Perfectly matched layers for the convected Helmholtz equation - Archive ouverte HAL Access content directly
Journal Articles SIAM Journal on Numerical Analysis Year : 2004

Perfectly matched layers for the convected Helmholtz equation


In this paper, we propose and analyze perfectly matched absorbing layers for a problem of time-harmonic acoustic waves propagating in a duct in the presence of a uniform flow. The absorbing layers are designed for the pressure field, satisfying the convected scalar Helmholtz equation. A difficulty, compared to the Helmholtz equation, comes from the presence of so-called inverse upstream modes which become unstable, instead of evanescent, with the classical Bérenger's perfectly matched layers (PMLs). We investigate here a PML model, recently introduced for time-dependent problems, which makes all outgoing waves evanescent. We then analyze the error due to the truncation of the domain and prove that the convergence is exponential with respect to the size of the layers for both the classical and the new PML models. Numerical validations are finally presented. © 2004 Society for Industrial and Applied Mathematics.
No file

Dates and versions

hal-00876246 , version 1 (04-11-2013)



Eliane Bécache, Anne-Sophie Bonnet-Ben Dhia, Guillaume Legendre. Perfectly matched layers for the convected Helmholtz equation. SIAM Journal on Numerical Analysis, 2004, 42 (1), pp.409-433. ⟨10.1137/s0036142903420984⟩. ⟨hal-00876246⟩
265 View
0 Download



Gmail Facebook X LinkedIn More