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This paper presents and compares control strategies for three-phase open-end winding drives operating in the fluxweakening region. A six-leg inverter with a single dc-link is associated with the machine in order to use a single energy source. With this topology, the zero-sequence circuit has to be considered since the zero-sequence current can circulate in the windings. Therefore, conventional over-modulation strategies are not appropriate when the machine enters in the flux-weakening region. A few solutions dealing with the zero-sequence circuit have been proposed in literature. They use a modified space vector modulation or a conventional modulation with additional voltage limitations. The paper describes the aforementioned strategies and then a new strategy is proposed. This new strategy takes into account the magnitudes and phase angles of the voltage harmonic components. This yields better voltage utilization in the dq frame. Furthermore, inverter saturation is avoided in the zero-sequence frame and therefore zero-sequence current control is maintained. Three methods are implemented on a test bed composed of a three-phase permanent-magnet synchronous machine, a six-leg inverter and a hybrid DSP/FPGA controller. Experimental results are presented and compared for all strategies. A performance analysis is conducted as regards the region of operation and the machine parameters.

I. INTRODUCTION

PEN-END winding machines have been used in various drive applications. Early works focused generally on fault-tolerant capability [START_REF] Jahns | Improved Reliability in Solid-State AC Drives by Means of Multiple Independent Phase Drive Units[END_REF], [START_REF] Mecrow | Fault-tolerant permanent magnet machine drives[END_REF]. Further investigations have shown other advantages, such as a reduced complexity compared with multi-level inverter drives [START_REF] Corzine | Performance characteristics of a cascaded two-level converter[END_REF], increased power for the same ratings of switching components compared with the conventional star-connected topology [START_REF] Welchko | The influence of topology selection on the design of EV/HEV propulsion systems[END_REF], the possibility to integrate a charger functionality without any additional component for electric vehicles [START_REF] De-Sousa | Combined Electric Device for Powering and Charging[END_REF], [START_REF] Sousa | A combined multiphase electric drive and fast battery charger for Electric Vehicles[END_REF], a method to boost the supply voltage [START_REF] Ewanchuk | A Method for Supply Voltage Boosting in an Open-Ended Induction Machine Using a Dual Inverter System With a Floating Capacitor Bridge[END_REF] and a topology for supplying the machine 1 Paul Sandulescu, Fabien Meinguet, Xavier Kestelyn, and Eric Semail are with Arts et Métiers -ParisTech, L2EP, 8, Boulevard Louis XIV, 59046 Lille, FRANCE phone:+330320621561 2 Antoine Bruyère is with Valeo Powertrain, 14, avenue des Béguines, 95800 Cergy Saint-Christophe, France

Corresponding author e-mail: Eric.SEMAIL@ensam.eu with two isolated sources that can exchange energy between them [START_REF] Welchko | Double ended inverter system with an impedance source inverter subsystem[END_REF]. Several converter topologies have been suggested to be associated with three-phase open-end winding machines [START_REF] Welchko | Short-circuit fault mitigation methods for interior PM synchronous machine drives using six-leg inverters[END_REF].

Independent full-bridge converters (with different sources, DSPs, sensors and so forth) are the most appropriate as regards fault-tolerance, but are only cost-effective for critical applications in which failures have dramatic effects.

Topologies with two three-leg inverters are alternative solutions to reduce the cost of the system. In case there are two isolated sources and thus separate DC-links, the zerosequence current cannot circulate. This is an advantage for the healthy operation as current ripple and Joule losses are reduced. Fault-tolerant capability of this topology is discussed in [START_REF] Wang | Robust operation of double-output AC machine drive[END_REF], showing that some fault conditions can be handled by creating an artificial neutral point with the faulty inverter, at the expense of a phase-voltage drop of half the initial value.

On the other hand, a topology with a single dc-link has the advantage to reduce the drive cost, while offering a good faulttolerant capability since the machine can be operated with two active phases. In the latter case, the sum of the healthy phase currents has to be different from zero in order to eliminate torque ripple [START_REF] Bolognani | Experimental fault-tolerant control of a PMSM drive[END_REF], [START_REF] Meinguet | Fault detection, isolation and control reconfiguration of three-phase PMSM drives[END_REF]. This can be obtained through a zerosequence path. With this topology, a control strategy for handling the zero-sequence current in healthy operation is required as well.

Problems associated with the zero-sequence current are generally due to a low zero-sequence inductance and thus a low time constant, yielding high-frequency current ripple in case a two-level modulation strategy is used. In [START_REF] Baiju | A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive[END_REF], a modified space-vector pulse-width modulation (SV-PWM) strategy is presented, in which the common mode voltage is eliminated. This allows an elimination of the high-frequency zero-sequence current as well, as all selected vectors have an instantaneous zero-sequence voltage equal to zero. However, the zero-sequence circuit is then short-circuited and triplen harmonic current components can circulate. The magnitude of the zero-sequence current depends on the machine parameters, i.e. the zero-sequence emf, inductance and stator resistance. In some cases, this current can be large and therefore other modulation techniques, apart from two-level PWM techniques, need to be used as conventional three-level PWMs for instance [START_REF] Sandulescu | FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter[END_REF], [START_REF] Pou | A Carrier-Based PWM Strategy With Zero-Sequence Voltage Injection for a Three-Level Neutral-Point-Clamped Converter[END_REF], [START_REF] Dordevic | A Vector Space Decomposition Based Space Vector PWM Algorithm for a Three-Level Seven-Phase Voltage Source Inverter[END_REF].

In case a conventional modulation technique is used, vectors with a zero-sequence voltage different from zero can be applied. Compared with star-connected machines, there is an important difference regarding inverter saturation. When sixstep or quasi-six-steps strategies are applied to star-connected machines, fifth-and seventh-harmonic components affect the voltages and currents [START_REF] Griva | Performance evaluation of a direct torque controlled drive in the continuous PWMsquare wave transition region[END_REF], [START_REF] Hava | Dynamic overmodulation characteristics of triangle intersection PWM methods[END_REF], [START_REF] Kwon | Novel Flux-Weakening Control of an IPMSM for Quasi-Six-Step Operation[END_REF], [START_REF] Liu | Flux-Weakening Control of Nonsalient Pole PMSM Having Large Winding Inductance, Accounting for Resistive Voltage Drop and Inverter Nonlinearities[END_REF]. Considering a sixleg inverter, triplen harmonics, i.e. those associated with the zero-sequence component, have to be considered as well.

In case of inverter saturation, the magnitude of the thirdharmonic voltage component can be larger than those of the fifth and seventh harmonics. This, combined with a low zerosequence inductance, can have dramatic effects on the phase currents. Consequently, inverter saturation has to be avoided.

In [START_REF] Sandulescu | Flux-weakening operation of open-winding drive integrating a costeffective high-power charger[END_REF], inverter saturation is avoided by reducing the maximum fundamental voltage available in the dq reference frame.

In this paper, strategies proposed in [START_REF] Baiju | A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive[END_REF], [START_REF] Sandulescu | FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter[END_REF], [START_REF] Somasekhar | Effect of Zero-Vector Placement in a Dual-Inverter Fed Open-End Winding Induction Motor Drive With Alternate Sub-Hexagonal Center PWM Switching Scheme[END_REF] and [START_REF] Sandulescu | Flux-weakening operation of open-winding drive integrating a costeffective high-power charger[END_REF] are first recalled. These strategies will be referred to as Zerospace vector modulation (Z-SVM) and voltage-limited PWM (VL-PWM). An analysis of experimental results highlighting the properties of both strategies is conducted.

Next, it is shown that the strategy proposed in [START_REF] Sandulescu | Flux-weakening operation of open-winding drive integrating a costeffective high-power charger[END_REF] is based on a worst case analysis and can be substantially improved. Through the analysis of a waveform composed of fundamental-and third-harmonic components, the importance of the relative phase and magnitudes of both harmonics is highlighted. A new voltage limit is then calculated, yielding better voltage source inverter utilization. An implementation of this strategy is also proposed, which will be referred to as zero-sequence harmonic detection (ZSHD) in what follows.

For each strategy, a calculation of the voltage limits is given and a detailed control scheme is proposed. It has to be noted that a conventional flux-weakening strategy is applied, which can be found in a vast body of literature [START_REF] Briz | Current and flux regulation in field-weakening operation [of induction motors[END_REF], [START_REF] Harnefors | Torque-maximizing fieldweakening control: design, analysis, and parameter selection[END_REF], [START_REF] Kwon | Novel Antiwindup of a Current Regulator of a Surface-Mounted Permanent-Magnet Motor for Flux-Weakening Control[END_REF], [START_REF] Tursini | Feedforward Flux-Weakening Control of Surface-Mounted Permanent-Magnet Synchronous Motors Accounting for Resistive Voltage Drop[END_REF], [START_REF] Bolognani | Flux-weakening in IPM motor drives: Comparison of state-of-art algorithms and a novel proposal for controller design[END_REF], [START_REF] Bolognani | Optimal voltage feed-back flux-weakening control of IPMSM[END_REF].

Finally, a comparison of the three strategies is performed and hints for the selection of the appropriate strategy as a function of the machine parameters are given. 

II. DRIVE MODEL

The drive topology under study is shown in Fig. 1. The PMSM and inverter models are described in the following sections.

Open-end Winding PMSM Modeling A. Neglecting the effects of saliency and magnetic saturation, the model of PMSMs is given by: [START_REF] Jahns | Improved Reliability in Solid-State AC Drives by Means of Multiple Independent Phase Drive Units[END_REF] where are the voltages at the machine terminals, the stator resistance, the phase currents, the inductance matrix and the electromotive force (emf) due to the permanent magnets. Neglecting emf harmonic components beyond the third harmonic, the emf is described by where is the mechanical angular velocity, is the emf constant and is the amount of third harmonic component with respect to the fundamental harmonic.

The electrical equations of open-end windings PMSMs expressed in the rotor reference frame are given by (2) after successively applying Concordia and rotational transformations:

(2)
In what folows, it will be considered that :

(3) where is the zero-sequence inductance, and the dand q-axis inductances respectively, the electrical angular velocity and the electrical position. The zero-sequence emf is composed of a third harmonic component and is thus a function of that can be expressed as with

, where is the number of pole pairs. Due to the Concordia transformation, a square root coefficient is present, as it is shown later on in Table III. The , the coupling terms and possibly other harmonic components which are not multiple of three (neglected in this approach).

Under the assumption of negligible saliency and neglecting emf harmonic components beyond the third harmonic, the electromagnetic torque is given by: (4)

The parameters of the PMSM under study are given in Table I. It is worth noticing that and refers to the peak value of in the zero-sequence frame. A weak value of L 0 in comparison with L d value is quite common for 3-phase electrical machine with strong mutual couplings. In this case, L 0 is close to the leakage inductance. The high ratio will induce constraint on the control. (5) that leads to 2 6 =64 possible combinations of switching states.

From the 64 switching combinations, considering the voltage vector that may be applied to the three independent phases of the machine (V x ), only 27 different voltage vectors appear. As in the case of the three-phase VSI, where 8 vectors are generated by the different switching combinations and only 7 appears as different for a three-phase star-coupled machine windings, in the case of the open-end winding machine, from the 64 vectors generated by the inverter only 27 appears as different for the machine, the rest being redundant. ). The voltage vectors form a cube in the abc reference frame.

The grey hexagon in Fig. 2 corresponds to the projection of the cube in the  reference frame, obtained by applying the Concordia transformation. In addition to the plane, similar to the case where a three-phase star-coupled machine is used, a zero-sequence component is also present. The zero-sequence component is projected over the zero-sequence axis that is oriented along a diagonal of the cube.

In what follows, values are presented in pu, with the voltage values normalized by and currents values by . Due to the Concordia transformation, coefficients appear when expressed in pu. These coefficients are given in Table II and Table III for currents and voltages respectively. 

III. CONTROL STRATEGIES

The general control scheme is shown in Fig. 3 and different versions of the DSP block will be examined in this paper (Fig. 5; Fig. 9; Fig. 14). The current reference is obtained from the torque reference by inversing (4). Assuming a negligible contribution of the zero-sequence component to the torque generation, is given by: [START_REF] Sousa | A combined multiphase electric drive and fast battery charger for Electric Vehicles[END_REF] where is the torque constant of the electric machine only due to the first harmonic component of the emf.

Control and flux-weakening algorithms are handled within the DSP, while data acquisition, modulation strategy, Concordia and rotational transformations, filtering and signal conditioning are deported on the FPGA.

Three control strategies are presented in the following sections, focusing on the current control. An identical integrator-based solution is implemented for all fluxweakening strategies [START_REF] Harnefors | Torque-maximizing fieldweakening control: design, analysis, and parameter selection[END_REF]. However, an important difference consists in the voltage limits which are different for each strategy. Modulation strategies are briefly addressed as well. 
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Basics of the Zero-SVM are presented in [START_REF] Baiju | A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive[END_REF], whereas implementation details for FPGA are discussed in [START_REF] Sandulescu | FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter[END_REF]. The strategy consists in selecting vectors having an instantaneous zero-sequence voltage component equal to zero. Among these vectors, six form a hexagon in the  plane defined by , as depicted in Fig. 4, dashdotted hexagon. Using these six vectors and zero vectors, a conventional SVM can be implemented. The abc ( voltage limit is equal to 1 pu in case of linear modulation, whereas this value can be increased in case six-step or quasi-six step strategies are used. In what follows, only linear modulations are presented for the sake of comparison between the strategies.

With this strategy, is equal to zero and therefore, from (2): [START_REF] Ewanchuk | A Method for Supply Voltage Boosting in an Open-Ended Induction Machine Using a Dual Inverter System With a Floating Capacitor Bridge[END_REF] Hence, the zero-sequence current only depends on the machine parameters.

The control block diagram associated with this strategy is given in Fig. 5.

First, the q-axis current reference is saturated according to a maximum Joule losses criterion: [START_REF] Welchko | Double ended inverter system with an impedance source inverter subsystem[END_REF] where denotes the saturated q-axis reference, is the output of the flux-weakening controller, which is chosen as an integrator with gain . The difference between the voltage limitation and the magnitude of the dq voltage references ( and ) is integrated and yields . The integrator output is limited between 0 and . The voltage references are also saturated according to the voltage limitation: [START_REF] Welchko | Short-circuit fault mitigation methods for interior PM synchronous machine drives using six-leg inverters[END_REF] with the modulus of the saturated voltage references (phase is kept constant).

Experimental results of the proposed strategy are shown in Fig. 6. The test has been conducted with =215 rad s -1 , =200V, =25A and a PWM frequency equal to 10kHz. For this operating point, the machine is operated in the fluxweakening region and the currents are such that =18A, =-16A and =7.68A. A verification of the current limitation is obtained through the following calculation: [START_REF] Wang | Robust operation of double-output AC machine drive[END_REF] The plot shows one phase current (CH1) and the sum of the phase currents (CH2), which is related to the zero-sequence current through the Concordia transformation as follows: (11) Fig. 6 shows three interesting properties of this control strategy:

1. the high-frequency current ripple is very low. This is due to the elimination of the instantaneous zerosequence voltage component and a large value of the dq-axis inductance for this machine. 2. the RMS value of the zero-sequence current can be high, (depends on the machine parameters). In this case, the ratio of Joule losses compared with the fundamental component is equal to 10%. 3. the peak value of the phase current can be very large (depends on the relative phase between the thirdharmonic and the fundamental components). In this case, the peak amplitude increases of about 31%. Consequently, although the high-frequency zero-sequence current is eliminated, the third-harmonic component is still responsible for additional Joule losses (both inverter and machine losses), IGBT and heat sink oversizing, magnetic saturation and increase of iron losses in the machine. Furthermore, torque ripple due to the zero-sequence current can appear as well.

Additional experimental results are presented in Fig. 7. The test shows the machine starting at time t=0s and with a 100rad s -2 acceleration maintained throughout 2.5 seconds. The torque reference is such that =25A. Fig. 7(a) shows the 0dq currents. Initially, all currents are close to their reference, i.e. =25A, =0A and is low. The dq currents have a sixth-harmonic component due to additional induced voltages. The zero-sequence current is primarily composed of a third-harmonic component.

The drive enters the flux-weakening region at time t=1.7s. As the machine was operated at rated torque, the current limitation immediately applies. From t=1.7s until t=2.5s, the d-axis current becomes negative in order to maintain the voltage reference under the voltage limitation. It is interesting to observe that the zero-sequence current increases in the flux weakening region. This is due to magnetic saturation that decreases the value of the zero-sequence inductance. Conventional Modulation with an Additional Voltage B. Limitation (VL-PWM) In the previous section, it was shown that it might be interesting to select voltage vectors which have an instantaneous zero-sequence component different from zero. The objective is to eliminate the third-harmonic current component. Obviously, it is not possible to eliminate both the third-harmonic current component (due to the machine emf) and the high-frequency current ripple (due to the inverter voltage). In this section, effects of a zero-sequence voltage reference different from zero are evaluated. The modulation strategy that is used is referred to as "three-level simple modulation" in [START_REF] Sandulescu | FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter[END_REF].

In case any of the 27 voltage vectors can be used, the voltage references have to be kept inside the cube (see Fig. 2). New voltage limitations have to be defined in this case, as illustrated in Fig. 8.

Considering a voltage vector with a given zero-sequence component , the closest surface delimiting the cube is shown in Fig. 8. The projection of gives the maximum component available along the  axis. For an absolute value of the zero-sequence component ranging from 0 to pu, the voltage limit is a straight line passing through points A and B. 
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The equation of the straight line passing through these points A and B is given by: [START_REF] Meinguet | Fault detection, isolation and control reconfiguration of three-phase PMSM drives[END_REF] Eq. ( 12) is consistent with the voltage limitation proposed in [START_REF] Kwon | Novel Flux-Weakening Control of an IPMSM for Quasi-Six-Step Operation[END_REF]. Under the assumption of a single harmonic component in the zero-sequence circuit, the maximum value of the dq voltage references can be expressed as: [START_REF] Baiju | A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive[END_REF] Hence, a zero-sequence voltage component different from zero affects the maximum voltage available in the dq reference frame.

The corresponding control block diagram is shown in Fig. 9. The zero-sequence current is now controlled, in a similar way compared with the dq currents, i.e. through a PI controller and emf compensation (feed-forward). The zero-sequence voltage reference passes through a RMS calculation block, whose output is used to calculate the voltage limitation [START_REF] Baiju | A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive[END_REF].

The q-axis current reference is still saturated according to [START_REF] Welchko | Double ended inverter system with an impedance source inverter subsystem[END_REF].

Obviously, is now used to saturate the voltage reference. Hence, (9) becomes: [START_REF] Sandulescu | FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter[END_REF] Experimental results of the proposed strategy are shown in Fig. 10. The test has been conducted in the same conditions as for Fig. 6, i.e. with =215 rad s -1 , =200V, =25A and a PWM frequency equal to 10kHz. For this operating point, the machine is operated in the flux weakening region and the currents are such that =17.4A, =-17.9A and =1.5A. The properties of this strategy are: 1. the high-frequency current ripple is larger than the ripple of the Z-SVM, but acceptable for the machine under study.

2. the value of the zero-sequence current can be high, (depends on the machine parameters), but primarily because of the high-frequency current ripple. The increase in Joule losses due to the third-harmonic component is negligible. 3. the peak value of the phase current can be large (depends on the zero-sequence inductance). In this case, the peak amplitude increases of about 24%. Additional experimental results are presented in Fig. 11. The test shows the machine starting at time t=0s and with a 100rad s -2 acceleration maintained throughout 2.5 seconds. The torque reference is such that =25A.

The drive enters the flux-weakening region at time t=1.7s. A main difference compared with the Z-SVM is the control over the zero-sequence current, which is close to zero in the flux-weakening region.

The other major difference is the voltage limitation (see Fig. 11(c) and (d). As the zero-sequence voltage reference is different from zero, the maximum dq voltage decreases. At =250 rad s -1 the maximum voltage is about 5% lower. This has an effect on the flux-weakening algorithm which requires a larger d-axis current (absolute value) in order to fulfill the [START_REF] Sandulescu | FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter[END_REF].
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New Strategy Accounting for the Phase and C. Amplitude of the Zero-Sequence Harmonic Component (ZSHD) In the previous section, it was shown that voltage vectors that have a zero-sequence component different from zero have reduced  components. Actually, Fig. 8 shows the projection of a voltage vector which yields a worst case analysis. The derived equation ( 12) is obtained by considering that both maxima are obtained simultaneously, i.e. that the maximum values of and of occur at the same time. Waveform composed of fundamental and third-harmonic components (solid black line), its fundamental-harmonic component (dashdotted red line) and its third harmonic component (dotted blue line): k 1 =1.035, k 3 =0.1 and  1,3 =-⁄4. A further analysis is presented in this section. The abc reference frame gives a good representation of the problem to be solved as the voltage limit can be simply expressed as: [START_REF] Pou | A Carrier-Based PWM Strategy With Zero-Sequence Voltage Injection for a Three-Level Neutral-Point-Clamped Converter[END_REF] Assuming only voltage fundamental-and third-harmonic components, the voltage of phase a can be expressed as follows:

 (16)
where , are the magnitudes of the fundamental and thirdharmonic components respectively, whereas  is the phase displacement between these harmonics, the fundamental component the absolute phase reference. Fig. 12 illustrates a waveform composed of fundamental and thirdharmonic components. The maximum value of is equal to one. For the chosen set of parameters, i.e. , and 

, it is shown that the fundamental value is larger than the DC-link voltage.

As mentioned in the introduction section, an objective of the control strategy is to prevent inverter saturation, which can lead to large zero-sequence currents as the zero-sequence inductance can be very low. Therefore, the zero-sequence voltage calculated by the controller has to be applied to the machine and the problem consists thus in calculating the maximum fundamental or dq voltage limit.

Therefore, the problem is reduced to determining that fulfills [START_REF] Dordevic | A Vector Space Decomposition Based Space Vector PWM Algorithm for a Three-Level Seven-Phase Voltage Source Inverter[END_REF] when and for given and  . Although the problem seems simple, the solution given by symbolic math software is rather complex and is not appropriate for a real-time implementation. For the proposed implementation, the calculation is performed offline and a lookup table with two inputs ( and  ) and one output ( ) is generated. This relation is shown in Fig. 13, which depicts the maximum fundamental voltage as a function of the third-harmonic component and for various relative phases  . The figure highlights that the relative phase has an important contribution. For example, in case =0.18, relative phases equal to  =0 and  = yield =1.15 and =0.82 respectively, i.e. a difference of about 40%. It is interesting to note that the worst case of section III.B. corresponds to the case  = (straight line). Fig. 14 shows the control block diagram associated with the proposed control strategy. The major difference compared with the scheme of Fig. 9 is the phase and envelope detector which allows the optimal fundamental voltage to be calculated. This block is further described in Fig. 15.

The saturated voltage references and are used to calculate the phase angle of the fundamental component, which is multiplied by three to be consistent with the phase angle of the third-harmonic component.

The processing is a little more complex as regards the zerosequence component. A quadrature-signal generator (QSG) which generates a 90°-lagging signal is first applied to the zero-sequence voltage reference [START_REF] Meinguet | Fault detection, isolation and control reconfiguration of three-phase PMSM drives[END_REF], [START_REF] Rodriguez | New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions[END_REF]. Two 90°-shifted signals with pulsation equal to 3 are thus obtained, i.e. and . These signals are then transformed into constant signals by applying a rotation matrix with a rotation angle equal to 3 . Finally, the constant values and are used to calculate the phase angle of the third-harmonic component  and its magnitude . The difference between both phase angles  is then calculated.

From  and , the lookup table allows to be found. This coefficient multiplies the DC-link voltage to determine the maximum dq fundamental voltage . An additional lowpass filter (not represented in the figure) is required to avoid an algebraic loop involving the saturated voltage outputs and .
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0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.8 0.9 Experimental results of the proposed strategy are shown in Fig. 16. The test has been conducted in the same conditions as for Fig. 6 and Fig. 10, i.e. with =215 rad s -1 , =200V, =25A and a PWM frequency equal to 10 kHz. For this operating point, the machine is operated in the flux weakening region and the currents are such that =19.4A, =-15.9A and =1.5A. waveform is similar to the waveform shown in Fig. 10. However, a difference is noticeable regarding the values of the q-and d-axis currents (see section IV for a comparison between the strategies). Fig. 17 illustrates the zero-sequence harmonic detection for a test where the machine starts rotating at time t=0s with a 100 rads -2 acceleration lasting for 2.5 seconds (see speed profile in Fig. 18(b)). The torque reference is such that =25A. Fig. 17 is associated with Fig. 18 showing the 0dq currents, speed profile and dq voltage references.
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Fig. 17 The zero-sequence emf becomes the largest component when the speed increases. The value is approximately equal to 0.02 pu when the machine enters the flux-weakening region at time t=1.7s. It is worth noticing that the zero-sequence voltage still increases in the flux-weakening region (up to 7.5%), while the dq-components are maintained approximately constant. Therefore, even machines with a low zero-sequence emf can present a significant amount of zero-sequence voltage in the flux-weakening region, for instance machines with large dq inductances designed to be operated in a large constantpower region.

Fig. 17(b) shows the relative phase between the fundamental and-third harmonic components. Initially constant, the phase shifts from 180° when the zero-sequence voltage crosses zero at time t=0.7s. The relative phase is approximately constant when the speed increases at rated torque. The phase changes however significantly when the machine enters the flux weakening region. The phase is approximately equal to 2 rad (115°) at =170 rad s -1 and ends equal to 0.8 rad (45°) at =250 rad s -1 , i.e. a difference of 70°, which is primarily due to a change of the dq-axis voltage references. 
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Regarding the voltage limitations, Fig. 18(d) shows that is larger than 1.22 pu, i.e. that the maximum fundamental component is larger than the DC-link voltage. The experimental value obtained with =250 rad s -1 is 2.4% larger than the DC-link voltage. This value is equivalent to the coefficient that can be found in Fig. 13 with and 

Compared with Fig. 11(d), there is thus a maximum voltage increase of 2.4% instead of a decrease of 5%. IV. COMPARISON OF THE CONTROL STRATEGIES Fig. 19 compares the three strategies as regards the torque versus speed characteristic for the machine under study. It shows that the proposed strategy (ZSHD) has superior performances in terms of maximum torque and thus efficiency in the flux-weakening region, followed by the Z-SVM and the voltage-limited PWM (VL-PWM).

The performance of the ZSHD strategy compared with the voltage-limited strategy is simple to be analyzed. In Fig. 20 a) and b), the abc voltage references are shown for both strategies, corresponding to the tests presented in Fig. 11 and Fig. 18 respectively. The voltage references for the voltage limited strategy are lower than the maximum values equal to +/-1. This is due to the strategy which considered a worst case for the voltage limitation. This problem is addressed in the proposed implementation by taking into account the relative phase and magnitude of the zero-sequence component, yielding a better use of the DC-link voltage (see Fig. 20 b)).

Compared with the Z-SVM, the superiority of the proposed ZSHD strategy is due to two factors. First, the zero-sequence voltage allows an increase of the fundamental component. Although this is a well-known property for star-connected machines, the constraint on the zero-sequence current is such that the gain depends on the machine parameters, primarily the zero-sequence emf but also the dq inductances, which influence the phase of the voltage fundamental component. Next, the zero-sequence current can be significant using the Z-SVM strategy. As the Joule losses are accounted in the saturation of the q-axis current reference, the maximum torque is reduced when the machine is operated at maximum Joule losses. These losses depend on the machine parameters as well, as the zero-sequence short-circuit current depends approximately on the ratio . The electric machine parameters have thus an important impact on the different strategies. This is summarized in Table IV, which can be used as a qualitative tool to select the appropriate strategy as a function of the machine parameters. Multiple strategies can also be embedded in the controller with an appropriate switching from one strategy to another in function of the operating conditions. V. CONCLUSION This paper has presented three different control strategies for open-end winding drives operated in the flux-weakening region. The topology under study has the particularity to have one single energy source; therefore a zero-sequence path exists and this has to be accounted for in the control loops.

The first method consists in modifying the modulation strategy to eliminate zero-sequence high-frequency current ripple. However, triplen harmonics appear and it is shown that their effect can be worse than the effect of high-frequency current ripple.

Consequently, a second strategy is presented. A conventional modulation is used, and triplen harmonics are eliminated by the control loop. The worst case analysis is presented to show that the maximum dq voltage has to be reduced in function of the zero-sequence voltage. This simple analysis gives good results but proved not to be optimal.

Finally, a third strategy is proposed. Although similar to the second, this strategy takes into account the phase and magnitude of the third-harmonic component to determine the maximum dq voltage. This yields a better utilization of the DC-link voltage while preventing inverter saturation of the zero-sequence circuit. The benefits/drawbacks for the Z-SVM depend on .

For the VL-PWM, large values of will reduce the maximum dq voltage in the flux weakening region, while large values can reduce or increase the maximum dq voltage for ZSHD (depend on parameters and operating conditions).

Common mode voltage elimination ++ ----This is an inherent property of the Z-SVM that other methods cannot achieve.

Finally, a comparison showed that the proposed strategy has superior performances for the machine under study. However, the performances are strongly dependent on the machine parameters, as discussed throughout the paper.

The problems arising when an open-end winding is associated with a six-leg inverter have been presented and it is shown that several solutions are available. Modifications of the modulation strategy are possible, but an appropriate machine design is also mandatory to obtain better performances.

Future research will be directed to extend the proposed fluxweakening strategy to multiphase machines. For these machines, the determination of the voltage and current limits for each harmonic component is yet to solve.

Fig. 1 .

 1 Fig. 1. Drive topology with a single energy source, a six-leg inverter and a three-phase PMSM with open-end windings.

  value of the fundamental flux linkage due to the permanent magnets

Fig. 2 .

 2 Fig. 2. Voltage vectors in the abc space (normalized by V DC ). The grey hexagon shows the projection of the cube in the space, whereas one diagonal of the cube (black dashed line) is oriented along the zero-sequence axis. A 3D-representation of the VSI is possible by considering the three phase voltages of the machine. In the abc reference frame the 27 voltage vectors are shown in Fig. 2 (values are normalized by). The voltage vectors form a cube in the abc reference frame.The grey hexagon in Fig.2corresponds to the projection of

Fig. 3 .

 3 Fig. 3. General block diagram of the control scheme

Fig. 4 .Fig. 5 .

 45 Fig. 4. Projections of the voltage vectors on to the plane. The outer hexagon is the projection of the cube, whereas the inner hexagon (black dashdot line) is the surface delimited by vectors having a zero-sequence voltage component equal to zero.

Fig. 6 .

 6 Fig. 6. Waveforms of one phase current (CH1) and of the sum of the phase currents (CH2) for the Zero Space Vector Modulation strategy (Z-SVM). The conversion factor is 1V equals 1A.

Fig. 7 .

 7 Fig. 7. Experimental results of the flux-weakening strategy with the zero Space Vector Modulation (Z-SVM): a) Synchronous currents; b) Mechanical speed; c) DC-link voltage and dq voltage references; d) DC-link voltage and dq voltage references (zoom). Saturated voltage references are shown in Fig. 7(c) and (d), which indicate that the magnitude of the dq voltage references are equal to pu in the flux-weakening region.

Fig. 8 .

 8 Fig. 8. Projection of a voltage vector s V  in the 0 plane.

Fig. 9 .

 9 Fig. 9. Control block diagram for the strategy with a conventional modulation and additional voltage limitations accounting for the zero-sequence voltage (VL-PWM)

Fig. 10 .

 10 Fig. 10. Waveforms of one phase current (CH1) and of the sum of the phase currents (CH2) for the conventional modulation and an additional voltage limitation (VL-PWM). The conversion factor is 1V equals 1A.

Fig. 11 .

 11 Fig. 11. Experimental results of the flux-weakening strategy with a conventional modulation and an additional voltage limitation (VL-PWM): a) Synchronous currents; b) Mechanical speed; c) DC-link voltage and dq voltage references; d) DC-link voltage and dq voltage references (zoom).

Fig. 12 .

 12 Fig. 12.Waveform composed of fundamental and third-harmonic components (solid black line), its fundamental-harmonic component (dashdotted red line) and its third harmonic component (dotted blue line):

Fig. 13 .

 13 Fig. 13. Maximum value of the fundamental component k 1 as a function of the amplitude k 3 for different relative phases  1,3 .

Fig. 14 .

 14 Fig. 14. Control block diagram for the strategy accounting for the amplitude and phase of the zero-sequence voltage (ZSHD).

Fig. 15 .

 15 Fig. 15. Zero-sequence relative phase and envelope detection.

Fig. 16 .

 16 Fig.[START_REF] Dordevic | A Vector Space Decomposition Based Space Vector PWM Algorithm for a Three-Level Seven-Phase Voltage Source Inverter[END_REF]. Waveforms of one phase current (CH1) and of the sum of the phase currents (CH2) for a conventional modulation and the strategy accounting for the phase and amplitude of the third harmonic component. The conversion factor is 1V equals 1A.

17 .

 17 Experimental results of the zero-sequence detection for a speed ramp at maximum torque: a) Zero-sequence voltage and its envelope signal; b) Phase difference between the fundamental and the third-harmonic.

13 >

 13 Fig.17illustrates the zero-sequence harmonic detection for a test where the machine starts rotating at time t=0s with a 100 rads -2 acceleration lasting for 2.5 seconds (see speed profile in Fig.18(b)). The torque reference is such that =25A. Fig.17is associated with Fig.18showing the 0dq currents, speed profile and dq voltage references.Fig.17(a) shows the zero-sequence voltage reference and its envelope obtained through the scheme of Fig.15. Initially, the zero-sequence emf is low. However, the PI controller injects a zero-sequence voltage different from zero. The origin

Fig. 18 .

 18 Fig. 18. Experimental results of the flux-weakening strategy with a conventional modulation and the proposed strategy (zero-sequence harmonic detection, ZSHD): a) Synchronous currents; b) Mechanical speed; c) DC-link voltage and dq voltage references; d) DC-link voltage and dq voltage references (zoom).

Fig. 19 .

 19 Fig. 19. Comparison of the torque vs speed curve for the strategies under study.

Fig. 20 .

 20 Fig. 20. Comparison of the voltage references for two strategies: a) Voltage-limited strategy (VL-PWM); b) Zero-sequence harmonic detection strategy (ZSHD).

  max = k 1 1.5 V DC (proposed strategy) V dq,max =1.5 V DC -V 0,RMS (voltage limitation) V dq,max = 1.5 V DC (

TABLE I :

 I PMSM parameters

		Parameter	Value
			s R	0.475Ω
		d L 	q L	8.4mH
			0 L	0.35mH
			M	1 ,	0.314 V s/rad
		3 ( e e 	)	0.010 V s/rad
			N	pp	4
		I	, abc	max	20.4A
	B.	Six-leg Inverter Modeling
	The converter output voltage with respect to the x-phase
	(		is equal to:

TABLE II :

 II Per unit values of the coefficient in the abc and reference

	frames (currents)		
	1	=1.2247	0
	1	0	=1.7321

TABLE III :

 III Per unit values of the coefficient in the abc and reference

	frames (voltages)	
	1	=1.2247	0
	1	0	=1.7321

TABLE IV :

 IV Qualitative evaluation of the three strategies under study.High-frequency zero-sequence current ripple is eliminated with Z-SVM and can be problematic for conventional modulation strategies (peak currents, losses,…)

	Z-SVM	VL-PWM	ZSHD	Comments
	++	-	-	
				Low-frequency zero-sequence current ripple is eliminated with VL-
	--	++	++	PWM and ZSHD and can be problematic with Z-SVM (peak currents, losses, torque ripple,…)
	-/+	--	--/++	
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