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Abstract

The classical problem of the flow over a circular cylinder at Reynolds number
40 is considered using an accurate pseudo-spectral code. A new set of boundary
conditions is proposed to improve the representation of the infinite flow domain,
especially in the far wake area. It is shown that the resulting accuracy of
the computed flow allows its use as a reference solution for code validation.
This reference solution is reachable at any location up to 50 cylinder diameters
far from the cylinder centre through spectral interpolation with a user-friendly
script provided in appendix. It is shown how this solution offers the opportunity
to perform a convergence study and to investigate the spatial distribution of
numerical errors. The main goal of this study is to propose this reference solution
as an helpful tool for numerical validation and development, especially for the
improvement of immersed boundary methods toward high-order accuracy.

Keywords:

Flow over a circular cylinder, pseudo-spectral method, boundary condition
treatment, body-fitted method, immersed boundary method.

1. Introduction

In the context of Computational Fluid Dynamics (CFD), the certification
of numerical methods is often challenging. A major difficulty for validation is
connected to the lack of exact solution that can be used as reference. More
precisely, among the known analytical solutions of Navier-Stokes equations, no
one can represent faithfully complex phenomena involving for instance vortex
dynamics or flow separation. However, these phenomena play a major role in
real-life flows, so that the ability of a given numerical code to predict them is a
crucial issue.

To increase the validation framework, exact solutions can be manufactured,
but again, the resulting analytical solution is never fully representative of a
complex flow situation. To address realistic flow configuration, validation is
commonly performed by comparison with experimental or numerical results of
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reference. This method can be seen as the ultimate step of code verification
in the sense that the overall influence of numerical parameters can be assessed
practically. However, this validation strategy suffers from important drawbacks.
First, because the error is global, it is difficult to distinguish each type of er-
ror contribution, for example those associated with differentiation from those
connected to the boundary condition approximations. Secondly, comparisons
cannot be very accurate in the sense that they are based on a limited number of
reference quantities submitted to uncertainty. This uncertainty can be due to
an incomplete knowledge of boundary conditions (experiments and calculations)
or to measurement errors (experiments). It prevents the rigorous estimation of
the convergence rate toward a solution assumed free from errors. Even the
simple comparison between results from different numerical codes can be am-
biguous because any conclusion has to be drawn modulo a significant range of
uncertainty.

To illustrate this difficulty, let us consider one of the most popular test cases
in CFD: the flow over a circular cylinder at Re = 40. Here, Re = UD/ν is the
Reynolds number based on the upstream constant velocity U and the cylinder
diameter D while ν is the kinematic viscosity of the fluid. For this low Reynolds
number, the flow is two-dimensional (2D), symmetric and steady. These three
properties should allow straightforward and computationally inexpensive com-
parisons. However, the resulting flow pattern is not trivial due to the presence of
two separations leading to the formation of two recirculation bubbles behind the
cylinder in the near-wake region. The right prediction of the separation location
is a key component to get an accurate numerical solution because no singularity
in the geometry can fix the separation start, as it would be for instance for a
square cylinder.

In a first view, the flow over a cylinder at Re = 40 seems to be a well
defined and discriminatory test flow for CFD. This is probably the reasons
that led many previous authors to consider this flow configuration for vali-
dation. However, in the literature, a significant scattering of results can be
observed, even for global quantities like the drag coefficient CD or the recir-
culation length Lw. For instance, if we consider the set of reference results
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], we observe 2.13 < Lw < 2.35
and 1.48 < CD < 1.62 (see table 1). The corresponding relative uncertainty of
about 10% forbids any accurate validation simply based on these values. In
addition to measurement errors for experiments or numerical errors for simula-
tions, a fundamental reason of this scattering is connected to the challenge of
reproducing, numerically or experimentally, the flow in an unbounded domain.
Another explanation of the experiment/simulation discrepancy could also be
due to the difficulty to establish experimentally a purely 2D flow.

The purpose of this study is to provide a reference solution of the cylinder
flow problem at Re = 40. The aim is not the physical investigation of this
well documented flow but the achievement of high-accuracy. For that purpose,
pseudo-spectral methods are used in cylindrical coordinates. In addition, to
mimic satisfactory an infinite flow domain, an improved method for external
boundary conditions is proposed. The solution obtained is made available at
any location between the cylinder and computational domain boundaries thanks
to a spectral interpolation. The full access to the resulting database is given
through a short user-friendly script file that runs using the software GNU Octave
or Matlab, so that the solution can be known at any specific location with a
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Table 1: Physical parameters of the flow pattern around a circular cylinder at Re = 40: Drag
coefficient CD , separation angle θs, wake length Lw/D and location of recirculation centre
(a, b).

CD θs Lw/D a/D b/D
Tritton [1] 1.48

Dennis & Chang [2] 1.52 126.2◦ 2.35
Coutanceau & Bouard [3] 126.2◦ 2.13 0.76 0.59

Fornberg [4] 1.50 124.4◦ 2.24
He & Doolen [5] 1.50 127.2◦ 2.25

Ye et al. [6] 1.52 2.27
Calhoun [7] 1.62 125.8◦ 2.18

Russel & Wang [8] 1.60 2.29
Tseng & Ferziger [9] 1.53 2.21
Linnick & Fasel [10] 1.54 126.4◦ 2.28 0.72 0.60

Chung [11] 1.54 2.30
Le et al. [12] 1.56 2.22

Ding et al. [13] 1.58 127.2◦ 2.35
Taira & Colonius [14] 1.54 126.3◦ 2.30 0.73 0.60

Posdziec & R. Grundmann [15] 1.49
Patil & Lakshisha [16] 1.56 127.3◦ 2.14

Bouchon et al. [17] 1.50 126.6◦ 2.26 0.71 0.60
Present reference solution 1.49 126.4◦ 2.24 0.71 0.59

θ b

Lw

a

3



preserved accuracy. This facility is found to allow the validation of any numerical
code with a possible convergence study, especially if the reference solution is used
as boundary conditions.

To illustrate the potential benefit offered by this solution, two different nu-
merical strategies are assessed with a specific analysis of their numerical errors.
These two strategies are based on the same numerical schemes of standard ac-
curacy. The first approach corresponds to the body-fitted strategy for which
a cylindrical mesh is used. The second approach is based on an Immersed
Boundary Method (IBM, see Mittal & Iaccarino [18] for an overview) based on
a Cartesian mesh. In fact, the improvement of IBM was the initial motivation
of this work. This type of body treatment is mainly empirical due to the diffi-
culty of a rigorous numerical analysis of the solution convergence regarding the
forcing and its numerical implementation. In this context, the availability of
a reference solution, physically realistic and challenging, could be highly ben-
eficial for further development in this area. Here, the standard direct forcing
method is assessed by considering two different levels of accuracy for the near-
body treatment. Because both the forcing and the numerical schemes used are
standard, the resulting errors exhibited in this paper can be used as reference
to conclude about the relative accuracy of any other combinations of IBM and
numerical code.

The organisation of the paper is as follows. In section 2, the numerical
methods used to compute the reference solution are presented with some details
about the sensitivity of results. An estimation of the accuracy of the reference
solution is provided in section 3. Sections 4 and 5 are dedicated to code vali-
dation based on the reference solution for a body-fitted and an IBM approach
respectively. Finally, the contribution of this work is summarized in section 6
where some recommendations can be found. To make very easy the access to
the reference solution for the user interested in, a brief explanation of the use
of the Gnu Octave/Matlab file script is given in Appendix A.

2. Numerical methods and reference solution

The incompressible Navier-Stokes equations are solved with a pseudo-spectral
code in cylindrical coordinates. In the azimuthal direction (θ) the solution is
expanded in Fourier series with Nθ modes. To avoid the aliasing effect the 3/2
Orzag’s rules is applied. The Chebyshev collocation method is used in radial
direction (r) with Nr nodes. The Gauss-Lobatto-Chebyshev grid ξ is expanded
from the interval [−1, 1] to the physical domain [1/2, r∞] through a simple
mapping : r = 1/2 + r∞(1 − ξ)/2. A more complex mapping, with a refined
mesh only near the cylinder, has been attempted but the results are poorly sat-
isfactory because of the deterioration of the condition number of differentiation
matrix. The time marching is second order accurate, implicit in time for the
viscous term, with a Chorin-Temam [19, 20] prediction projection scheme for
the divergence free condition. The pressure is approximated by polynomials
of two units lower-order than for the velocity, in order to compute a pressure
unpolluted by spurious modes [21] with only one collocation grid. An alterna-
tive method would be coupling between pressure and velocity through traction
boundary conditions [22].

The main difficulty encountered in obtaining accurate numerical solution is
the satisfactory treatment of boundary conditions at large distance from the
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cylinder. Although a physically non confined cylinder is viewed, the discretized
equations require finite boundaries in the far field. The lateral extensions of
domain boundaries are responsible for the ubiquitous blockage effects, charac-
terized by the ratio between the lateral boundary position and the diameter of
the cylinder. On the other hand the outflow boundary conditions, downstream
the cylinder, are applied in order to allow phenomena generated in the domain of
interest to pass through the synthetic boundary without undergoing significant
distortion and without influencing the interior solution.

The accuracy depends on the three following parameters: the resolution
(number of grid points), the extension of the computational domain, and the
boundary condition treatment.

No slip boundary condition is imposed on the cylinder. In the far field, the
selection of proper boundary condition is a critical issue for flow simulation in
unbounded domain. For example Pradeep and Hussain [23] have shown that
an artificial zero circulation constraint forces an unphysical instability of an
isolated vortex. For body wake flows, the numerical domain must extend to a
large distance downstream of the body. Boundary conditions like periodicity,
convective, Dirichlet or Neumann are often used but not fully satisfying. In con-
junction the exterior boundaries are generally placed very far from the cylinder
surface to avoid unphysical influence from the boundary conditions.

In the present paper we extend a recent procedure proposed by Hasan et

al. [24] to extrapolate velocities at the outflow boundary. The radial variation
of the velocity field at large distances from the rigid body is assumed to be
proportional to 1/r2, which can be inferred from mass conservation and vortic-
ity considerations. In fact the proposed boundary condition is not completely
physically consistent because it implicitly assumes a irrotational outflow condi-
tion. For rotational flow, this algebraic behaviour is not satisfied, for example
the far field centreline velocity is proportional to 1/

√
r. The outer boundary

could be divided into a wake region and a region outside the wake but the do-
mains reconnection induces a strong gradient resulting in a loss of the spectral
accuracy.

The present method involves the triple decomposition u = u∞ + u1 + u2

where u∞ is the uniform streamwise velocity and the two other terms are the
corrections to take into account the asymptotic wake flow and the mass momen-
tum respectively. The first correction (u1) is given by the Schlichting self-similar
far field solution [25] for a plane wake flow in the streamwise (ex) and vertical
(ey) directions with

u1 · ex = 1− CD

√
Re

4
√
π

e−Re r(1−cos θ)/2

√
r

u1 · ey = − sin θ

2

CD

√
Re

4
√
π

e−Re r(1−cos θ)/2

√
r

where the solution has been expressed in radial and azimuthal coordinates with
the hypothesis θ ≪ 1. Nonetheless, this solution does not satisfy the mass
conservation along the boundary r = r∞. Then we apply the second correction
(u2), proposed by Hasan et al., which is based on the expected radial variation of
velocity field at large distance from the rigid body. That asymptotic behaviour,
for the radial v2 and azimuthal w2 velocity components, can be inferred from

5



the mass and the circulation conservation:

∫ 2π

0

v rdθ = 0 ⇒
∫ 2π

0

v2 rdθ = −
∫ 2π

0

v∞ + v1 rdθ = cste

∫ 2π

0

w rdθ = 0 ⇒
∫ 2π

0

w2 rdθ = −
∫ 2π

0

w∞ + w1 rdθ = 0

Hence it can be inferred that the velocity components v2 and w2 behave as
1/r and 1/r2 respectively, for large radius r. It is then possible to extrapolate
the values on the external boundary from the last point in the interior domain,
namely rNr−1:

v2 =
rNr−1

r∞
(v − v∞ − v1)r=rNr−1

,

w2 =

(

rNr−1

r∞

)2

(w − w∞ − w1)r=rNr−1
.

As previously stated, the accuracy depends on the three following parame-
ters: the resolution (number of grid points), the extension of the computational
domain, and the boundary condition treatment. The different methods are com-
pared according to two characteristics: the sensitivity of some quantitative data
with respect to the spatial discretization and the downstream evolution of the
centreline velocity, which must be monotonic.

Two grids have been used, a coarse grid with Nr×Nθ = 100×512 points and
a finer grid with Nr×Nθ = 200×1024 points. In all simulations, the divergence
of the velocity field is below 10−14. The infinite norm of the velocity difference
between two time-steps is below 10−12 after convergence toward the steady state.
The expected flow being symmetric along the streamwise-direction, the radial
velocity must be real while the azimuthal component must be purely imaginary.
The numerical solution satisfies these conditions with an error below 10−15.

As stated before the asymptotic increase of the centreline velocity is sensitive
to the method used. Figure 1 compares the present method with Dirichlet
boundary conditions and with the method introduced by Hasan et al. [24].
The last two cases show a spurious inflectional point, induced by a spurious
acceleration close to the outflow, while the present method presents the expected
behavior.

As diagnostic tools the following quantities are selected: the drag coefficient,
computed by applying the momentum flux conservation in the interior domain
to avoid the uncertainty about the pressure on the boundaries

CD = 2r

∫ 2π

0

{

− v2 cos θ + vw sin θ − p cos θ

+
1

Re

[

2
∂v

∂r
cos θ −

(

1

r

∂v

∂θ
+

∂w

∂r
− w

r

)

sin θ

]}

dθ ,

(1)

the wake length of the recirculating bubble Lw measured from the rear stagna-
tion point and the separation angle θs measured from the front stagnation point.
The influence of the grid refinement (Nr, Nθ) and the size of the domain (r∞)
are summarized in the table 2. The values for the CD are in good agreement
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Figure 1: Comparisons of the centreline velocities, simulated on the coarse grid, for different
outflow boundary conditions. The dash-dotted line represents the case with the inviscid
solution imposed as Dirichlet boundary condition. The dashed line represents results obtained
with the extrapolated velocity as proposed by Hasan et al.. The present results are plotted
with continuous line while the reference case (i.e. fine grid with r∞ = 40) is plotted in dotted
line.

Table 2: Drag coefficient CD , nondimensional wake length Lw/D and separation angle θs
at Re = 40, for various grid resolutions and domain sizes r∞. The reference case retained
corresponds to the fine grid with r∞ = 40.

coarse grid fine grid
Nr = 100, Nθ = 512 Nr = 200, Nθ = 1024

r∞ 30 40 50 30 40 50
CD 1.4903 1.5153 1.5024 1.4906 1.4931 1.4943

Lw/D 2.2340 2.2628 2.2507 2.2346 2.2360 2.2369
θs 126.4117 126.2627 126.3315 126.4059 126.3945 126.3888

with the result by Posdziec & R. Grundmann [15] CD = 1.4942, obtained with
a computational domain up to 4000 of cylinder diameters.

For the reference case, the numerical parameters retained are: Nr = 200,
Nθ = 1024 and r∞ = 40. The physical parameters obtained for this reference
solution are reported in table 1. The numerical accuracy is checked with the
Fourier and Chebyshev spectra displayed in figure 2.

The trail of the spectrum is close to the machine precision, thus the solution
can be considered as numerically converged. It is worth noting that the numer-
ical convergence interpreted through this decrease of the spectral coefficients
does not necessarily correspond to the convergence toward the exact solution of
the problem. The residual mismatch is due to the outer boundary conditions
that cannot mimic perfectly an infinite domain.

In fact, the cylinder wake problem presents two difficulties: the discretization
of the spatial differential operators and the position of the far-field boundary
condition. Thus, the definition of convergence is not unique and the meshing
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Figure 2: Fourier (left) and Chebyshev (right) spectra, for the radial (v), the azimutal (w)
velocity components and for the pressure (p).

convergence has to be distinguished from the asymptotic boundary condition ef-
fects. For extrapolated boundary conditions, both are related, since the outflow
boundary conditions depends on the drag coefficient, depending itself on the
spatial resolution. Even with fixed domain length, this coupling cannot ensure
the convergence for the integral quantities. This phenomenon can be observed
in table 2 where the reported values are still sensitive to the spatial resolution
and to the domain size. Despite the improvement offered by the present set
of outer boundary conditions, a spectral convergence of this data would need
the use of an extremely extended computational domain. This condition would
require a huge computational effort while being penalizing for the final conve-
nience of the reference solution. However, for validation purpose, by using the
reference solution as Dirichlet boundary condition, the two convergence prop-
erties (mesh and domain size) become uncoupled so that convergence can be
expected, with the mesh refinement, for all quantities, local and global. This
point will be shown in the next section.

3. Estimation of the reference solution accuracy

The goal of this section is to estimate the accuracy of the reference solution
when used as a diagnostic tool to check the numerical convergence. For that
purpose, the same spectral code is used but with a smaller domain r∞ = 10.
The boundary condition is spectrally interpolated from the reference solution
(see Appendix A). Then, as discussed in the previous section, the convergence
is not affected by the approximation of the outer boundary conditions. The grid
refinement is based on the number of radial points (Nr). The azimuthal grid is
adapted using the empirical rule Nθ = 5Nr, providing an homogeneous error in
both spatial directions.

Various classical norms have been used (L1, L2 and L∞). Since all of these
norms lead to the same conclusion, the following analysis is restricted to the
norm defined as

qerr =

√

1

S

∫

S

(qcal − qref)2 dS (2)

where S is the surface of the computational domain. qcal and qref stand for
the calculated and reference solution respectively where q can be the velocity
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norm
√
v2 + w2 or the pressure p. This definition quantifies only the error on

the velocity modulus, which is slightly different from the norm of the error that
includes the contribution of the angular error.

The convergence plots are shown in figure 3.
For the velocity field, a spectral (exponential) convergence is observed until

the value 2.75 10−12, reached with Nr = 90. For the pressure the evolution is not
exponential and saturates at the value 2.47 10−8 for Nr = 70. This behaviour
can be explained by the absence of boundary conditions for the pressure. This
lack creates fundamental difficulties for the projection scheme during simula-
tions, also for the spectral interpolation in the radial direction for the reference
solution. This error is passed to the drag coefficient, computed in the interior
domain by the formula (1).

The saturation of the convergence provides an estimation of the accuracy
of the reference solution up to 11 digits for the velocity and 7 digits for the
pressure. This accuracy is by far enough for the validation of a numerical code
using typical resolutions. However, for an asymptotic convergence at very high
resolution, the threesholds of 10−11 and 10−7 as to be considered as the limits
of the reference solution.

4. Test 1: Validation of a MAC cylindrical code

As a first step, the convergence obtained on a cylindrical grid using a finite-
difference code of second order accuracy is considered. The mesh is fully stag-
gered as initially proposed by Harlow & Welch [26] in their Marker and Cell
(MAC) method. The equations actually solved are a specific version of the in-
compressible Navier-Stokes equations where the unknown variables are (qr, qθ) =
(rur, ruθ) with (r, θ) and (ur, uθ) the cylindrical coordinates and velocity com-
ponents respectively. The use of these variables overcomes the singularity prob-
lem at r = 0 in the governing equations as discussed by Orlandi [27]. For the
present flow configuration, this utility has not to be used. The incompressibility
condition is ensured up to the machine accuracy using the direct Poisson solver
FishPack1. Because the grid is cylindrical, no-slip boundary conditions can be
straightforwardly applied on the cylinder surface so that the present test is an
example of body-fitted approach.

Four levels of spatial resolution are considered using the mesh node numbers
nr × nθ = 91 × 360, 181 × 720, 361 × 1440 and 721 × 2880. The computation
domain is given by 0.5D ≤ r ≤ 10.5D so that the mesh size is given by ∆r =
10D/(nr − 1) and ∆θ = 2π/nθ. The resolution in the azimuthal direction is
chosen to match the number of degrees of freedom using a Cartesian grid with
an IBM (see next section).

The boundary condition at r = 10.5D is imposed as a Dirichlet condition on
the velocity using the reference solution. As discussed in the previous section,
this treatment avoids the introduction of additional numerical errors associated
with the outer boundary conditions, allowing us to focus on those associated
with the discretization.

The flow over a cylinder at Re = 40 is computed until a steady state is
reached. It has been checked that initial conditions only modify the transient

1http://www2.cisl.ucar.edu/resources/legacy/fishpack
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Figure 3: Numerical convergence for the velocity, pressure and drag coefficients (the pressure
constant value is taken at r = 0.5+ and θ = 0).
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√
nr × nθ

√
nr × nθ

Figure 4: Error decrease with the spatial resolution. Left: velocity error |u|err. Right: pres-
sure error perr (the pressure constant value is taken as averaged value on the computational
domain).

stage toward the steady flow but not the computed final state itself.
Figure 4 presents the convergence of the solution for the velocity norm |u| =

√

u2
r + u2

θ and the pressure p.
Here, the convergence is examined through the error expressed as in (2) with

qerr =

√

√

√

√

∆r∆θ

110πD2

nr−1
∑

i=1

nθ
∑

j=1

[qcal(ri, θj)− qref(ri, θj)]
2
ri (3)

where qcal and qref are respectively the calculated and reference solutions at the
same location (ri, θj). Note that, for comparison purpose, the error has again
been normalized with the computational domain surface. The set of locations
(ri, θj) depends on the spatial resolution. Due to the staggered grid, it could
also depends on the variables considered among (ur, uθ, p). Here, for simplicity,
only locations (ri, θj) corresponding to pressure nodes are considered, requiring
to perform a second order interpolation for the velocity components (ur, uθ).
Thanks to spectral interpolation, the reference solution is available in any lo-
cation with a similar accuracy. This property is very convenient in the present
context where the computation of qerr can be done as easily as if the exact
solution were known as reference.

Figure 4 shows a second order convergence for the velocity and the pressure
as expected regarding the numerical schemes actually used. These first results
illustrate the way of using the reference solution to check a numerical code
through a formal convergence test. The achievement of the expected conver-
gence order is an additional confirmation that the present spectral solution can
be used as a reference solution. Even at the highest resolution, the numerical
error is by far larger than the accuracy of the reference solution reported in
section 3, with a ratio of about 7 and 3 orders of magnitude for the velocity and
the pressure respectively.

The full knowledge of the reference solution at any location also allows a
direct comparison between the calculated and reference solutions by the plot of
the error field qerr. The maps of this quantity for the velocity and the pressure,
shown in figure 5, indicate the flow region where the numerical errors prevail
for the highest resolution. For clarity, a normalization by the maximum value
is performed and a logarithmic scale colormap is used on the range [0.001, 1].
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Figure 5: Maps of normalized error qerr/qmax
err ∈ [0.001, 1] at the highest resolution nr × nθ =

721 × 2880. Left: velocity error |u|err. Right: pressure error perr.

Because the mesh size increases with the distance from the cylinder for the
present cylindrical mesh, significant errors are found far from the body in the
wake region. However, the highest errors can be observed in the neighbourhood
of the cylinder, especially slightly upstream from the two separation points
where the flow is deflected by the cylinder. These near-cylinder errors are also
recovered for the pressure (see figure 5-right), with far from the body, some
dominant errors located in the wake region at the boundary of the computational
domain. This behaviour can be interpreted as the consequence of prescribing the
velocity as a Dirichlet boundary condition that can be in conflict, for the present
discretization, with the preservation of the free divergence condition up to the
machine accuracy. Because the pressure considered here is the variable used
to ensure the incompressibility condition (in the framework of the projection
method and according to the present second-order discretization), it has to
adapt to the hard velocity Dirichlet boundary condition, leading to an increase
of its approximation error near the boundary of the computational domain, this
approximation remaining however second order accurate as suggested by figure
4.

In terms of local error near the cylinder surface, the critical region seems to
be the upstream part of the body. The resulting error pattern in the full com-
putational domain cannot be rigorously interpreted, but it seems reasonable to
consider that outside the recirculation region, the dominant convective compo-
nent of the flow from upstream to downstream is susceptible to amplify the error
further downstream. For the present flow, it can be conjectured that the overall
error is highly sensitive to the most upstream errors. In the present case, the
predominance of errors near the separations seems to be physically relevant if
we consider the well-known sensitivity of the separation process, especially for
smooth geometry where no-singularity can fix the flow separation. Naturally,
the maps presented in figure 5 could be very different if a radial and azimuthal
refinement were used to concentrate for instance mesh nodes near the separa-
tion points. In the same way, a different error pattern could be obtained using
another body fitted approach based on another grid organization, structured or
not. Using the present reference solutions, all these situations could be easily
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Figure 6: Error decrease with the spatial resolution. Left: velocity error |u|err. Right: pres-
sure error perr (the pressure constant value is taken as averaged value on the computational
domain).

considered depending on the type of numerical code to validate.

5. Test 2: Validation of a MAC Cartesian code with an IBM

As a second example, the accuracy offered by an IBM is investigated in this
section. A MAC discretization is again used but with a simple Cartesian mesh
where the variables are the velocity components ux and uy in a computational
domain Lx × Ly = 20D × 20D. As in the previous section, Dirichlet boundary
conditions are imposed on the velocity at x = ±10D and y = ±10D using the
reference solution. To model the cylinder, an IBM is used through a direct
forcing technique, following Fadlun et al. [28], for which body forces are used
to impose (ux, uy) = (0, 0) inside the cylinder. Two different forcing are tested,
a first one with no interpolation to specify the exact location of the cylinder
surface and a second one where the forcing is also applied at mesh nodes just
next to the immersed boundary through a second-order interpolation, see Fadlun
et al. [28] for more details.

Again, four different spatial resolutions are considered with nx×ny = 181×
181, 361×361, 721×721 and 1441×1441. These computational grids allow us to
match the radial resolutions considered in the previous section (∆x = ∆y = ∆r)
while leading to the same number of degrees of freedom. Here, the error is
measured in the physical domain i.e. outside the cylinder, as

qerr =

√

√

√

√

∆x∆y

(400− π/4)D2

nx−1
∑

i=1

ny−1
∑

j=1

[1− ε(xi, yj)] [qcal(xi, yj)− qref(xi, yj)]
2 (4)

with ε = 1 inside the cylinder and ε = 0 in the fluid region. In addition, because
the velocity norm |u|cal is estimated at the pressure node location through a
second-order interpolation of the velocity components (ux, uy), the contribution
of nodes involving values inside the cylinder has been cancelled (imposing ε = 1)
in equation (4). The decrease of |u|err and perr with the spatial resolution is
presented in figure 6 for the two different forcing methods.

As expected, the case without any interpolation across the immersed bound-
ary leads nearly to a first-order convergence for the velocity and the pressure.
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Figure 7: Maps of normalized error qerr/qmax
err ∈ [0.001, 1] at the highest resolution nx ×ny =

1441 × 1441. Left: velocity error |u|err. Right: pressure error perr. Top: forcing without
velocity interpolation near the cylinder surface. Bottom: forcing with velocity second-order
interpolation at mesh nodes next to the immersed boundary (see Fadlun et al. [28]).

The clear benefit offered by the use of an interpolation can be observed in the
same figure where both the velocity and pressure are better predicted. The
velocity is found to approach the second order accuracy thanks to the interpo-
lation. However, it can be observed that the pressure convergence is not as good
as for the velocity, especially for the highest resolutions. In the present IBM, no
specific treatment is imposed on the pressure that has to adapt to the forcing
without any boundary condition prescription. This lack of control of the pres-
sure is probably the reason of its less favourable convergence. It suggests that
the pressure treatment could be the main limiting factor of the present IBM in
terms of accuracy, especially for an improvement of its formal order. To our
knowledge, this is the first time that these velocity and pressure convergences
are shown using an IBM for a flow exhibiting separation and recirculation.

Maps of the error field are shown in figure 7 for the two different forcing
techniques.

For the forcing without interpolation (figure 7-top), the dominant errors are
located near the cylinder, in its upstream part, up to the separation points.
Its leads further downstream to a contamination of the flow in a major part
of the wake region. This location of the maximum errors near the separation

14



points on the cylinder is confirmed by the error map of the pressure, with an
impact on the pressure solution even far from the body both in the upstream
and downstream regions. When an interpolation is used in the forcing (figure
7-bottom), the error pattern is drastically modified with a strong error concen-
tration in the near-cylinder region. This more local character of the error is even
recovered for the pressure despite the non-local character of this physical quan-
tity. The strongly dominant errors very close to the immersed boundary surface
suggest that an improvement of the forcing method, especially for the pressure
treatment, could increase significantly the overall accuracy of the solution. The
current forcing based on interpolation, even if it is much more accurate than
a staircase forcing, still leads to an unbalanced approximation where the im-
mersed boundary treatment contaminates the solution regardless the quality of
the discretization far from the body surface.

An interesting remark is that the use of the second-order IBM does not lead
to a dramatic increase of the error despite the lack of any fitting between the
mesh and the cylinder. For instance, the highest resolutions nr×nθ = 721×2880
and nx×ny = 1441× 1441 both yield to an error with an order of magnitude of
10−4 for the velocity. This similar error level is obtained using the same number
of degrees of freedom but through a drastic increase of the computational cost
(about one order of magnitude) for the body-fitting approach due to the time
step limitation associated with the use of a very refined grid in the azimuthal
direction. Then, for a given accuracy, the use of an IBM combined with a
Cartesian grid is found to be much more computationally efficient compared
with the use of a cylindrical grid. However, a significant difference between
body fitted and IBM solutions concerns the pressure field that is found to be
less accurate in the latter case. Once again, the full access to an accurate
reference solution exhibits easily this striking difference. Here, it suggests that
an improvement of the immersed boundary modelling could be obtained through
a pressure treatment combining accurately the incompressibility condition with
the forcing to ensure more realistically no-slip conditions at the cylinder surface.

6. Conclusion

In this study, an accurate solution of the flow over a circular cylinder at
Re = 40 is provided using a fully pseudo-spectral code. To mimic an infinite
computational domain, a new set of boundary conditions is proposed and val-
idated. The numerical solution is obtained up to 50 diameters far from the
cylinder. The solution can be known everywhere inside the corresponding com-
putational domain using an interpolation with spectral accuracy. To be user-
friendly, the solution is provided as a script for GNU Octave or Matlab software
that gives the expected values of velocity components or pressure in any couple
of coordinates (x, y) inside the computational domain of the reference simula-
tion.

It is shown how the knowledge of this reference solution can be useful for
code validation or development. First, it can be used to define properly the
boundary conditions of the problem so that uncertainty associated with the use
of open boundary conditions can be eliminated. Then, thanks to its high accu-
racy, the numerical solution can be assimilated as an exact solution to analyse
the convergence of the method or to identify its prevailing errors. The potential
benefit of this reference solution is illustrated using two typical codes, one based
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on a body-fitted grid and another one using an IBM on a Cartesian grid. For the
first time in our knowledge, the spatial distribution of errors is exhibited, sug-
gesting a careful consideration of the separation phenomenon, especially when
the body is modelled using an IBM. A clear advantage of the reference solu-
tion is that it enables comparisons between numerical codes through a rigorous
estimation of their actual accuracy. It should be stressed again that this estima-
tion requires the use of the reference solution to provide well defined boundary
conditions while avoiding the uncertainty associated with the modelling of an
infinite domain.

Our hope is that this very flexible numerical solution will be useful for a wide
scientific community in order to inspire or validate new developments, especially
in the context of IBM where the second-order accuracy must be overtaken to
widen its applications in the field of high-order methods.

We are aware that the flow configuration is rather simple. For further de-
velopment, the dipole-wall collision seems to be a good candidate for a non-
stationary reference solution that is reachable with the spectral accuracy [29].
On the one hand the vortical sheet layers generated during the collision process
are numerically challenging to capture at high Reynolds number, on the other
hand their deterministic nature should enable a reliable spatial and temporal
convergence study. In the same spirit, the problem of the oblique collision of a
ring-vortex with a wall [30] could be useful to assess a numerical code regarding
its ability to describe accurately the three-dimensional near-wall dynamics.

Appendix A. Access to the reference solution

This section describes the method for interpolating the value of the refer-
ence solution at any grid point while preserving spectral accuracy and double
precision.

To get values of the reference solution at a given location (x, y), first down-
load the archive file refsolcyl.tgz and extract the files and directory. The
directory should contain the program interpol.m and the data directory con-
taining the reference solution values.

In a file named grid.dat, report the couples of values (x, y) where the
reference solution has to be interpolated. Then, execute the software Octave
or Matlab and enter the command interpol. The solution at each selected
locations (x, y) is stored in files named U.dat, V.dat (velocity components),
P.dat (pressure) and vort.dat (vorticity).

Please note that, because of the lack of physical boundary conditions for
the pressure, the pressure has been extrapolated with a spline method on the
cylinder and on the exterior boundary. Thus a strictly spectral accuracy cannot
be warranty for the pressure. For points inside the cylinder, the value is arbi-
trarily zero, while for points exterior to the domain (i.e. r∞ > 40), the velocity
is arbitrarily set to a uniform streamwise flow.

For example the interpolation on the point (x = 3, y = 3) should give the
values:
U = 1.0670111347099145e+ 00
V = 1.5134054077428072e− 02
P = −7.0794830815655407e− 02
vort = −6.5845796777125321e− 06
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Small variations starting from to the fourteenth decimal can be observed, de-
pending on the computer used.

The data files and the interpolation program are available on the journal
website, also on demand to the corresponding author.
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