

So in the case of a quadratic polynomial like in Theorem A above, the filled-
in Julia set K(P ) is computable but not its boundary J(P ), which is a striking
result. Also, consider a quadratic polynomial P with a Cremer point whose rotation
number is computable (it exists), then K(P ) (which equals J(P )) is not locally
connected and worse, no topological model is known; yet, it is computable.

A rational map R as in Theorem A necessarily has a Siegel disk or a Herman
ring. Indeed, in Chapter 4, the following statement is proven:

Theorem (4.5 page 69). Let R be a rational map without rotation domains. Then
its Julia set is computable by an algorithm with oracle access to the coefficients of
R. The algorithm requires information about the parabolic points as an input.

There is thus a close relationship between computability and rotation domains,
and an important part of the book is devoted to unveiling it.

7. Conformal radius of Siegel disks and computability of Julia sets

To simplify things, the authors focus on the particular, yet archetypal, family
of quadratic polynomials, and even more precisely on those that have a period one
cycle with indifferent multiplier. Such a map is conjugated by a complex-affine
map z 7→ az + b to a unique Pθ(z) = e2πiθz + z2 with θ ∈ R. Let ∆θ denote its
Siegel disk if the fixed point z = 0 is linearizable and be the empty set otherwise.
If ∆θ 6= ∅ let the inner radius be the distance from 0 to its boundary ∂∆θ and
let the conformal radius be φ′(0) where φ : B(0, 1) → ∆θ is the unique conformal
isomorphism mapping 0 to 0 and with real positive derivative at the origin. 15

14Again, when the coefficients are computable, there is no need for an oracle.
15Note that such an isomorphism necessarily conjugates P to the rotation (this follows from

the case of equality in Schwarz’s lemma).



10 A. CHÉRITAT

Theorem (Sections 4.3 and 5.2.1). Assume that the map Pθ(z) = e2πiθz + z2

has a Siegel disk. Then the following assertions are equivalent (where “w.o.a. θ”
abbreviates “with oracle access to θ”):

• J(Pθ) is computable w.o.a. θ,
• the inner radius of the Siegel disk is computable w.o.a. θ,
• the conformal radius of the Siegel disk is computable w.o.a. θ.

A right-computable number is a real x such that there exists a program with
input an integer n and output a rational number un ∈ Q such that un −→ x and
such that un is weakly decreasing : un+1 ≤ un. A left-computable real is defined
analogously but with an increasing sequence. A real is computable iff it is both
right and left computable. The connoisseur will have foreseen that non-computable
yet right-computable real numbers can be constructed from the Halting Problem.

Theorem. Denote by r(θ) the conformal radius of the Siegel disk of Pθ.

(1) There exist values of θ such that r(θ) is not computable w.o.a. θ.
(2) In fact, there exist computable values of θ such that r(θ) is not computable.

This implies (1) because an oracle access to a computable number is useless.
(3) Let rsup be the supremum of r(θ) over all θ. Then ∀r ∈ (0, rsup),

(∃θ computable such that r(θ) = r) ⇐⇒ (r is right-computable).
This implies (2) because there exist right-computable numbers which are not
computable, and it is easy to see that they form a dense set in R.

Moreover, the authors also prove the existence of computable values of θ such
that r(θ), hence J(Pθ), are computable, but with arbitrarily high complexity (com-
plexity refers to the operating time of the Turing machine or program doing the
computation).

Recall that a bounded type number is an irrational whose continued fraction
expansion has a bounded sequence of entries. A lot of things have been proved
by famous mathematicians on the Julia set of Pθ when θ has bounded type. For
instance the boundary of the Siegel disk ∆θ is a Jordan curve, fractal but with
controlled geometry: its Hausdorff dimension is strictly between 1 and 2, it is
equal to the closure of the critical orbit, the Julia set is locally connected, has
Hausdorff dimension < 2, the filled-in Julia set is deep near ∂∆θ, there exists a
simple homeomorphic model of J(Pθ), etc. . .

Proposition (4.9 page 71). Let θ be of bounded type. Then J(Pθ) is computable
by an algorithm using oracle access to θ, and an upper bound M on the entries of
the continued fraction expansion of θ.

However, Braverman and Yampolsky also prove:

Theorem (6.16 page 129). There exist values of θ such that J(Pθ) is locally con-
nected (and we have an explicit homeomorphic model) but not computable even with
oracle access to θ. 16

We have omitted in this short presentation many interesting other results pre-
sented in the book.

16They do not specify if there are examples with computable θ but this it is likely to be true.
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8. The book

The book is roughly self contained, a basic knowledge of complex analysis being
the required background.

The first two chapters are introductions to the notion of computability and to
the dynamics of rational mappings, mostly without proofs. They are written in an
accessible way with many explications, examples and illustrations. The second one
also includes related tools of complex analysis, like the uniformization theorem, the
hyperbolic metric, and distortion bounds on univalent maps.

After this introduction begins the heart of the matter. Some of the results already
appeared in previous works of the authors, while some are new. Most proofs are
given in detail; some are only sketched, or easier parts are left to the reader.

The third chapter is about hyperbolic rational maps and the (larger) class of
maps whose critical points all belong to attracting or parabolic basins. The proof
of computability uses the fact that J(R) is the closure of the set of repelling orbits,
which can be computed (as a function of R). It also uses a construction of com-
putable open sets around the attracting cycles that trap orbits passing in them,
and a construction of similar traps for parabolic cycles. By the classification of
Fatou components, all points not in J eventually fall into these traps U under it-
eration of R. The proposed algorithm then computes simultaneously on one hand
approximations of the union of more and more repelling orbits, and on the other

hand approximations of the complement Ĉ − R−n(U) of preimages of higher and
higher order n. The first set is contained in the second and they are both compact.
They will differ less and less as the program runs, and when it detects that their
Hausdorff distance is small enough its stops and outputs either one. As the authors
say, it is (roughly) an approximation of J from above and from below. All this can
be made rigorous.

They also prove that there is an algorithm with whose complexity is polynomial
in some sense. The proof is more subtle and much harder to read. It is based on
Koebe’s distortion theorem for hyperbolic maps, and moreover on an accelerator
near parabolic points (i.e. a way to compute many iterates with few computations).

Chapter 3 ends with a discussion of some known results about the discontinuity
of Julia set as a function of R (in particular parabolic implosion) and its implications
on the computability of R 7→ J(R).

Chapter 4 presents more positive results about computability: filled-in Julia sets
of polynomials and Julia sets of rational maps without rotation domains. There
is also the equivalence between computability of the Julia sets of some quadratic
polynomials and computability of the conformal radius of the Siegel disk (they
restrict the study to period one Siegel disks). They also prove computability when
the rotation number has bounded type, using a quasiconformal model of the Julia
set to bound the geometry of the Siegel disk, and the fact that its boundary is in
this case the closure of the critical orbit. The chapter ends with a proof of the
computability of the closure J of

{
(z, c) ∈ C2

∣∣ z ∈ J(Pc)
}

where Pc(z) = z2 + c.

They relate this to robust computability and random iteration.17

Chapter 5 is devoted to negative results. It begins with a discussion of some
known results about Siegel disks and Cremer points in the quadratic family, that
will be used in the rest of the chapter (and also some open conjectures which

17These two subjects are similar to, but different from, the study of J .
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are likely to be true and that conditionally allows them to enhance some of their
theorems).

It is followed by the equivalence between computability of J(z 7→ e2πiθz+z2) and
of the conformal radius r(θ) of the Siegel disk (with the convention that r(θ) = 0
when there is no Siegel disk).

Then a careful study of the dependence on θ of r(θ), which is known to be very
wild, is done with computability objectives in mind. Some of their results use the
close relation between r(θ) and the Brjuno function

Φ(θ) =
∑
n≥0

θ0 · · · θn−1 log
1

θn
,

which was introduced by Yoccoz, where the sequence θn is given by Gauss’s algo-
rithm for continued fractions: θ0 is the fractional part of θ and θn+1 is the fractional
part of θn. See Yoccoz [1995], who proved that the fixed point z = 0 of Pθ(z) =
e2πiθz + z2 is linearizable if and only if B(θ) < ∞ (see Section 2 in the present
review), Buff and Chéritat [2006] where it is proved that ν : θ 7→ log(r(θ)) + Φ(θ)
has a continuous extension to the reals, and the conjecture in Marmi, Moussa, and
Yoccoz [1997] asserting that the previous function should be 1/2-Hölder continuous.
An interesting question would be to determine whether the corresponding results
by Braverman and Yamposlky could be proved without the correspondence with Φ.

Section 5.3.2 of the book is an interesting discussion of Cremer points. For a
quadratic polynomial, recall that when there is a Cremer cycle, then J(P ) = K(P )
and thus J(P ) is computable with oracle access to θ. This is the case for instance
for P (z) = e2πiθz + z2 when θ is an irrational real number which does not satisfy
Brjuno’s arithmetic condition. But what about the complexity of this computation?
It is known neither that there are cases where the computation can be done with
low complexity, nor that there are cases with high complexity. It is remarkable
that there does not exist today any convincing computer picture of a Cremer point.
Another problem is that even if an image could be actually produced, it could be
well possible that the Julia set would be composed of strands being so dense that
near the Cremer point the image would look like a black area, indistinguishable
from an open subset of the plane, and making the strands visible would require

zooming to an impratical factor (101010

for instance) or creating an image with a
similar unachievable number of pixels.

Chapter 5 also includes two conditional sections: assuming that θ 7→ ν(θ) has a
computable modulus of continuity, then one section proves that J(z 7→ e2πiθz+ z2)
is computable when either θ or e2πiθ is an algebraic number, and the second section
proves that parameters c ∈ C such that J(z 7→ z2 +c) is not computable with oracle
access to c and parameters θ such that J(z 7→ e2πiθz + z2) is not computable with
oracle access to θ are rare: they form sets of zero Hausdorff dimension.

Chapter 6 is titled “Computability versus Topological Properties of Julia Sets”.
Section 6.1 proposes a toy example of a computable closed set whose boundary is not
computable, based on the halting problem (more generally on some type of non-
computable predicates). The remaining sections focus on quadratic polynomials
and deal with the notion of local connectedness: basically they prove that it is
independent of computability with oracle access to the parameters, in the sense
that all four combinations occur. The proof that there exists θ such that Pθ : z 7→
e2πiθz + z2 is locally connected but not computable even with oracle access to θ is
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the most difficult; it uses in particular cylinder renormalization and a key result of
Inou and Shishikura about this tool and the control on the post-critical set that
this allows one to do.18

Let me allow a personal remark as we near the end of this review, which after all
is written by a human being. I have never seen a book without typos or errors, and
this one is not an exception. All the ones I could spot were easily fixable, though,
and some of them could be false positives due to my misunderstanding of some
statement or forgetting of context or notation.

As a conclusion, this book sees the meeting of two worlds: computability theory
and iteration of rational maps. It is a fruitful one, with both positive and negative
result, and a share of surprises. It is also a compendium of several years of research
by the authors and joints work with Ilia Binder, together with a lot of new results. It
gives a nice and quick introduction to both topics, and much of it is pleasant to read,
though the most technical parts are hard, especially the proofs that the algorithms
work. The notations or formulations are not perfectly uniform between theorems,
likely a side effect of part of them being a collection of results from previous articles.
The book includes interesting discussions and presents stimulating conjectures.

This is a theoretical work, and it is clear that some methods, even though they
run in polynomial time, are much slower than existing algorithms. But at least they
are proven to work. Moreover a certain number of new computational techniques
are introduced, like their power series expansion-based acceleration procedure at
parabolic points, and it is not impossible that, and would be interesting to determine
if, some of them could improve actual programs used to draw Julia sets, in accuracy
or running time.
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X. Buff and A. Chéritat. Ensembles de Julia quadratiques de mesure de Lebesgue
strictement positive. C. R. Math. Acad. Sci. Paris, 341(11):669–674, 2005. ISSN
1631-073X. doi: 10.1016/j.crma.2005.10.001.
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Mathématiques Pures et Appliquées, 8:47–245, 1918.

S. Marmi, P. Moussa, and J.-C. Yoccoz. The Brjuno functions and their regularity
properties. Comm. Math. Phys., 186(2):265–293, 1997. ISSN 0010-3616. doi:
10.1007/s002200050110.

J. Milnor. Dynamics in One Complex Variable, volume 160 of Annals of Mathe-
matics Studies. Princeton University Press, Princeton, NJ, third edition, 2006.

S. Morosawa, Y. Nishimura, M. Taniguchi, and T. Ueda. Holomorphic dynamics,
volume 66 of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 2000. ISBN 0-521-66258-3. Translated from the 1995 Japanese
original and revised by the authors.

N. Steinmetz. Rational Iteration, volume 16 of de Gruyter Studies in Mathematics.
Walter de Gruyter & Co., Berlin, 1993. ISBN 3-11-013765-8. Complex analytic
dynamical systems.

D. Sullivan. Itération des fonctions analytiques complexes. C. R. Acad. Sci. Paris
Sér. I Math., 294(9):301–303, 1982. ISSN 0249-6321.

D. Sullivan. Quasiconformal homeomorphisms and dynamics. I. Solution of the
Fatou-Julia problem on wandering domains. Ann. of Math. (2), 122(3):401–418,
1985. ISSN 0003-486X. doi: 10.2307/1971308.
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