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SHARP ELLIPTICITY CONDITIONS FOR BALLISTIC BEHAVIOR

OF RANDOM WALKS IN RANDOM ENVIRONMENT

ÉLODIE BOUCHET, ALEJANDRO F. RAMÍREZ, AND CHRISTOPHE SABOT

Abstract. We sharpen the ellipticity criteria for random walks in i.i.d. random
environments introduced by Campos and Ramírez which ensure ballistic behavior.
Furthermore, we construct new examples of random environments for which the
walk satisfies the polynomial ballisticity criteria of Berger, Drewitz and Ramírez.
As a corollary we can exhibit a new range of values for the parameters of Dirichlet
random environments in dimension d = 2 under which the corresponding random
walk is ballistic.

1. Introduction

We continue the study initiated in [3] sharpening the ellipticity criteria which en-
sure ballistic behavior of random walks in random environment. Furthermore, we
apply our results to exhibit a new class of ballistic random walks in Dirichlet random
environments in dimensions d = 2.

For x ∈ R
d, denote by |x|1 and |x|2 its L1 and L2 norm respectively. Call U := {e ∈

Z
d : |e|1 = 1} = {e1, . . . , e2d} the canonical vectors with the convention that ed+i = −ei

for 1 6 i 6 d. We set P := {p(e) : p(e) > 0,
∑

e∈U p(e) = 1}.
An environment is an element ω := {ω(x) : x ∈ Z

d} of the environment space

Ω := PZ
d
. We denote the components of ω(x) by ω(x, e).

The random walk in the environment ω starting from x is the Markov chain {Xn :
n > 0} in Z

d with law Px,ω defined by the condition Px,ω(X0 = x) = 1 and the
transition probabilities

Px,ω(Xn+1 = x+ e|Xn = x) = ω(x, e)

for each x ∈ Z
d and e ∈ U .

Let P be a probability measure defined on the environment space Ω endowed with
its Borel σ-algebra. We choose {ω(x) : x ∈ Z

d} i.i.d. under P. We call Px,ω the
quenched law of the random walk in random environment (RWRE) starting from x,
and Px :=

∫

Px,ωdP the averaged or annealed law of the RWRE starting from x.
The law P is said to be elliptic if for every x ∈ Z

d and e ∈ U , P(ω(x, e) > 0) = 1.
We say that P is uniformly elliptic if there exists a constant γ > 0 such that for every
x ∈ Z

d and e ∈ U , P(ω(x, e) > γ) = 1.
Given l ∈ S

d−1 we say that the RWRE is transient in direction l if

P0(Al) = 1,

with
Al := { lim

n→∞
Xn · l = ∞}.
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Furthermore, it is ballistic in direction l if P0-a.s.

lim inf
n→∞

Xn · l
n

> 0.

Given U ⊂ Z
d, we denote its outer boundary by

∂U := {x /∈ U : |x− y|1 = 1, for some y ∈ U}.
We denote any nearest neighbour path with n steps joining two points x, y ∈ Z

d by
(x1, x2, . . . , xn), where x1 = x and xn = y. We use the notation

∆xi := xi+1 − xi,

for 1 6 i 6 n− 1, for the directions of the jumps through this path.

1.1. Polynomial condition, ellipticity condition. In [1], Berger, Drewitz and
Ramírez introduced a polynomial ballisticity condition within the uniformly elliptic
context, which was later extended to the elliptic case by Campos and Ramírez in [3],
that will be of interest for our results. This condition is effective, in the sense that it
can a priori be verified explicitly for a given environment.

To define it, we need for each L, L̃ > 0 and l ∈ S
d−1 to consider the box

Bl,L,L̃ := R
(

(−L, L)× (−L̃, L̃)d−1
)

∩ Z
d,

where R is a rotation of Rd that verifies R(e1) = l.
For each subset A ⊂ Z

d we note the first exit time from the set A as

TA := inf{n > 0 : Xn /∈ A}.
Definition 1. Given M > 1 and L > 2, we say that condition (P )M in direction l is

satisfied on a box of size L (also written as (P )M |l) if there exists an L̃ 6 70L3 such
that one has the following upper bound for the probability that the walk does not exit
the box Bl,L,L̃ through its front side :

P0(XTB
l,L,L̃

· l < L) 6
1

LM
.

This condition has proven useful in the uniformly elliptic case. Indeed, (P )M for
M > 15d+ 5 implies ballisticity (see [1]).

For non uniformly elliptic environments in dimensions d > 2, there exist elliptic
random walks which are transient in a given direction but not ballistic in that direc-
tion (see for example Sabot-Tournier [10], Bouchet [2]). In [3], Campos and Ramírez
introduced ellipticity criteria on the law of the environment which ensure ballisticity
if condition (P )M is satisfied for M > 15d + 5. In this article we will sharpen this
ellipticity criteria.

Define ηα := maxe∈U E
(

1
ω(0,e)α

)

, α := sup{α > 0 : ηα < ∞}. We need the constant

c0 := 2
3
3120d

4+3000d(log ηα/2)
2

: throughout the rest of this paper, whenever we assume
that the polynomial condition (P )M is satisfied, it will be understood that this happens
on a box of size L > c0.

Let us first recall the ellipticity condition of [3]. We say that there exists an asymp-
totic direction if the limit

v̂ := lim
n→∞

Xn

|Xn|2
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exists P0-a.s. The polynomial condition (P )M implies the existence of an asymptotic
direction (see for example Simenhaus [11]). Whenever the asymptotic direction exists,
we define the half space

Hv̂ := {l ∈ S
d−1 : l · v̂ > 0}.

Definition 2. Let β > 0. We say that the law of the environment satisfies the ellipticity
condition (E ′)β if there exists an {α(e) : e ∈ U} ∈ (0,∞)2d such that

(1.1) κ ({α(e) : e ∈ U}) := 2
∑

e′

α(e′)− sup
e∈U

(α(e) + α(−e)) > β

and for every e ∈ U

(1.2) E

(

e
∑

e′ 6=e α(e
′) log 1

ω(0,e′)

)

< ∞.

Furthermore, we say that the ellipticity condition (E ′)β is satisfied towards the asymp-
totic direction if there exists an {α(e) : e ∈ U} satisfying (1.1) and (1.2) and such that
there exists α1 > 0 that satisfies α(e) = α1 for e ∈ Hv̂ while α(e) 6 α1 for e /∈ Hv̂.

Remark 1. Replacing (1.2) by E

(

e
∑

e′ α(e
′) log 1

ω(0,e′)

)

< ∞ gives an equivalent condi-

tion. The direct implication is straightforward. And since 1 6
∑

e∈U 1{ω(0,e)> 1
2d

}, we
get

E

(

e
∑

e′ α(e
′) log 1

ω(0,e′)

)

6
∑

e∈U
eα(e) log(2d)E

(

e
∑

e′ 6=e α(e
′) log 1

ω(0,e′)

)

.

This gives the reverse implication.

Remark 2. The results of [3] still hold (with no changes in the proofs) if we replace
the previous definition of ηα by

ηα := max
e∈Hv̂

E

(

1

ω(0, e)α

)

.

It means that the constant c0 in the definition of condition (P )M depends only of the
integrability towards the asymptotic direction.

1.2. Ballisticity results. Our main results are a generalization of theorems 1.2 and
1.3 of [3] where we remove the "towards the asymptotic direction" condition of Theo-
rems 1.2 and 1.3 of [3].

Let τ v̂1 be the first renewal time in the direction v̂, its precise definition is recalled
in the next section. We prove the following tail estimate on renewal times, which
improves proposition 5.1 of [3].

Theorem 1. Let l ∈ S
d−1, β > 0 and M > 15d + 5. Assume that (P )M |l is satisfied

and that (E ′)β holds (cf. (1.1), (1.2)). Then

lim sup
u→∞

(log u)−1 logP0(τ
v̂
1 > u) 6 −β.

The condition (E ′
β) is sharp in a sense that is made precise in remark 3 below.

Together with previous results of Sznitman, Zerner, Seppäläinen and Rassoul-Agha,
cf [14, 17, 12, 8], it implies the following

Theorem 2 (Law of large numbers). Consider a random walk in an i.i.d. environment
in dimensions d > 2. Let l ∈ S

d−1 and M > 15d + 5. Assume that the random walk
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satisfies condition (P )M |l and the ellipticity condition (E ′)1. Then the random walk is
ballistic in direction l and there is a v ∈ R

d, v 6= 0 such that

lim
n→∞

Xn

n
= v, P0 − a.s.

Theorem 3 (Central limit theorems). Consider a random walk in an i.i.d. environ-
ment in dimensions d > 2. Let l ∈ S

d−1 and M > 15d + 5. Assume that the random
walk satisfies condition (P )M |l.

a) (Annealed central limit theorem) If (E ′)2 is satisfied then

ε1/2(X[ε−1n] − [ε−1n]v)

converges in law under P0 as ε → 0 to a Brownian motion with non-degenerate
covariance matrix.

b) (Quenched central limit theorem) If (E ′)176d is satisfied, then P-a.s. we have
that

ε1/2(X[ε−1n] − [ε−1n]v)

converges in law under P0,ω as ε → 0 to a Brownian motion with non-degenerate
covariance matrix.

Remark 3. The condition of theorem 1 is sharp under the following assumption on
the tail behavior of the environment at one site: there exists some (βe)e∈U , βe > 0, and
a positive constant C > 1 such that for all e ∈ U

C−1

(

∏

e′∈U,e′ 6=e

t
βe′

e′

)

6 P (ω(0, e′) 6 te′, ∀e′ ∈ U, e′ 6= e) 6 C

(

∏

e′∈U,e′ 6=e

t
βe′

e′

)

for all (te′)e′∈U\{e}, 0 6 te′ ≤ 1. Dirichlet environment (cf the next section) is a typical
example of environment that satisfies this condition. Indeed, in this case we easily see
that (E ′)β is satisfied if and only if β < 2

∑

e′ β(e
′) − supe∈U (β(e) + β(−e)). On the

other hand if β > 2
∑

e′ β(e
′) − supe∈U (β(e) + β(−e)) then E

(

(τ v̂1 )
β
)

= ∞. Indeed,
consider a direction e0 which realizes the maximum in supe∈U (β(e) + β(−e)) and set
K = {0, e0}. We denote by ∂+K the set of edges that exit the set K, which is composed
of the edges {(0, e)}e 6=e0 and {(e0, e)}e 6=−e0. For small t > 0, under the condition that
ω(x, y) 6 t for all (x, y) ∈ ∂+K we have P0,ω(TK > n) > (1− (2d− 1)t)n. Hence,

P0(TK > n) > (1− (2d− 1)/n)nP (ω(x, y) 6 1/n, ∀(x, y) ∈ ∂+K)

> (1− (2d− 1)/n)nC−1n−((
∑

e′ β(e
′))−(β(e0)+β(−e0)))

which implies that E0(T
β
K) = ∞. Since TK is clearly a lower bound for the first renewal

time it gives the result.

Remark 4. Theorem 1.1 of [3] states that for i.i.d. environments in dimensions d > 2
satisfying the ellipticity condition (E ′)0, the polynomial condition (P )M |l (for l ∈ S

d−1

and M > 15d + 5) is equivalent to Sznitman’s condition (T ′)|l (see for example [13]
for the definition). We can therefore replace (P )M |l by (T ′)|l in the statements of
Theorems 2 and 3.

1.3. New examples of random walks satisfying the polynomial condition. In
this article we also introduce new examples of RWRE in environments which are not
uniformly elliptic and which satisfy the polynomial condition (P )M for M > 15d+ 5.
In subsection 1.3.1 we prove the polynomial condition for a subset of marginal nestling
random walks, including a particular environment introduced by Campos and Ramírez
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in [3]. In subsection 1.3.2, we prove the polynomial condition for a class of random
walks in Dirichlet random environments which do not necessarily satisfy Kalikow’s
condition.

1.3.1. Example within the class of marginal nestling random walks. Following Sznit-
man [12], we say that a law P on Ω is marginal nestling if the convex hull Ko of the
support of the law of

d(0, ω) :=
∑

e∈U
ω(0, e)e

is such that 0 ∈ ∂Ko. We will prove in section 4 that a certain subset of the marginal
nestling laws satisfies the polynomial condition.

Theorem 4. Consider an elliptic law P under which {ω(x) : x ∈ Z
d} are i.i.d. Assume

that there exists an r > 1 such that ω(0, e1) = rω(0, e1+d). Then the polynomial
condition (P )M |e1 is satisfied for some M > 15d+ 5.

The above result includes an example suggested in [3], by Campos and Ramírez,
of an environment which satisfies the polynomial condition and for which the random
walk is directionally transient but not ballistic. They showed that on this environment,
(E ′)α is satisfied for α smaller but arbitrarily close to 1, and that the walk is transient
but not ballistic in a given direction. The proof that this environment satisfies the
polynomial condition was left for a future work.

Let us define the environment introduced in [3]. Let ϕ be any random variable taking
values on the interval (0, 1/4) and such that the expected value of ϕ−1/2 is infinite,
while for every ε > 0, the expected value of ϕ−(1/2−ε) is finite. Let X be a Bernoulli
random variable of parameter 1/2. We now define ω(0, e1) = 2ϕ, ω(0,−e1) = ϕ,
ω(0, e2) = Xϕ+ (1−X)(1− 4ϕ) and ω(0,−e2) = X(1− 4ϕ) + (1−X)ϕ.

For every ε > 0 this environment satisfies (E ′)1−ε: traps can appear because the
random walk can get caught on two edges of the type (x, e2), (x+e2,−e2). Furthermore,
it is transient in direction e1 but not ballistic in that direction.

1.3.2. Examples within the class of Dirichlet random environments. Random Walks in
Dirichlet Environment (RWDE) are interesting because of the analytical simplifications
they offer, and because of their link with reinforced random walks. Indeed, the annealed
law of a RWDE corresponds to the law of a linearly directed-edge reinforced random
walk ([4], [7]).

Given a family of positive weights (β1, . . . , β2d), a random i.i.d. Dirichlet environ-
ment is a law on Ω constructed by choosing independently at each site x ∈ Z

d the
values of (ω(x, ei))i∈[[1,2d]] according to a Dirichlet law with parameters (β1, . . . , β2d).
That is, at each site we choose independently a law with density

Γ
(

∑2d
i=1 βi

)

∏2d
i=1 Γ (βi)

(

2d
∏

i=1

xβi−1
i

)

dx1 . . . dx2d−1

on the simplex {(x1, . . . , x2d) ∈]0, 1]2d,∑2d
i=1 xi = 1}. Here Γ denotes the Gamma

function Γ(β) =
∫∞
0

tβ−1e−tdt , and dx1 . . . dx2d−1 represents the image of the Lebesgue

measure on R
2d−1 by the application (x1, . . . , x2d−1) → (x1, . . . , x2d−1, 1 − x1 − · · · −

x2d−1). Obviously, the law does not depend on the specific role of x2d.
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Remark 5. Given a Dirichlet law of parameters (β1, . . . , β2d), the ellipticity condition
(E ′)β is satisfied if and only if

κ ((β1, . . . , β2d)) = 2

(

2d
∑

i=1

βi

)

− max
i=1,...,d

(βi + βi+d) > β.

In the case of RWDE, it has been proved that Kalikow’s condition, and thus the
(T ′) condition, is satisfied whenever

(1.3) max
16i6d

|βi − βi+d| > 1

(see Enriquez and Sabot in [5] and Tournier in [15]). The characterization of Kalikow’s
condition in terms of the parameters of a RWDE remains an open question. On
the other hand, we believe that for RWDE condition (T ′) is satisfied if and only if
max16i6d |βi−βi+d| > 0. Nevertheless, in this article we are able to prove the following
result.

Theorem 5. Let β1, β2, . . . , βd, βd+2, . . . , β2d be fixed positive numbers. Then, there
exists an ε ∈ (0, 1) depending on these numbers such that such that if β1+d is cho-
sen so that β1+d 6 ε, the Random Walk in Dirichlet Environment with parameters
(β1, . . . , β2d) satisfies condition (P )M |e1 for M > 15d+ 5.

Theorem 5 gives new examples of RWDE which are ballistic in dimension d = 2
since they do not correspond to ranges of the parameters satisfying condition 1.3 of
Tournier [15] and Sabot and Enriquez [5]. Indeed, by Theorem 2, if

2d
∑

i=1

βi − sup
16i6d

(βi + βi+d) > 1

and one of the parameters {βi : 1 6 i 6 d} is small enough, the walk is ballistic.

Remark 6. In dimension d > 3, in [9, 2], precise conditions on the existence of an
invariant measure viewed from the particle absolutely continuous with respect to the law
have been given ; this allows to characterize parameters for which there is ballisticity,
but it fails to give information on (T’) condition and on tails of renewal times.

2. First tools for the proofs

In this section we will introduce some tools that will prove necessary for the proofs
of theorems 2 and 3.

2.1. Regeneration times. The proofs in [3] are based on finding bounds on the
regeneration times. We thus begin by giving the definition and some results about the
regeneration times with respect to a direction l.

We define {θn : n > 1} as the canonical time shift on Z
dN . For l ∈ S

d−1 and u > 0,
we define the times

T l
u := inf{n > 0 : Xn · l > u}

and
T̃ l
u := inf{n > 0 : Xn · l 6 u}.

Set

(2.1) a > 2
√
d
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and
Dl := min{n > 0 : Xn · l < X0 · l}.

We define
S0 := 0, M0 := X0 · l,

S1 := T l
M0+a, R1 := Dl ◦ θS1 ,

M1 := sup{Xn · l : 0 6 n 6 R1},
and recursively for k > 1,

Sk+1 := T l
Mk+a, Rk+1 := Dl ◦ θSk+1

+ Sk+1,

Mk+1 := sup{Xn · l : 0 6 n 6 Rk+1}.
The first regeneration time is then defined as

τ1 := min{k > 1 : Sk < ∞, Rk = ∞}.
We can now define recursively in n the (n + 1)-th regeneration time τn+1 as τ1(X·) +
τn (Xτ1+· −Xτ1). We will occasionally write τ l1, τ

l
2, . . . to emphasize the dependence on

the chosen direction.

Remark 7. The condition (2.1) on a is only necessary to prove the non-degeneracy
of the covariance matrix of part (a) of theorem 3.

It is a standard fact (see for example Sznitman and Zerner [14]) to show that the
sequence ((τ1, X(τ1+·)∧τ2−Xτ1), (τ2−τ1, X(τ2+·)∧τ3−Xτ2), . . .) is independent and (except
for its first term) i.i.d.. Its law is the same as the law of τ1 with respect to the
conditional probability measure P0(·|Dl = ∞).

Those regeneration times are particularly useful to us because of the two following
theorems :

Theorem 6 (Sznitman and Zerner [14], Zerner [17], Sznitman [12]). Consider a RWRE
in an elliptic i.i.d. environment. Let l ∈ S

d−1 and assume that there is a neighbourhood
V of l such that for every l′ ∈ V the random walk is transient in the direction l′. Then
there is a deterministic v such that P0-a.s.

lim
n→∞

Xn

n
= v.

Furthermore, the following are satisfied.

a) If E0(τ1) < ∞, the walk is ballistic and v 6= 0.
b) If E0(τ

2
1 ) < ∞,

ε1/2
(

X[ε−1n] − [ε−1n]v
)

converges in law under P0 to a Brownian motion with non-degenerate covari-
ance matrix.

Theorem 7 (Rassoul-Agha and Seppäläinen [8]). Consider a RWRE in an elliptic
i.i.d. environment. Take l ∈ S

d−1 and let τ1 be the corresponding regeneration time.
Assume that

E0(τ
p
1 ) < ∞,

for some p > 176d. Then P-a.s. we have that

ε1/2
(

X[ε−1n] − [ε−1n]v
)

converges in law under P0,ω to a Brownian motion with non-degenerate covariance
matrix.
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2.2. Atypical Quenched Exit Estimate. The proof of theorem 1 is based on an
atypical quenched exit estimate proved in [3]. We will also need this result, and thus
recall it in this section. Let us first introduce some notations.

Without loss of generality, we can assume that e1 is contained in the open half-space
defined by the asymptotic direction so that

v̂ · e1 > 0.

We define the hyperplane :

H := {x ∈ R
d : x · e1 = 0}.

Let P := Pv̂ be the projection on the asymptotic direction along the hyperplane H
defined for z ∈ Z

d by

P (z) :=

(

z · e1
v̂ · e1

)

v̂,

and Q := Ql be the projection of z on H along v̂ so that

Q(z) := z − P (z).

Now, for x ∈ Z
d , β > 0, ρ > 0 and L > 0, we define the tilted boxes with respect

to the asymptotic direction v̂ by :

(2.2) Bβ,L(x) :=
{

y ∈ Z
d s.t. − Lβ < (y − x) · e1 < L and ‖Q(y − x)‖∞ < ρLβ

}

.

and their front boundary by

∂+Bβ,L(x) := {y ∈ ∂Bβ,L(x) s.t. (y − x) · e1 = L}.
We have :

Proposition 8 (Atypical Quenched Exit Estimate, proposition 4.1 of [3]). Set α > 0

such that ηα := supe∈U E
((

1
ω(0,e)

)α)

< ∞. Take M > 15d + 5 such that (P )M |l is

satisfied. Let β0 ∈ (1/2, 1), β ∈
(

β0+1
2

, 1
)

and ζ ∈ (0, β0). Then, for each γ > 0 we
have that

lim sup
L→∞

L−g(β0,β,ζ) log P
(

P0,ω

(

XTBβ,L(0)
∈ ∂+Bβ,L(0)

)

6 e−γLβ
)

< 0,

where

g(β0, β, ζ) := min{β + ζ, 3β − 2 + (d− 1)(β − β0)}.
2.3. Some results on flows. The main tools that enables us to improve the results
of [3] is the use of flows and max-flow-min-cut theorems. We need some definitions
and properties that we will detail in this section. In the following we consider a finite
directed graph G = (V,E), where V is the set of vertices and E is the set of edges.
For all e ∈ E, we denote by e and e the vertices that are the head and tail of the edge
e (the edge e goes from e to e).

Definition 3. We consider a finite directed graph G = (V,E). A flow from a set
A ⊂ V to a set Z ⊂ V is a non-negative function θ : E → R+ such that :

• ∀x ∈ (A ∪ Z)c, div θ(x) = 0.
• ∀x ∈ A, div θ(x) > 0.
• ∀x ∈ Z, div θ(x) 6 0.
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where the divergence operator is div : RE → R
V such that for all x ∈ V ,

div θ(x) =
∑

e∈E,e=x

θ(e)−
∑

e∈E,e=x

θ(e).

A unit flow from A to Z is a flow such that
∑

x∈A div θ(x) = 1. (Then we have
also

∑

x∈Z div θ(x) = −1 ).

We will need the following generalized version of the max-flow-min-cut theorem :

Proposition 9 (proposition 1 of [9]). Let G = (V,E) be a finite directed graph. Let
(c(e))e∈E be a set of non-negative reals (called capacities). Let x0 be a vertex and
(px)x∈V be a set of non-negative reals. There exists a non-negative function θ : E → R+

such that

(2.3) div θ =
∑

x∈V
px(δx0 − δx),

(2.4) ∀e ∈ E, θ(e) 6 c(e),

if and only if for all subset K ⊂ V containing x0 we have

(2.5) c(∂+K) >
∑

x∈Kc

px,

where ∂+K = {e ∈ E, e ∈ K, e ∈ Kc} and c(∂+K) =
∑

e∈∂+K c(e). The same is true

if we restrict the condition (2.5) to the subsets K such that any y ∈ K can be reached
from 0 following a directed path in K.

Idea of the proof. If θ satisfies (2.3) and (2.4) then

∑

e, e∈K, e∈Kc

θ(e)−
∑

e, e∈K, e∈Kc

θ(e) =
∑

x∈K
div θ(x) =

∑

x∈Kc

px.

It implies (2.5) by (2.4) and positivity of θ.
The reversed implication is an easy consequence of the classical max-flow min-cut

theorem on finite directed graphs (see for example [6] section 3.1). If (c(e))e∈E satisfies

(2.5), we consider the new graph G̃ = (V ∪ {δ}, Ẽ), where

Ẽ = E ∪ {(x, δ), x ∈ V }.

We define a new set of capacities (c̃(e))e∈Ẽ where c(e) = c̃(e) for e ∈ E and c̃((x, δ)) =
px. The strategy is to apply the max-flow min-cut theorem with capacities c̃ and with
source x0 and sink δ. It gives a flow θ̃ on G̃ between x0 and δ with strength

∑

x∈V px
and such that θ̃ 6 c̃. The function θ obtained by restriction of θ̃ to E satisfies (2.4)
and (2.3). �

For the proof of theorem 1, we will consider the oriented graph (Zd, E
Z
d) where

E
Z
d := {(x, y) ∈ (Zd)2 s.t. |x − y|1 = 1}. This graph is not finite, but we will only

consider flows with compact support (θ(e) = 0 for all e except in a finite subset of
E
Z
d). We can then proceed as if the graph were finite, and use the previous definition

and proposition.
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3. Proof of theorem 1

Let l ∈ S
d−1, β > 0 and M > 15d + 5. Assume that (P )M |l is satisfied and that

(E ′)β holds.

Let us take a rotation R̂ such that R̂(e1) = v̂. We fix β ′ ∈
(

5
6
, 1
)

, M > 0 and for

simplicity we will write τ1 instead of τ v̂1 .
For u > 0, take

L = L(u) :=

(

1

4M
√
d

)
1
β′

(log u)
1
β′ ,

CL :=

{

x ∈ Z
d :

−L

2(v̂ · e1)
6 x · R̂(ei) 6

L

2(v̂ · e1)
, for 0 6 i 6 2d

}

Following the proof of proposition 5.1 in [3], we write

P0(τ1 > u) 6 P0

(

τ1 > u, TCL(u)
6 τ1

)

+ E

(

F c
1 , P0,ω

(

TCL(u)
> u

))

+ P(F1),

with

F1 :=

{

ω ∈ Ω : tω
(

CL(u)

)

>
u

(log u)
1
β′

}

and

tω(A) := inf

{

n > 0 : sup
x

Px,ω (TA > n) 6
1

2

}

.

As in [3], the term P0

(

τ1 > u, TCL(u)
6 τ1

)

is bounded thanks to condition (P )M |l,
and the term E

(

F c
1 , P0,ω

(

TCL(u)
> u

))

is bounded thanks to the strong Markov prop-

erty. This part of the original proof is not modified, so we will not give more details
here. It gives the existence for every γ ∈ (β ′, 1) of a constant c > 0 such that :

P0(τ1 > u) 6
e−cLγ(u)

c
+

(

1

2

)

⌊

(log u)
1
β′

⌋

+ P(F1).

It only remains to show that we can find a constant C > 0 such that P(F1) 6 Cu−β

for u big enough.
For each ω ∈ Ω, still as in [3], there exists x0 ∈ CL(u) such that

Px0,ω(H̃x0 > TCL(u)
) 6

2|CL(u)|
tω(CL(u))

where for y ∈ Z
d, H̃y = inf{n > 1 : Xn = y}. It gives

P(F1) 6 P

(

ω ∈ Ω s.t. ∃x0 ∈ CL(u) s.t. Px0,ω(H̃x0 > TCL(u)
) 6

2(log u)
1
β′

u

∣

∣CL(u)

∣

∣

)

.

We define for each point x ∈ CL(u) a point yx, closest from x + 2 Lβ′

v̂·e1 v̂. To bound

P(F1), we will need paths that go from x to yx with probability big enough and the
atypical quenched exit estimate (proposition 8).

Define :

N :=
|v̂| log u

2M
√
d(v̂ · e1)

.

It is straightforward that

N − 1 6 |yx − x|1 6 N + 1.
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The following of the proof will be developed in three parts : first we will construct
unit flows θi,x going from {x, x + ei} to {yx, yx + ei}, for all x ∈ CL(u). Then we will
construct paths with those flows, and use the atypical quenched exit estimate to bound
P(F1) in the case that those paths are big enough. We will conclude by bounding the
probability that the paths are not big enough.

3.1. Construction of the flows θi,x. We consider the oriented graph (Zd, E
Z
d) where

E
Zd := {(x, y) ∈ (Zd)2 s.t. |x − y|1 = 1}. We want to construct unit flows θi,x going

from {x, x+ ei} to {yx, yx+ ei}, for all x ∈ CL(u). But there are additional constraints,
as we will need them to construct paths that have a probability big enough. The aim
of this section is to prove the following proposition :

Proposition 10. For all x ∈ CL(u), for all α1, . . . , α2d positive constants, there exists
2d unit flows θi,x : E

Z
d → R+, respectively going from {x, x+ ei} to {yx, yx + ei}, such

that :

(3.1) ∀e ∈ E
Zd , θi,x(e) 6

α(e)

κi

,

where κi := 2
∑2d

j=1 αj − (αi + αi+d), and α(e) := αi for e of the type (z, ei).
Furthermore, we can construct θi,x with a compact support, and in a way that allows

to find γ and S ⊂ E
Z
d , |S| independent of u, such that θi,x(e)κi 6 γ < α(e) for all

e ∈ Sc.

We will construct the θi,x to prove their existences. For this we need three steps.
Let B(x,R) be the box of Zd of center x and radius R, and Bi(x,R) be the same
box, where the vertices x and x + ei are merged (and we suppress the edge between
them). We note EB(x,R) := {(x, y) ∈ E

Z
d ∩ (B(x,R))2} and EBi(x,R) := {(x, y) ∈

E
Z
d ∩ (Bi(x,R))2} the corresponding sets of edges. We will construct a unit flow in

the graph (Bi(x,R), EBi(x,R)) from {x, x + ei} to Bi(x,R)c, a unit flow in the graph
(Bi(yx, R), EBi(yx,R)) from Bi(yx, R)c to {yx, x+ ei}, and then connect them. At each
step, we will ensure that condition 3.1 is fulfilled.

First step : construction of a unit flow from {x, x+ ei} to Bi(x,R)c :

Lemma 1. Set x ∈ CL(u), and α1, . . . , α2d positive constants. If R > maxi κi

minj αj
, there

exists 2d unit flows θi,x : EBi(x,R) → R+ such that :

div θi,x =
∑

z∈∂Bi(x,R)

1

|∂Bi(x,R)|(δx − δz)

and

∀e ∈ EBi(x,R), θi,x(e) 6
α(e)

κi

where ∂Bi(x,R) = {z ∈ Bi(x,R) that has a neighbour in Bi(x,R)c}.
The divergence condition ensures that the flow will be a unit flow, that it goes from

x, and that it leaves Bi(x,R) uniformly on the boundary of the box.

Proof. The result is a simple application of proposition 9. We fix x ∈ CL(u) and i
between 1 and 2d. Define pz =

1
|∂Bi(x,R)| if z ∈ ∂Bi(x,R), pz = 0 if z /∈ ∂Bi(x,R).

To prove the result we only have to check that ∀K ⊂ Bi(x,R) containing x,
∑

e∈∂+K
α(e)
κi

>
∑

z /∈K pz, where ∂+K = {e ∈ EBi(x,R) s.t. e ∈ K and e /∈ K}.
We have two cases to examine:
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• If K
⋂

∂Bi(x,R) = ∅, ∑z /∈K pz = 1. We then need
∑

e∈∂+K α(e) > κi. For

K = {x}, ∑e∈∂+K α(e) = κi as we merged x and x + ei. For bigger K, we

consider for all j 6= i the paths (x + nej)n∈N and for all j 6= i + d the paths
(x+ ei + nej)n∈N . They intersect the boundary of K in 2d+ 1 different points,
and the exit directions give us the corresponding αj, that sum to κi. It gives
that

∑

e∈∂+K α(e) > κi.

• If K
⋂

∂Bi(x,R) 6= ∅,∑z /∈K pz < 1. As K contains a path from x to ∂Bi(x,R),
∑

e∈∂+K
α(e)
κi

>
Rminj(αj+αj+d)

κi
. It is bigger than 1 thanks to the hypothesis on

R. It gives the result.

�

Second step : by the same way, we construct a flow θi,x : EBi(yx,R) → R+ such that

div θi,x =
∑

z∈∂Bi(yx,R)

1

|∂Bi(yx, R)|(δz − δyx).

and

∀e ∈ EBi(yx,R), θi,x(e) 6
α(e)

κi
.

Third step : we will join the flows on EBi(x,R) and EBi(yx,R) with simple paths,

to get a flow on E
Z
d. Take R > maxi κi

minj αj
, and make sure that 1

|∂B(x,R)| < α(e)
κi

for all

e ∈ E
Z
d (always possible by taking R big enough, R depends only on the αi and the

dimension).
We can find ∂B(x,R) simple paths πj ⊂ E

Z
d satisfying :

• ∀j, πj connects a point of ∂B(x,R) to a point of ∂B(yx, R).
• ∀j, πj stays outside of B(x,R) and B(yx, R), except from the departure and

arrival points.
• If two paths intersect, they perform jumps in different direction after the inter-

section (no edge is used by two paths). If (x, ei) is in a path, then (x+ ei,−ei)
is not in any path.

• The number of steps of each path is close to N : there exists constants K1 and
K2 independent of u such that the length of πj is smaller than K1N +K2.

(For example we can use the paths π(i,j) p45 of [3], and make them exit the ball B(x,R)
instead of {x, x+ ei}).

For all i, ∂Bi(x,R) = ∂B(x,R) and ∂Bi(yx, R) = ∂B(yx, R) as soon as R > 1.
By construction, − div θi,x(z1) = div θi,x(z2) = 1

|∂B(x,R)| for any z1 ∈ ∂Bi(x,R) and

z2 ∈ ∂Bi(yx, R). We can then join the flows of the first two steps by defining a flow
θi,x(e) =

1
|∂B(yx,R)| for all e ∈ πj (and 0 on all the other edges of E

Z
d).

We have thus constructed a unit flow θi,x on E
Z
d , from {x, x + ei} to {yx, yx + ei},

satisfying (3.1) ( (3.1) is satisfied on EBi(x,R) and EBi(yx,R) as R > maxi κi

minj αj
thanks to

lemma 1, and outside those balls as 1
|∂B(x,R)| <

α(e)
κi

for all e ∈ E
Z
d). It concludes the

proof of the first part of proposition 10.
As θi,x(e) = 0 out of the finite set EBi(x,R) ∪ EBi(yx,R) ∪ {e ∈ πj , 1 6 j 6 ∂B(x,R)},

the flow has a compact support. And as we made sure that 1
|∂B(x,R)| <

α(e)
κi

, we can

take S = B(x,R) ∪B(yx, R) and γ = κi

|∂B(x,R)| to conclude the proof.
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3.2. Bounds for P(F1). We apply proposition 10 for the α1, . . . , α2d of the definition
of (E ′)β (see (1.1) and (1.2)). It gives flows θi,x on E

Z
d, constructed as in the previous

section.
We can decompose a given θi,x (for i and x fixed) in a finite set of weighted paths,

each path starting from x or x+ ei and arriving to yx or yx + ei. It suffices to choose
a path σ where the flow is always positive, to give it a weight pσ := mine∈σ θi,x(e) > 0
and to iterate with the new flow θ(e) := θi,x(e)− pσ1e∈σ.

The weigh pσ of a path σ then satisfies : for all e ∈ E
Z
d , θi,x(e) =

∑

σ containing e pσ.

As θi,x is a unit flow we get
∑

σ path of θi,x
pσ = 1. We will use those weights in the next

section, to prove that those paths are "big enough" with high probability.
We now introduce :

F2,i =

{

ω ∈ Ω s.t. ∀x ∈ CL(u), ∀σ path of θi,x, ωσ :=
∏

e∈σ
ωe > u

1
M

−1

}

and

F2 =
2d
⋂

i=1

F2,i.

Define

F3 :=

{

ω ∈ Ω s.t. ∃x0 ∈ CL(u) s.t. Px0,ω(H̃x0 > TCL(u)
) 6

2(log u)
1
β′

u

∣

∣CL(u)

∣

∣ , F2

}

.

We get immediately :

P(F1) 6 P(F3) + P(F c
2 ).

It gives two new terms to bound. We start by bounding P(F3). For this we will use
the same method as in [3] : on the event F3, for all 1 6 i 6 2d we can use a path σ of
θi,x to join x or x+ ei to yx or yx + ei. It gives :

ω(x0, ei)u
1
M

−1 inf
z∈{yx0 ,yx0+ei}

Pz,ω(TCL(u)
< Hx0) 6 Px0,ω(TCL(u)

< H̃x0) 6
2(log u)

1
β′

u

∣

∣CL(u)

∣

∣ ,

where the factor ω(x0, ei) corresponds to the probability of jumping from x to x+ ei,
in the case where the path σ starts from x+ ei.

As
∑2d

i=1 ω(x0, ei) = 1, it gives

u
1
M

−1 inf
z∈V (yx0 )

Pz,ω(TCL(u)
< Hx0) 6

4d(log u)
1
β′

u

∣

∣CL(u)

∣

∣ ,

where V (yx0) := {yx0, (yx0 + ei)i=1,...,2d}.
In particular, on F3, we can see that for u large enough V (yx0) ⊂ CL(u). As a result,

on F3, we have for u large enough

inf
z∈V (yx0 )

Pz,ω(XTz+Uβ′,L
· e1 > z · e1) 6 inf

z∈V (yx0 )
Pz,ω(TCL(u)

< Hx0) 6
1

u
1

2M

= e−2
√
dL(u)β

′

,

where

Uβ′,L := {x ∈ Z
d : −Lβ′

< x · e1 < L}.
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From this and using the translation invariance of the measure P, we conclude that :

P

(

∃x0 ∈ CL(u) s.t. Px0,ω(H̃x0 > TCL(u)
) 6

4d(log u)
1
β′

u

∣

∣CL(u)

∣

∣ , F2

)

6 P

(

∃x0 ∈ CL(u) s.t. inf
z∈V (yx0 )

Pz,ω(XTz+Uβ′,L
· e1 > z · e1) 6 e−2

√
dL(u)β

′
)

6 (2d+ 1)
∣

∣CL(u)

∣

∣P

(

P0,ω(XTU
β′,L(u)

· e1 > 0) 6 e−2
√
dL(u)β

′
)

6 (2d+ 1)
∣

∣CL(u)

∣

∣P

(

P0,ω(XTB
β′,L(u)

· e1 > 0) 6 e−2
√
dL(u)β

′
)

,

where the titled box Bβ′,L(u) is defined as in (2.2).
We conclude with the atypical quenched exit estimate (proposition 8) : there exists

a constant c > 0 such that for each β0 ∈ (1
2
, 1) one has :

P(F3) 6
1

c
e−cL(u)g(β0,β

′,ζ)

,

where g(β0, β
′, ζ) is defined as in proposition 8.

Note that for each β ′ ∈
(

5
6
, 1
)

there exists a β0 ∈
(

1
2
, β
)

such that for every ζ ∈
(

0, 1
2

)

one has g(β0, β
′, ζ) > β ′. Therefore, replacing L by its value, we proved that there

exists c > 0 such that :
P(F3) 6 cu−β.

3.3. Bound for P(F c
2 ). To conclude the bound for P(F1) and the proof of theorem 1,

it only remains to control P(F c
2 ). It is in this section that we will use the conditions

that were imposed on θi,x during the construction of the flows.

P(F c
2 ) 6

2d
∑

i=1

P(F c
2,i)

6

2d
∑

i=1

∑

x∈CL(u)

P(∀σ path of θi,x, ωσ 6 u
1
M

−1)

As θi,x is a unit flow, if ∀σ path of θi,x, ωσ 6 u
1
M

−1 then :
∑

σ path of θi,x

pσωσ 6 u
1
M

−1
∑

σ path of θi,x

pσ = u
1
M

−1.

Jensen’s inequality then gives :
∏

σ path of θi,x

ωpσ
σ =

∏

e∈EZd ωθi,x(e)
e 6 u

1
M

−1.

It allows to write :

P(F c
2 ) 6

2d
∑

i=1

∑

x∈CL(u)

P





∏

e∈EZd ωθi,x(e)
e 6 u

1
M

−1





6

2d
∑

i=1

∑

x∈CL(u)

E

(

∏

e∈EZd ω−κiθi,x(e)
e

)

u−κi(
1
M

−1)
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We will use the integrability given by the flows to bound the expectations. The
independence of the environment gives (for i and x fixed) :

E

(

∏

e

ω−κiθi,x(e)
e

)

=
∏

z∈Zd

E

(

∏

e s.t. e=z

ω−κiθi,x(e)
e

)

=
∏

z∈S
E

(

∏

e s.t. e=z

ω−κiθi,x(e)
e

)

∏

z /∈S
E

(

∏

e s.t. e=z

ω−κiθi,x(e)
e

)

where we recall that S = B(x,R) ∪ B(yx, R).
As θi,x satisfies (3.1), the ellipticity condition (E ′)β gives that each of the expecta-

tions E
(

∏

e s.t. e=z ω
−κiθi,x(e)
e

)

are finite.

By construction |S| is finite and does not depend on u :
∏

z∈S E
(

∏

e s.t. e=z ω
−κiθi,x(e)
e

)

is a finite constant independent on u.
It remains to deal with the case of z /∈ S. As we chose R to get θi,x(e)κi < γ for the

edges outside S, and thanks to the bounds on the number of edges with positive flow
(there is a finite number of paths, and each path has a bounded length), we have :

∏

z /∈S
E

(

∏

e s.t. e=z

ω−κiθi,x(e)
e

)

6 E

(

∏

e s.t. e=0

ω−γ
e

)c1N+c2

,

where c1 and c2 are positive constants, independent of u. Then, putting all of those
bounds together,

P(F c
2 ) 6

2d
∑

i=1

∑

x∈CL(u)

C1C
C3N
2 uκi(

1
M

−1)

6

2d
∑

i=1

∑

x∈CL(u)

C4u
C5+κi

M
−κi

6 C6(log u)
C7u

C8
M

−mini κi

where all the constants Ci are positive and do not depend on u. As remark 4 tells us
that we can choose M as large as we want, we can get C8

M
as small as we want.

Then we can find a constant C > 0 such that P(F c
2 ) 6 Cu−β for u big enough. It

concludes the proof.

4. New examples of random walks satisfying the polynomial condition

4.1. Proof of Theorem 4. Consider the box Be1,L,L̃
for L̃ = 70L3. We want to find

some L > c0 such that

P0

(

XTB
e1,L,L̃

· e1 < L
)

6
1

LM
,

for some M > 15d+ 5. We first decompose this probability according to whether the
exit point of the random walk from the box Be1,L,L̃

is on the bottom or on one of the
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sides of the box, so that,

P0

(

XTB
e1,L,L̃

· e1 < L
)

= P0

(

XTB
e1,L,L̃

· e1 = −L
)

+ P0

(

XTB
e1,L,L̃

· e2 = L̃
)

+ P0

(

XTB
e1,L,L̃

· e2 = −L̃
)

.

We will first bound the probability to exit through the sides. We do the computations

for P0

(

XTB
e1,L,L̃

· e2 = L̃
)

but the other term can be dealt with in the same way.

Suppose that XTB
e1,L,L̃

· e2 = L̃, and define n0, . . . , nL̃−1 the finite hitting times of new

levels in direction e2 as follows :

nk := inf{n > 0 s.t. Xn · e2 > k}.
To simplify notation define ϕ(x) := ω(x, e1+d). We now choose a constant 1 > δ > 0,
and we will call "good point" any x ∈ Z

2 such that ϕ(x) > δ. We define p := P(ϕ(x) >
δ). Note that p does not depend on x since the environment is i.i.d., so that it depends
only on δ and the law of ϕ.

We now introduce the event that a great number of the Xnk
are good points :

C1 :=
{

XTB
e1,L,L̃

· e2 = L̃ and at least
p

2
L̃ of the Xnk

, 1 6 k 6 L̃− 1, are good
}

.

We get immediately

P0

(

XTB
e1,L,L̃

· e2 = L̃
)

= P0(C1) + P0

({

XTB
e1,L,L̃

· e2 = L̃
}

∩ (Cc
1)
)

.

By construction of the Xnk
and independence of the environment, and with Z an

independent random variable following a binomial law of parameters p and L̃, we can
bound the second term of the sum :

P0

({

XTB
e1,L,L̃

· e2 = L̃
}

∩ (Cc
1)
)

6 P
(

Z 6
p

2
L̃
)

6 exp

(

−2
(pL̃− pL̃/2)2

L̃

)

= exp

(

−p2L̃

2

)

where the last inequality is Hoeffding’s inequality.
It only remains to bound P0(C1). For that, we introduce the following new event

C2 :=

{

C1 and Xnk+1 −Xnk
= e1 for at least

δp

4
L̃ of the good Xnk

}

,

that states that the walk goes often in direction e1 just after reaching a Xnk
that is a

good point.
We can then write

P0(C1) = P0(C2) + P0(C1 ∩ (Cc
2)).

To bound P0(C1 ∩ (Cc
2)), we use the uniform bound "ϕ(x) > δ" for good points that

gives us that ω(x, e1) > rδ on those points. And we get Z ′ an independent random
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variable following a binomial law of parameters rδ and p
2
L̃ :

P0(C1 ∩ (Cc
2)) 6 P

(

Z ′ 6
δp

4
L̃

)

6 exp

(

−pδ2L̃

(

r − 1

2

)2
)

.

It only remains to bound P0(C2). Set n+ (respectively n−) the total number of
jumps in direction e1 (respectively −e1) before exiting the box Be1,L,L̃

. We will need a
third new event

C3 :=

{

n+ >
1 + r

r
n−
}

,

that allows us to write

P0(C2) = P0(C2 ∩ C3) + P0(C2 ∩ (Cc
3)).

First notice that for L big enough, C2∩C3 = ∅. Indeed, C1 implies that we exit the box
Be1,L,L̃

by the side "x ·e2 = L̃". Now, since the vertical displacement of the walk before
exiting the box Be1,L,L̃

is n+ − n−, on the event C3 we know that this displacement is

at least equal to 1
1+r

n+. Therefore, since on C2 the walk makes at least δp
4
L̃ = 35δp

2
L3

moves in the direction e1, on C2 ∩ C3 its vertical displacement before exiting the box
is at least 35δp

2(1+r)
L3. Since on C2 ∩ C3 the walk exits the box by the "x · e2 = L̃" side

we see that for L larger than L1 :=
√

2(1+r)
35δp

the event C2 ∩ C3 is empty.

We now want to bound P0(C2 ∩ (Cc
3)).

P0(C2 ∩ (Cc
3)) 6 P0

(

n+ >
δp

4
L̃ and n+ <

1 + r

r
n−
)

6 P0

(

n+ + n− >
δp

4
L̃ and (n+ + n−)

r

1 + 2r
< n−

)

.

Now note that whenever we go through a vertical edge from a point x, the law of the
environment tells us that it is an edge (x, e1) with probability r

1+r
, and (x,−e1) with

probability 1
1+r

. Then, defining Z ′′ as a random variable following a binomial law of

parameters 1
1+r

and pδ
4
L̃, we have the bound :

P0(C2 ∩ (Cc
3)) 6 P

(

Z ′′ >
r

1 + 2r

pδ

4
L̃

)

6 exp

(

−4pδL̃

(

r

r + 1
+

r

1 + 2r
− 1

4pδL̃

)2
)

,

where we need 1 6
rpδL̃
4

(

1
1+r

+ 1
1+2r

)

to apply Hoeffding’s inequality in the last in-
equality. We can find L2 such that this is true for L > L2.

Choose M > 15d+5. By putting all of our previous bounds together, we finally get,
for all L > L2,

P0

(

XTB
e1,L,L̃

· e2 = L̃
)

6 exp

(

−p2L̃

2

)

+ exp

(

−pδ2L̃

(

r − 1

2

)2
)

+ exp

(

−4pδL̃

(

r

r + 1
+

r

1 + 2r
− 1

4pδL̃

)2
)

,
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where we recall that L̃ = 70L3, δ > 0 and p = P(ϕ(x) > δ). Then, for any choice of δ,
we can find L3 > max(c0, L1, L2) such that for all L > L3,

P0

(

XTB
e1,L,L̃

· e2 = L̃
)

+ P0

(

XTB
e1,L,L̃

· e2 = −L̃
)

6
1

2LM
.

We now only need to bound P0

(

XTB
e1,L,L̃

· e1 = −L
)

to prove (P )M |e1. We will use

again the notations n+ (respectively n−) for the total number of jumps in direction e1
(respectively −e1) before exiting the box Be1,L,L̃

. Suppose that XTB
e1,L,L̃

· e1 = −L.

Then necessarily n+ < n−, which gives n+ < n++n−

2
. As n+ conditioned to n+ + n−

follows a binomial law of parameters r
1+r

and n++n−, Hoeffding’s inequality gives the
bound :

P0

(

n+ <
n+ + n−

2

∣

∣n+ + n−
)

6 exp

(

−2(n+ + n−)

(

r

1 + r
− 1

2

)2
)

.

But XTB
e1,L,L̃

· e1 = −L also gives that necessarily, n− > L. Then

P0

(

XTB
e1,L,L̃

· e1 = −L
)

6 P0

(

n+ <
n+ + n−

2
and n− > L

)

6

∞
∑

m=L

exp

(

−2m

(

r

1 + r
− 1

2

)2
)

.

Therefore we can find L4 > L3 such that for all L > L4,

P0

(

XTB
e1,L,L̃

· e1 = −L
)

6
1

2LM
,

from where we conclude that for all L > L4,

P0

(

XTB
e1,L,L̃

· e1 < L
)

6
1

LM
.

4.2. Proof of Theorem 5. It is classical to represent Dirichlet distributions with
independent gamma random variables : if γ1, . . . , γN are independent gamma random
variables with parameters β1, . . . , βN , then γ1

∑

γi
, . . . , γN

∑

γi
is a Dirichlet random variable

with parameters (β1, . . . , βN). We get a restriction property as an easy consequence of
this representation (see [16], pages 179-182) : for J a non-empty subset of {1, . . . , N},
the random variable

(

xj
∑

i∈J xi

)

j∈J
follows a Dirichlet law with parameters (βj)j∈J and

is independent of
∑

i∈J xi. This property will be useful in the following.

We consider the box Be1,L,L̃
for L̃ = 70L3, and want to find some L > c0 such that

P0

(

XTB
e1,L,L̃

· e1 < L
)

6 1
LM to prove (P )M |e1.

Let li := {x ∈ Z
d s.t. x · e1 = i} and ti := inf{n > 0 : Xn ∈ li, Xn+1 /∈ li}. We first

consider the events that, when the walk arrives on li for the first time, it gets out of
it by an edge in direction e1 (the alternative being getting out by an edge in direction
−e1) :

G1,i := {Xti+1 −Xti = e1}.
At the point Xti , we know that the walk will go either to Xti + e1 or to Xti − e1.

Thanks to the restriction property of the Dirichlet laws, we know that
ω(Xti ,e1)

ω(Xti ,e1)+ω(Xti ,−e1)
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follows a beta law of parameters (β1, β1 + β1+d) and is independent of the previous
trajectory of the walk on li. Then

P0(G1,i) =
β1

β1 + β1+d
.

Now define

G1 :=
L−1
⋂

i=0

G1,i,

and note that

P0(G
c
1) 6 L

β1+d

β1 + β1+d
.

We can now write

P0

(

XTB
e1,L,L̃

· e1 < L
)

6 P0

({

XTB
e1,L,L̃

· e1 < L
}

∩G1

)

+ P0(G
c
1)

6 P0

({

XTB
e1,L,L̃

· e1 < L
}

∩G1

)

+ L
β1+d

β1 + β1+d
,

and we only need to bound the first term of this sum. If G1 is satisfied, the walk
cannot get out of the box Be1,L,L̃

by the "lower boundary" {x ∈ Z
d s.t. x · e1 = −L}.

Then the walk has to get out by one of the 2d− 2 "side boundaries" :

P0

({

XTB
e1,L,L̃

· e1 < L
}

∩G1

)

= P0

(

∪d
j=2

{

XTB
e1,L,L̃

· ej = ±L̃
}

∩G1

)

.

On the event ∪d
j=1{XTB

e1,L,L̃
·ej = ±L̃} define n0, . . . , nL̃−1 as the finite hitting times

of new levels in any direction perpendicular to e1 as follows :

nk := inf{n > 0 s.t. sup
26j6d

|Xn · ej | > k}.

Let now p = β1

1+
∑

i6=1+d βi
and consider the event

G3 :=
{

G1 and Xnk+1 −Xnk
= e1 for at least

p

2
L̃ of the points Xnk

}

.

Suppose β1+d 6 1, then p 6 E(ω(0, e1)). Consider now a random variable Z with a

binomial law of parameters p and L̃. Using Hoeffding’s inequality, we see that

P (Gc
3) 6 P

(

Z ≤ pL̃

2

)

≤ exp

(

−p2

2
L̃

)

.

But clearly G1 ∩G3 = ∅ for L > L0 :=
√

1
35p

. Therefore we have in this case

P0

(

∪d
j=2

{

XTB
e1,L,L̃

· ej = ±L̃
}

∩G1

)

6 exp

(

−p2

2
L̃

)

.

Putting the previous bounds together, we finally get for all L > L0 :

P0

(

XTB
e1,L,L̃

· e1 < L
)

6 L
β1+d

β1 + β1+d

+ exp

(

−p2

2
L̃

)

.

Let now L1 be such that for all L > L1

exp

(

−p2

2
L̃

)

6
1

2LM
.
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Take now L2 := max{c0, L0, L1} and then choose β1+d (6 1) so that

L2
β1+d

β1 + β1+d

≤ 1

2LM
2

.

We then conclude that for this choice of β1+d there exists an L > c0 such that

P0

(

XTB
e1,L2,L̃

· e1 < L
)

6
1

LM
.
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