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THE RIGHT ANGLE TO LOOK AT

ORTHOGONAL SETS

FRANK O. WAGNER

Abstract. If X and Y are orthogonal hyperdefinable sets such
that X is simple, then any group G interpretable in X ∪ Y has a
normal hyperdefinable X-internal subgroup N such that G/N is
Y -internal; N is unique up to commensurability. In order to make
sense of this statement, local simplicity theory for hyperdefinable
sets is developped. Moreover, a version of Schlichting’s Theorem
for hyperdefinable families of commensurable subgroups is shown.

Introduction

Two definable sets X and Y in some structure are said to be orthog-
onal if every definable subset of X × Y is a finite union of rectangles,
i.e. of subsets of the form U × V with U ⊆ X and V ⊆ Y definable.
It follows that if X and Y are orthogonal groups, every definable sub-
group H of X×Y has a subgroup of finite index of the form U×V with
U ≤ X and V ≤ Y subgroups: As H is a finite union of rectangles,
one can find a maximal definable rectangle U × V ⊆ H containing the
identity 1 = (1X , 1Y ). As H also contains

(U × V )−1(U × V ) = (U−1 × V −1)(U × V ) = U−1U × V −1V ⊇ U × V,

we obtain U−1U = U and V −1V = V by maximality, so U ≤ X and
V ≤ Y are subgroups; moreover U × V is unique. Any other maximal
rectangle contained in H can be translated to contain 1, and must thus
be a coset of U × V . So U × V has finite index.

However, the situation is considerably more complicated for a group
G definable, or more generally interpretable, in X∪Y , as it need not be
a direct product of a group interpretable inX and a group interpretable
in Y . In fact, an example by Berarducci and Mamino [2, Example 1.2]
shows that G need not have any subgroup interpretable in either X
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2 FRANK O. WAGNER

or Y . However, they prove [2, Theorem 7.1] that if X is superstable
of finite and definable Lascar rank, then any group G interpretable in
X ∪ Y has a normal subgroup N interpretable in X , such that G/N is
interpretable in Y .

In this paper we shall generalize their result to the case where X
is merely simple. In this context, definability has to be replaced by
type-definability, as even for a definable group the tools of simplicty
theory in general only yield type-definable subgroups. In fact, we even
have to study hyperdefinable groups, since the quotient G/N , for N
type-definable, will be of that form. We therefore put ourselves in the
hyperdefinable context and assume right from the start that our or-
thogonal sets X and Y are merely hyperdefinable. To this end, we
shall include a quick development of hyperdefinability in section 1, and
of local simplicity theory for hyperdefinable sets in section 5. Moreover,
the general theory only yields N normal up to commensurability. Since
there is a priori no simple hyperdefinable set containing all conjugates
of N , we cannot use the usual locally connected component from sim-
plicity theory [7, Definition 4.5.15]. We therefore show a completely
general version of Schlichting’s Theorem for a hyperdefinable family
of commensurable groups in section 6. Note that we do recover the
theorem by Berarducci and Mamino even for general supersimple (and
definable) X (Corollary 7.2).

Another problem is that of parameters. The usual hypothesis would
be that of stable embedding, i.e. that every hyperdefinable subset of
X is hyperdefinable with parameters in X . We shall circumvent this
issue by only ever considering parameters from X∪Y , as orthogonality
automatically yields stable embeddedness of X and of Y in X ∪ Y .

We shall work in a big κ-saturated and strongly κ-homogeneous mon-
ster model M, where κ is bigger than any cardinality we wish to con-
sider. We shall not usually distinguish between elements and tuples.

1. Hyperimaginaries

Definition 1.1. • A countable equivalence relation is an equiva-
lence relation given by the conjunction of countably many for-
mulas (and hence only using countably many parameters and
variables); it is over a set A of parameters if the formulas only
use parameters from A.

• A hyperimaginary (element) of type E is the class aE of some
tuple a (of the right length) modulo a countable equivalence
relation E over ∅.
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• A hyperimaginary e is definable over some set B of hyperimagi-
naries if every automorphisms of the monster model which fixes
B pointwise fixes also e; it is bounded over B if its orbit under
the group of automorphisms fixing B pointwise has bounded
size (smaller than the saturation degree of the monster model).
The hyperimaginary definable closure dclheq(B) of B is the set of
hyperimaginaries definable over B; the hyperimaginary bounded
closure bdd(B) of B is the set of all hyperimaginaries bounded
over B. Clearly, both dclheq and bdd are idempotent operators.1

• Two hyperimaginaries are equivalent if they are interdefinable.
• If e is hyperimaginary, a representative for e is any real (or
imaginary) tuple a with e ∈ dclheq(a).

Remark 1.2. (1) If E is an arbitrary type-definable equivalence
relation over ∅ (given by an intersection of arbitrary size, on
tuples of arbitrary length), it is easy to see that E is equivalent
to a conjunction of subintersections Ei, each one defining a
countable equivalence relation on a countable subtuple xi. So

aEb ⇔ ∀i aiEibi.

This means that an automorphism fixes aE if and only iff it fixes
(ai)Ei

for all i, and we can replace aE by the sequence
(
(ai)Ei

)
i

of hyperimaginaries.
(2) If EA is a countable equivalence relation over A, we consider

the countable equivalence relation

xx′Fyy′ ⇔
(
x′ = y′ ∧ x′ |= tp(A) ∧ xEx′y

)
∨ xx′ = yy′

where we only consider the countable subset of A actually occur-
ing in the definition of EA, and Ex′ is the result of substituting
x′ for A in the definition of EA. Then for any a the class aEA

is fixed by an automorphism fixing A iff and only iff (aA)F is
fixed, and we can use the hyperimaginary (aA)F instead of aEA

.
(3) If E is a countable partial type over A which defines an equiv-

alence relation on some partial type π over A, then by com-
pactness there is a countable subtype π0 such that E defines an
equivalence relation on π0. Then

xFy ⇔
(
π0(x) ∧ π0(y) ∧ xEy

)
∨ x = y

is a countable equivalence relation over A extending E.

1By compactness, an imaginary element in bdd(B) is already in the algebraic

closure acl(B). So there is no need for a superscript bddheq.
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If E = (Ei : i ∈ I) is a sequence of countable equivalence relations
over ∅ and a = (ai : i ∈ I) is a sequence of tuples of the right length,
we put aE = ((ai)Ei

: i ∈ I), and we say that aE is a tuple of hyper-
imaginaries. Similarly, we write aEb if aiEibi for all i ∈ I. Note that
Remark 1.2 justifies that we restrict to countable equivalence relations
over ∅ in Definition 1.1: Indeed, any other equivelence class one might
wish to consider is just a tuple of hypermaginaries.

Definition 1.3. Let aE and bF be tuples of hyperimaginaries. The
type tp(aE/bF ) is given by all partial types over b of the form

∃yz [xEy ∧ zFb ∧ ϕ(y, z)]

true of a, where ϕ is a parameter-free formula. It is easy to see that (in
the monster model) two tuples of hyperimaginaries of type E have the
same type over bF if and only if they are conjugate by an automorphism
fixing bF .

Note that the type of a hyperimaginary over bF is just a maximal
E-invariant partial real type over b invariant under automorphisms
fixing bF . For any two representatives of bF , any two such types are
equivalent. We shall say that a partial type π(y) is a partial E-type if
π(y) is E-invariant.

Definition 1.4. A set X is hyperdefinable over some parameters A if
it is of the form Y/E, where Y is a type-definable set in countably
many variables and E a countable equivalence relation on Y , both over
A. We denote by Xheq

A the collection of all hyperimaginaries in the
definable closure of A and some tuple from X . If A = ∅ it is omitted.

For the rest of the paper, all tuples and parameter sets are hyper-
imaginary, unless stated otherwise. We shall not distinguish between
elements and tuples of elements from a set.

2. Orthogonality

Definition 2.1. Let X , Y be A-hyperdefinable sets in some structure
M. We say thatX and Y are orthogonal over A, denotedX ⊥A Y , if for
any tuples a from X and b from Y , the partial type tp(a/A)∪ tp(b/A)
determines tp(ab/A). If A = ∅ it will be omitted.

Remark 2.2. Note that we do not require X (or Y ) to be stably
embedded, i.e. that every hyperdefinable subset of X be hyperdefinable
with parameters in A ∪ X . In a stable theory, every hyperdefinable
subset is stably embedded, but this need not hold in general. We
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shall compensate for the lack of stable embeddedness by restricting
our additionnal parameters to Xheq

A ∪ Y heq
A .2

Example 2.3. If M1 and M2 are two structures and N = M1 ×M2

with a predicate X for M and a predicate Y for N, then X and Y are
orthogonal in N over ∅.

Remark 2.4. If X and Y are orthogonal type-definable sets over A
and Z ⊆ Xk × Y ℓ is relatively A-definable, then Z is a finite union
of rectangles Ai × Bi, where Ai ⊆ Xk and Bi ⊆ Y ℓ are relatively
A-definable.

Proof: For any z = (x, y) ∈ Z we have that

tp(x/A) ∪ tp(y/A) ⊢ (x, y) ∈ Z.

By compactness there are relatively A-definable subsets Az ⊆ Xk in
tp(x/A) and Bz ⊆ Y ℓ in tp(y/A) with Az × Bz ⊆ Z. Again by com-
pactness, finitely many of these rectangles suffice to cover Z. �

Remark 2.5. X ⊥A X if and only if X ⊆ dclheq(A).

Proof: For any x, x′ ∈ X we have

tp(x/A) ∪ tp(x′/A) ⊢ tp(x, x′/A).

If x /∈ dclheq(A) choose x′ ≡A x with x′ 6= x. Then xx′ ≡A xx, a
contradiction. �

For the rest of this section, X and Y will be orthogonal ∅-hyper-
definable sets. We note first that orthogonality is preserved under
adding parameters from Xheq ∪ Y heq, and interpretation:

Proposition 2.6. If X ′ ⊆ Xheq and Y ′ ⊆ Y heq are hyperdefinable over
some parameters A ⊆ Xheq ∪ Y heq, then X ′ ⊥A Y

′.

Proof: Suppose A = (a, b) with a ∈ Xheq and b ∈ Y heq, and consider
tuples a′ ∈ X ′ and b′ ∈ Y ′. Choose representatives ā, ā′ ∈ X of a, a′

and b̄, b̄′ ∈ Y of b, b′. Then tp(āā′) ∪ tp(b̄b̄′) ⊢ tp(āā′b̄b̄′).

Now if a′′ ≡A a
′ and b′′ ≡A b

′, we can find A-conjugates ãā′′ of āā′ and
b̃b̄′′ of b̄b̄′ such that a′′ãā′′ ≡A a

′āā′ and b′′b̃b̄′′ ≡A b
′b̄b̄′. By orthogonality

of X and Y , we obtain ā′′ãb̄′′b̃ ≡ ā′āb̄′b̄, whence a′′ab′′b ≡ a′ab′b, and
thus a′′b′′ ≡A a

′b′. �

2See Proposition 2.6. In a stable theory, X ⊥A Y implies X ⊥B Y for any
B ⊇ A (full orthogonality).
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Proposition 2.7. X is stably embedded in X∪Y : For tuples a ∈ Xheq

and b ∈ Y heq, every ab-hyperdefinable subset X ′ of Xheq is hyperdefin-
able over a.

Proof: If Φ(x, a, b) hyperdefines X ′ and Ψ(y) = tp(b), put

Φ′(x, a) = ∃y [Ψ(y) ∧ Φ(x, a, y)].

Clearly Φ(x, a, b) ⊢ Φ′(x, a). Conversely, suppose a′ |= Φ′(x, a), and
choose b′ |= Ψ with a′ |= Φ(x, a, b′). By orthogonality a′ab ≡ a′ab′,
whence a′ |= Φ(x, a, b), and Φ′(x, a) hyperdefines X ′. �

We put dclheqX (A) = dclheq(A)∩Xheq and bddX(A) = bdd(A)∩Xheq.

Corollary 2.8. Suppose a ∈ Xheq and b ∈ Y heq. Then

dclheqX (a, b) = dclheqX (a) and bddX(a, b) = bddX(a).

Proof: Immediate from Proposition 2.7: If X ′ is a singleton (resp.
bounded) subset of Xheq hyperdefinable over ab containing some ele-

ment e ∈ dclheqX (ab) (resp. e ∈ bddX(ab)), then X ′ is hyperdefinable
already over a. �

3. Weak elimination of hyperimaginaries

In this section, X and Y will be ∅-hyperdefinable sets.

Definition 3.1. Let Z be ∅-hyperdefinable. We say that Z has weak
elimination of hyperimaginaries with respect to Xheq and Y heq if for
every z ∈ Zheq there is some x ∈ bddX(z) and y ∈ bddY (z) with
z ∈ dclheq(xy).

For the rest of this section, X and Y will be orthogonal over ∅.

Theorem 3.2. The set X∪Y has weak elimination of hyperimaginaries
with respect to Xheq and Y heq.

Proof: Consider z ∈ (X ∪Y )heq, say z = (x, y)E for some tuples x ∈ X ,
y ∈ Y and countable equivalence relation E over ∅. For x′ ≡ x consider
the hyperdefinable equivalence relation Ex′ on tp(y) given by

yEx′y
′ ⇔ (x′, y)E(x′, y′).

Then Ex′ is ∅-hyperdefinable by Proposition 2.7, and does not depend
on the choice of x′ ≡ x. Similarly, for y′ ≡ y the equivalence relation

xEy′x
′ ⇔ (x, y′)E(x′, y′)

on tp(x) does not depend on y′ ≡ y. Clearly z ∈ dclheq(xEy′
, yEx′

).
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We claim that xEy′
is bounded over z. If not, there is an indiscernible

sequence (xi, yi : i < ω) in tp(x, y/z) with ¬xiEy′xj for i 6= j. By
orthogonality, for i < j,

tp(xi, xj) ∪ tp(yi, yj) ⊢ tp((xi, yi), (xj , yj)).

But tp(xi, xj) = tp(xi, xk) for i < k < j, whence

tp((xi, yi), (xj, yj)) = tp((xi, yi), (xk, yj)).

Now (xi, yi)E(x, y)E(xj, yj) holds since z = (x, y)E. Hence

(xk, yj)E(xi, yi)E(xj , yj).

Thus xkEy′xj , a contradiction.

Hence xEy′
∈ bddX(z); similarly yEx′

∈ bddY (z). �

Corollary 3.3. For any set A of parameters, bddXY (A) and bddX(A)∪
bddY (A) are interdefinable. Moreover, for aA ⊂ (X ∪ Y )heq we have
tp(a/bddXY (A)) ⊢ tp(a/bdd(A)).

Proof: Clearly bddX(A) ∪ bddY (A) ⊆ bddXY (A).

For the converse inclusion, let z ∈ bddXY (A). By Theorem 3.2 there
is x ∈ bddX(z) and y ∈ bddY (z) with z ∈ dcleq(xy). So

z ∈ dclheq(bddX(bdd(A)), bddY (bdd(A))) = dclheq(bddX(A), bddY (A)).

For the second assertion, let B be a set of representatives for bdd(A)
and F a type-definable equivalence relation such that BF is equiva-
lent to bdd(A). Then equality of E-type over bdd(A) is a bounded
equivalence relation EB type-definable over B, given by

xEBy ⇔
∧

ϕ a B-formula

[(
ϕ(x,B) → ∃y′z [yEy′ ∧BFz ∧ ϕ(y′, z)]

)

∧
(
ϕ(y, B) → ∃x′z [xEx′ ∧ BFz ∧ ϕ(x′, z)]

)]
.

As EB is invariant under any A-automorphism, it is in fact type-
definable over A. By Remark 1.2 the class aEB

is interdefinable with a
tuple

((aAi)Ei
: i ∈ I) ∈ bddXY (A),

where the Ai ⊆ A are countable. Since the partial type (xAi)Ei(aAi)
is in tp(a/bddXY (A)) for all i ∈ I, we get the result. �

Corollary 3.4. IfX ′ ⊂ bdd(X) and Y ′ ⊂ bdd(Y ) are ∅-hyperdefinable,
then X ′ ⊥bddXY (∅) Y

′.



8 FRANK O. WAGNER

Proof: It is clearly sufficient to show X ⊥bddXY (∅) Y
′. Given x ∈ X

and y ∈ Y ′, consider y0 ∈ Y with y ∈ bdd(y0), and put ȳ = bddY (y0).
Now if

x′ ≡bddXY (∅) x and y′ ≡bddXY (∅) y,

choose ȳ′ with ȳ′y′ ≡bddXY (∅) ȳy. As X ⊥bddXY (∅) Y by Lemma 2.6, we
have xȳ ≡bddXY (∅) x

′ȳ′. Since

bddXY (ȳ) ∈ dclheq(bddX(ȳ), bddY (ȳ)) = dclheq(bddX(∅), ȳ)

by Corollary 2.8, we obtain

xbddXY (ȳ) ≡ x′bddXY (ȳ
′) and bddXY (ȳ)y ≡ bddXY (ȳ

′)y′.

(Note that bddXY (∅) is part of the tuples on either side, so we do not
have to work over it.) Choose x′′ with xbddXY (ȳ)y ≡ x′′bddXY (ȳ

′)y′.
Then

x′′bddXY (ȳ
′) ≡ xbddXY (ȳ) ≡ x′bddXY (ȳ

′),

so tp(x′′/bddXY (ȳ
′)) = tp(x′/bddXY (ȳ

′)). By Corollary 3.3 we obtain
tp(x′′/bdd(ȳ′)) = tp(x′/bdd(ȳ′)). As y ∈ bdd(ȳ), we get in particular

x′y′ ≡ x′′y′ ≡ xy.

The result follows. �

Example 3.5. We do need bddXY (∅) in Corollary 3.4, as we might

take X ′ = X × bddY (∅). Then X
′ 6⊥ Y unless bddY (∅) = dclheqY (∅).

4. Internality and analysability

Definition 4.1. Let X and Y be hyperdefinable sets over A. We say
that X is (almost) Y -internal if there is some parameter set B such
that for every a ∈ X there is a tuple b ∈ Y with a ∈ dclheq(Bb) (or
a ∈ bdd(Bb), respectively).3

If the parameters B can be chosen in some set Z, we say that X is
(almost) Y -internal within Z.

We say that X is Y -analysable (within Z) if for all a ∈ X there is a
sequence (ai : i < α) such that tp(ai/A, aj : j < i) is Y -internal (within
Z) for every i < α, and a ∈ bdd(A, ai : i < α).

For the rest of the section, X and Y will be hyperdefinable orthogonal
sets over ∅.

3In simplicity theory, this is called finite generation; for internality we would
require for every a ∈ X the existence of some B |⌣A

a and tuple b ∈ Y with

a ∈ dclheq(Bb).
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Proposition 4.2. If an ∅-hyperdefinable set X ′ is X-analysable within
X∪Y , then X ′ is almost X-internal within bddY (∅); if X

′ is X-internal
within X ∪ Y , then X ′ is X-internal within bddY (∅).

Proof: We first show that if X ′ is (almost) X-internal within X ∪ Y ,
then it is (almost) X-internal within bddY (∅). So suppose ā ∈ X and
b̄ ∈ Y are such that for every cE ∈ X ′ there is a tuple a ∈ X with
cE ∈ bdd(āb̄a). Let Φ(x, āb̄a) be the E-type tp(cE/āb̄a). Then for
every symmetric formula ψ(x, y) ∈ E there is nψ < ω such that a
maximal ψ-antichain in Φ has size nψ, and a formula φψ(x, āb̄a) ∈ Φ
such that every ψ-antichain in φψ has size at most nψ. Consider the
type-definable relation F on tp(āb̄a) given by

(ā′b̄′a′)F (ā′′b̄′′a′′) ⇔
∧

ψ∈E

[
∀x

(
φψ(x, ā

′b̄′a′) → ∃x′[Φ(x′, ā′′b̄′′b′′) ∧ xψ2x′]
)

∧ ∀x′
(
φψ(x

′, ā′′b̄′′a′′) → ∃x[Φ(x, ā′b̄′b′) ∧ xψ2x′]
)]
,

where xψ2x′ means ∃x′′ [ψ(x, x′′) ∧ ψ(x′′, x′)]. Then (ā′b̄′a′)F (ā′′b̄′′a′′)
holds if and only if Φ(x, ā′b̄′a′) and Φ(x, ā′′b̄′′a′′) contain the same points
modulo E: If they contain the same points modulo E, for every ψ
in E let (xi : i < nψ) be a ψ-antichain in Φ(x, ā′b̄′a′), and choose
(x′i : i < nψ) in Φ(x, ā′′b̄′′a′′) with xiEx

′
i for all i < nψ. Then whenever

x satisfies φψ(x, ā
′b̄′a′) there is i < nψ with ψ(x, xi), whence xψ

2x′i.
By symmetry the converse also holds, so (ā′b̄′a′)F (ā′′b̄′′a′′). On the
other hand, if there is x such that Φ(x, ā′b̄′a′) but ¬xEx′ for all x′ with
Φ(x′, ā′′b̄′′a′′), by compactness there is ψ′ ∈ E such that ¬ψ′(x, x′) for
all x′ with Φ(x′, ā′′b̄′′a′′). Then any ψ ∈ E with ψ2 ⊢ ψ′ witnesses
¬(ā′b̄′a′)F (ā′′b̄′′a′′).

It follows that F is an equivalence relation, and any automorphism
fixes (āb̄a)F if and only if it permutes the set C ⊂ X ′ of E-classes
in Φ(x, āb̄a). In particular (āb̄a)F ∈ dclheq(C) and C ⊆ bdd((āb̄a)F ),
whence in particular cE ∈ bdd((āb̄a)F ). Moreover, if X ′ is X-internal,
then C = {cE} and cE ∈ dclheq(āb̄a)F ).

By weak elimination of hyperimaginaries, there is ã ∈ bddX((āb̄a)F )

and b̃ ∈ bddY ((āb̄a)F ) with (āb̄a)F ∈ dclheq(ãb̃). Thus we are done if

we can show b̃ ∈ bddY (∅).

Suppose b̃ /∈ bddY (∅). Then there is an ∅-conjugate b̃′ of b̃ outside
bdd(āb̄); if σ is an automorphism mapping b̃′ to b̃, put ā′b̄′ = σ(āb̄).

Then b̃ /∈ bdd(ā′b̄′). On the other hand, since ā′b̄′ ≡ āb̄, for every e ∈ C
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there is ae ∈ X with e ∈ bdd(ā′b̄′ae). Therefore

b̃ ∈ bddY ((āb̄a)F ) ⊆ bddY (C) ⊆ bddY (ā
′, b̄′, ae : e ∈ C),

whence b̃ ∈ bddY (b̄
′) by Corollary 2.8, a contradiction.

Now assume that x ∈ X ′ and (xi : i < α) is an X-analysis of x
within X ∪ Y . We show inductively on i ≤ α that tp(xj : j < i) is
X-internal within bddY (∅). So suppose tp(xj : j < k) is X-internal
within bddY (∅) for all k < i. If i is limit, then clearly tp(xj : j < i)
is X-internal within bddY (∅). If i = k + 1, then by the result for
internality tp(xk/xj : j < k) is X-internal within bddY (xj : j < k) and
there is a ∈ X with

xk ∈ dclheq(a, bddY (xj : j < k), xj : j < k).

Or, by X-internality of tp(xj : j < k) within bddY (∅) there is a′ ∈ X

with (xj : j < k) ∈ dclheq(a′, bddY (∅)). Then by Corollary 2.8

bddY (xj : j < k) ⊆ bddY (a
′, bddY (∅)) = bddY (∅),

and xk ∈ bdd(a, a′, bddY (∅)). So tp(xj : j < i) is X-internal within
bddY (∅), and tp(x) is almost X-internal within bddY (∅). �

Corollary 4.3. Let X ′ and Y ′ be ∅-hyperdefinable. If X ′ is almost
X-internal within X ∪ Y and Y ′ is almost Y -internal within X ∪ Y ,
then X ′ ⊥bddXY (∅) Y

′.

Proof: Proposition 2.6 and Corollary 3.3 yield X ⊥bddXY (∅) Y . By
Proposition 4.2 we have

X ′ ⊂ bdd(X, bddXY (∅)) and Y ′ ⊂ bdd(Y, bddXY (∅)).

Hence X ′ ⊥bddXY (∅) Y
′ by Corollary 3.4. �

Corollary 4.4. If an ∅-hyperdefinable set Z is almost X- and almost
Y -internal within X ∪ Y , then it is bounded.

Proof: We have Z ⊥bddXY (∅) Z by Corollary 4.3, so Z is bounded by
Remark 2.5. �

Corollary 4.5. If Z ⊆ (X ∪ Y )heq is ∅-hyperdefinable and almost X-
internal within X ∪ Y , then it is X-internal within bddY (∅).

Proof: Let z ∈ Z. By weak elimination of hyperimaginaries there is
x ∈ bddX(z) and y ∈ bddY (z) with z ∈ dclheq(xy). Then tp(y) is
Y -internal since y ∈ Y heq, but also almost X-internal, as y ∈ bdd(z)
and tp(z) is almost X-internal. So y ∈ bddY (∅) by Corollary 4.4. �

Again Example 3.5 shows that we need bddY (∅) in Corollaries 4.3
and 4.5.
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5. Local simplicity

Definition 5.1. Let A ⊆ B, and π(x,B) be a partial type over B. We
say that π(x,B) does not divide over A if for any indiscernible sequence
(Bi : i < ω) in tp(B/A) the partial type

⋃

i<ω

π(x,Bi)

is consistent. Clearly, tp(a/B) divides over A if and only if tp(a0/B)
does so for some finite subtuple a0 ⊆ a.

Example 5.2. If tp(a) ⊥ tp(b), then tp(a/b) does not divide over ∅.

We now define the appropriate version of local rank. We follow Ben
Yaacov’s terminology [1, Definition 1.4], more general than [7, Definiton
4.3.5].

Definition 5.3. Let π(x), Φ(x, y) and Ψ(y1, . . . , yk) be partial types
in (at most) countably many variables.

(1) Ψ is a k-inconsistency witness for Φ if

|= ∀y1 . . . yk ¬∃x [Ψ(y1, . . . , yk) ∧
k∧

i=1

Φ(x, yi)].

(2) Let Ψ be a k-inconsistency witness for Φ. The local (Φ,Ψ)-rank
D(.,Φ,Ψ) is defined on partial types in x as follows:

• D(π(x),Φ,Ψ) ≥ 0 if π(x) is consistent.
• D(π(x),Φ,Ψ) ≥ n + 1 if there is a sequence (ai : i < ω)
such that |= Ψ(ā) for any k-tuple ā ⊂ (ai : i < ω), and
D(π(x) ∧ Φ(x, ai),Φ,Ψ) ≥ n for all i < ω.

If D(π,Φ,Ψ) ≥ n for all n < ω, we put D(π,Φ,Ψ) = ∞.

An inconsistency witness is a k-inconsistency witness, for some k < ω.

Remark 5.4. Note that D(π(x, a),Φ,Ψ) ≥ n is a closed condition
on a, and D(tp(x/a),Φ,Ψ) ≥ n is a closed condition on x over a. By
compactness and Ramsey’s theorem, we may require (ai : i < ω) to be
indiscernible in Definition 5.3 (2).

Lemma 5.5. Let Ψ be an inconsistency witness for Φ, and π a partial
type over A. Then D(π,Φ,Ψ) is infinite if and only if for every linear

order I there are elements (bi, a
j
i : i ∈ I, j < ω) such that |= Ψ(ā) for

all ā ⊂ (aji : j < ω) of the right length, bi |= π ∧
∧
k≤iΦ(x, a

0
k), and

(aji : j < ω) is indiscernible over A ∪ {bka
0
k : k < i}, for all i ∈ I.

Moreover, we may require (bia
0
i : i ∈ I) to be indiscernible.
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Proof: If the condition is satisfied, we can take I = ω. Then for all
n ∈ ω the partial type π ∧

∧
i≤nΦ(x, a

0
i ) is satisfied by bn and hence

non-empty. So

D(π,Φ,Ψ) > D(π ∧ Φ(x, a00),Φ,Ψ) > D(π ∧ Φ(x, a00) ∧ Φ(x, a01),Φ,Ψ)

> · · · > D(π ∧ Φ(x, a00) ∧ · · · ∧ Φ(x, a0n),Φ,Ψ) ≥ 0.

Hence D(π,Φ,Φ) > n for all n < ω, and D(π,Φ,Ψ) = ∞.

For the converse, by compactness it is sufficient to consider finite I.
We show by induction that if D(π,Φ,Ψ) ≥ n, then the condition is
satisfied for I of size n. For n = 0 there is nothing to show. Suppose
D(π,Φ,Ψ) ≥ n+1. Then by definition there is a sequence (aj0 : j < ω)
whose subsequences satisfy Ψ, and such that D(π∧Φ(x, a0),Φ,Ψ) ≥ n
for all j < ω. By Remark 5.4 we may assume that (aj0 : j < ω) is
indiscernible over A. Choose b0 |= π∧Φ(x, a00). By inductive hypothesis
for the partial type π∧Φ(x, a00) over A∪{b0, a

0
0}, there are (bi, a

j
i : 1 ≤

i ≤ n, j < ω) such that |= Ψ(ā) for all ā ⊂ (aji : j < ω) of the right
length,

bi |= π ∧ Φ(x, a00) ∧
∧

1≤k≤i

Φ(x, a0k),

and (aji : j < ω) is indiscernible over A∪ {b0, a
0
0}∪ {bk, a

0
k : 1 ≤ k < i},

for all 1 ≤ i ≤ n, as required.

The final assertion follows by compactness and Ramsey’s theorem.
�

Definition 5.6. Let I be an ordered set. A sequence I = (ai : i ∈ I)
is independent over A, or A-independent, if tp(ai/A, aj : j < i) does
not divide over A for all i ∈ I. If A ⊆ B and p ∈ S(B), the sequence
(ai : i ∈ I) is a Morley sequence in p over A if it is B-indiscernible,
ai |= p and tp(ai/B, aj : j < i) does not divide over A for all i ∈ I. If
A = B, we simply call it a Morley sequence in p.

Fact 5.7. [7, Corollary 3.2.5] or [5, Proposition 16.12] If tp(b/cd) does
not divide over d and tp(a/cbd) does not divide over bd, then tp(ab/cd)
does not divide over d.

For the rest of the section we fix a hyperdefinable set X over ∅. We
call a type p(x) an X-type if it implies x ∈ X .

The following theorem generalizes [7, Theorem 2.4.7] to the local
hyperdefinable context. Note that in the classical development the
forking properties for hyperimaginaries are deduced from the corre-
sponding properties for representatives. Here we cannot do this, as
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the ambient theory may well not be simple. So we have to work with
hyperimaginaries in X throughout.

Theorem 5.8. The following are equivalent:

(1) Symmetry holds on X: For all a, b, c ∈ X, tp(a/bc) does not
divide over b if and only if tp(c/ab) does not divide over b.

(2) Transitivity holds on X: If a, b, c, d ∈ X, then tp(a/bcd) does
not divide over b if and only if tp(a/bc) does not divide over b
and tp(a/bcd) does not divide over bc.

(3) Local character holds on X: There is κ such that for all count-
able a ∈ X and A ⊂ X there is A0 ⊆ A with |A0| ≤ κ such that
tp(a/A) does not divide over A0. In fact, we can take κ = 2|T |.

(4) D(.,Φ,Ψ) < ∞ for any partial X-type Φ(x, y) and inconsis-
tency witness Ψ for Φ.

(5) For any A ⊆ B ⊂ X, a partial X-type π(x,B) does not divide
over A if and only if there is a Morley sequence I in tp(B/A)
such that {π(x,B′) : B′ ∈ I} is consistent.

If any of these conditions is satisfied, then for all A ⊆ B ⊂ X and
a ∈ X the type tp(a/B) does not divide over A if and only if

D(tp(a/B),Φ,Ψ) = D(tp(a/A),Φ,Ψ)

for all (Φ,Ψ). Moreover, Extension holds on X: For any partial X-
type π(x) over B, if π does not divide over A then it has a completion
which does not divide over A.

Proof: (1) ⇒ (2) Clearly, if tp(a/bcd) does not divide over b, it does not
divide over bc and tp(a/bc) does not divide over b. Conversely, suppose
that tp(a/bcd) does not divide over bc and tp(a/bc) does not divide
over b. By symmetry, tp(d/abc) does not divide over bc and tp(c/ab)
does not divide over b. By Fact 5.7 tp(cd/ab) does not divide over b,
so again by symmetry tp(a/bcd) does not divide over b.

(2) ⇒ (4) Suppose there is a partial X-type Φ and an inconsistency
witness Ψ for Φ such thatD(x = x,Φ,Ψ) = ∞. Put I = {±1,±(1+ 1

n
) :

n > 0} and choose a sequence (bi, a
j
i : i ∈ I, j < ω) as given by Lemma

5.5. Let A− = {bia
0
i : i < −1} and A+ = {bia

0
i : i > 1}. Then

tp(b1/A
−A+) does not divide over A− and tp(b1/A

−A+a−1) does not
divide over A−A+, since the former is finitely satisfiable in A− and the
latter in A+. However, (aj−1 : j < ω) witnesses that Φ(x, a−1), and
hence tp(b1/A

−A+a−1), divides over A
−, contradicting transitivity.

(4) ⇒ (3) Assume (4). First, we note that for A ⊆ B ⊂ X , if

D(tp(a/B),Φ,Ψ) = D(tp(a/A),Φ,Ψ)
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for all (Φ,Ψ), then tp(a/B) does not divide over A. This is obvious,
as if some A-indiscernible sequence (Bi : i < ω) in tp(B/A) witnesses
dividing, we can take Φ(x, y) = tp(a, B) and Ψ = tp(B1, B2, . . . , Bn)
for n < ω sufficiently large. Then Ψ is an n-inconsistency witness
(clearly, we may restrict to countable B), and

D(tp(a/B),Φ,Ψ) < D(tp(a/A),Φ,Ψ).

Given tp(a/A) it is hence enough to take A0 ⊆ A big enough such that

D(tp(a/A),Φ,Ψ) = D(tp(a/A0),Φ,Ψ)

for all (Φ,Ψ). There are only 2|T | such pairs, so we need at most that
many parameters.

(3) ⇒ (4) Suppose D(x = x,Φ,Ψ) = ∞. Then for any cardinal κ we
can find an indiscernible sequence (bi, a

j
i : i ≤ κ+, j < ω) as in Lemma

5.5. Since Φ(x, a0i ) divides over {a0j : j < i} for all i ≤ κ+, the type

tp(bκ+/a
0
i : i < κ+) divides over any subset of its domain of cardinality

≤ κ.

(4) ⇒ (5). Assume (4). Given aE ∈ X and A ⊆ B = bE ⊂ X , for
any pair (Φ,Ψ) and any formula ϕ(y, b) we can adjoin either

∃yz [xEy ∧ zEb ∧ ϕ(y, z)] or ∃yz [xEy ∧ zEb ∧ ¬ϕ(y, z)]

and preserve D(.,Φ,Ψ)-rank. By compactness we can thus complete
tp(aE/A) to an E-type p over B of the same D(.,Φ,Ψ)-rank. In partic-
ular, no Φ-instance in p divides over A with Ψ as inconsistency witness.
Coding finitely many pairs (Φi,Ψi : i < n) in a single one, one obtains
an extension p such that no Φi-instance Ψi-divides for any i < n; by
compactness we can do this for all pairs (Φ,Ψ) simultaneously and ob-
tain an extension which does not divide over A. Take B = XM ⊃ A for
some sufficiently saturated model M. Then a sequence (ai : i < ω) ⊂ B
such that ai |= p ↾(A,aj :j<i) is a Morley sequence in tp(a/A).

This shows in particular that if π(x,B) does not divide over A, then
there is a Morley sequence I in tp(B/A) such that {π(x,B′) : B′ ∈ I}
is consistent.

Conversely, suppose that π(x,B) divides over A, as witnessed by an
A-indiscernible sequence (Bi : i < ω) in tp(B/A) with

⋃
i<ω π(x,Bi)

inconsistent. Take any Morley sequence I in tp(B/A). By [7, Corollary
2.2.8] (which is shown there for real tuples, but transfers easily to
hyperimaginaries) we may assume that Bî I is A-conjugate to I for
all i ∈ I and that (Bi : i < ω) is indiscernible over AI. If π̄(x) =
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⋃
B′∈I π(x,B

′) were consistent, then (Bi : i < ω) would witness that

D(π̄(x) ∧ π(x,B0), π(x, y),Ψ) < D(π̄(x), π(x, y),Ψ)

for some inconsistency witness Ψ. But by A-conjugacy the two ranks
must be equal, a contradiction.

(5) ⇒ (1) Let us first show Extension. If A ⊆ B ⊂ X and π(x,B)
is a partial X-type which does not divide over A, let (Bi : i < α)
be a very long Morley sequence in tp(B/A). Consider any realization
a |=

∧
i<α π(x,Bi). Since α is large, there is an infinite subset J ⊂ α

such that tp(Bi/aA) is constant for i ∈ J . Put p(x) = tp(a/AB), a
completion of π. Then (Bi : i ∈ J) witnesses that p does not divide
over A.

Now given a, b, c ∈ X such that tp(a/bc) does not divide over b,
let B = XM ∋ bc for some sufficiently saturated model M, and p an
extension of tp(a/bc) to B which does not divide over b. Choose a
sequence (ai : i < ω) ⊂ B such that ai |= p ↾(bc,aj :j<i). This is a Morley
sequence in tp(a/bc) over b. Then (ai : i < ω) is a Morley sequence
in tp(a/b), and ai |= tp(a/bc) for all i < ω. Hence tp(c/ba) does not
divide over b, and symmetry holds.

Finally we show that if (1)− (5) hold and tp(a/B) does not divide
over A for A ⊆ B ⊂ X and a ∈ X , then D(tp(a/A),Φ,Ψ) ≥ n implies
D(tp(a/B),Φ,Ψ) ≥ n for all (Φ,Ψ). For n = 0 this is obvious. So sup-
pose D(tp(a/A),Φ,Ψ) ≥ n+1. Then there is (di : i < ω) indiscernible
over A such that d̄ |= Ψ for all d̄ ⊂ (di : i < ω) of the right length, and
D(tp(a/A) ∧ Φ(x, di),Φ,Ψ) ≥ n for all i < ω. Let q be a completion
of tp(a/A) ∧ Φ(x, d0) with D(q,Φ,Ψ) ≥ n. Clearly, we may assume
a |= q, and that tp(d0/aB) does not divide over aA. As tp(a/B) does
not divide over A, by symmetry and transitivity tp(ad0/B) does not
divide over A, and tp(a/d0B) does not divide over d0A. By induction
hypothesis,

D(tp(a/d0A),Φ,Ψ) ≥ n implies D(tp(a/d0B),Φ,Ψ) ≥ n.

As tp(d0/B) does not divide over A and (di : i < ω) is A-indiscernible,
we may assume that it remains indiscernible over B. But then it wit-
nesses

D(tp(a/B),Φ,Ψ) ≥ D(tp(a/d0B),Φ,Ψ) + 1 ≥ n + 1. �

Definition 5.9. An A-hyperdefinable set X is simple (over A) if it
satisfies any of the conditions of Theorem 5.8 when we adjoin A to the
language. If X is simple over A and a, b, c ∈ X , we shall say that a
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and c are independent over Ab, written a |⌣Ab
c, if tp(a/Abc) does not

divide over Ab.

Note that we only allow tuples and parameters from A ∪X . If X is
stably embedded, we can of course allow parameters from anywhere. It
is immediate from the definition that if X is simple over A and B ⊂ X ,
then X is simple over AB.

Remark 5.10. If X is merely hyperdefinable, it may be simple al-
though no definable or even type-definable imaginary set in the ambient
structure is simple.

If X is simple, it is now standard to extend the notions of divid-
ing and independence to hyperimaginaries in Xheq

A . Moreover, we can
develop basic simplicity theory (canonical bases, the independence the-

orem, stratified ranks, generic types, stabilizers, see [5, 7]) within Xheq
A ,

replacing models M by subsets Xheq
A ∩Mheq.

Proposition 5.11. Let X and Y be orthogonal ∅-hyperdefinable sets
such that X is simple over ∅. If A ⊂ Y is a set of parameters, then
X is simple over A, and over bddY (A). In particular, let Z be a set
hyperdefinable over some parameters A ⊂ X ∪ Y . If Z is X-internal
within X ∪ Y , then Z is simple over A; if Z ⊆ (X ∪ Y )heq is almost
X-internal, then Z is simple as well.

Proof: Simplicity over A is obvious from orthogonality; simplicity
over bddY (A) follows. Now if Z is X-internal within X ∪ Y , then

Z ⊂ Xheq

bddY (A) by Proposition 4.2, and must be simple as well; if

Z ⊆ (X ∪ Y )heq is almost X-internal within X ∪ Y , it is X-internal
within bddY (A) by Corollary 4.5. �

6. A hyperdefinable version of Schlichting’s Theorem

Recall that Schlichting’s Theorem [6], generalized by Bergman and
Lenstra [3], states that if H is a family of uniformly commensurable
subgroups of a group G, then there is a subgroup N commensurable
with all groups in H (in fact a finite extension of a finite intersections
of groups in H) which is invariant under all automorphisms of G which
fix H setwise. Here two subgroups H and K are commensurable if their
intersection has finite index in both H and in K; uniformly commen-
surable means that there is a finite bound on these indices as H and
K vary inside H.
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For families of hyperdefinable groups in a simple theory this has
been shown in [7, Theorem 4.5.13], generalizing a result of Hrushovski
for theories of finite and definable S1-rank. Here we shall show it for
hyperdefinable families of commensurable subgroups in any theory.

We shall call two hyperdefinable subgroups G and H commensu-
rable if the index of their intersection in both G and in H is bounded,
i.e. less than the cardinality κ of the monster model. If G is a hy-
perdefinable group, a hyperdefinable family of subgroups is a family
H = {Ha : a |= π} for some partial types π(y) and Φ(x, y) such that
Ha = {x ∈ G :|= Φ(x, a)} is a subgroup of G for any a |= π. Note that
a hyperdefinable family of commensurable subgroups is automatically
uniformly commensurable by compactness.

Theorem 6.1. Let G be a hyperdefinable group, H a hyperdefinable
family of commensurable subgroups, and Γ a hyperdefinable group of
automorphisms of G stabilizing H setwise. Then there is a Γ-invariant
hyperdefinable subgroup N commensurable with any group in H; more-
over N is invariant under any model-theoretic automorphism stabilising
H.

Proof: As H is Γ-invariant, we can suppose that the partial type defin-
ing the groups H ∈ H is stratified by Γ, i.e. that

H = {Φ(γx, a) : γ |= Γ, a |= π}.

Note that the same group in H can be given by different pairs (γ, a).

Enumerate Φ = {φi : i < α} for some ordinal α; for i < α put

ψi(x, x
′, y, ζ) = ∃z [z ∈ ζ(x−1x′) ∧ ¬φi(z, y)].

This is (equivalent to) a partial type. As H is a hyperdefinable family
of commensurable subgroups, by compactness for every i < α there is
ni such that for any H ∈ H and (γ, a) |= Γ × π there is no complete
ψi(x, x

′, a, γ)-subgraph in H of size ni. If K is a bounded intersection
of in H, we put i(K, a, γ) = (ki : i < α), where ki ≤ ni is the size of a
maximal complete ψi(x, x

′, a, γ)-subgraph in K, and call this the index
of Ha,γ in K. Clearly, for K0 ≤ K1 we have i(K0, a, γ) ≤ i(K1, a, γ),
and equality holds if and only if K0Hγ,a = K1Hγ,a. We order the set
of indices lexicographically.

By compactness, for every bounded intersection K of groups in H

there is some maximal index i such that for some (γ, a) |= Γ × π we
have i = i(K, a, γ); call this the index i(K) of K. Since for γ′ ∈ Γ and
(γ, a) |= Γ× π we have

i(γ′K, a, γγ′−1) = i(K, a, γ),
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we obtain i(K) = i(γK). As the set of indices is bounded and i(K0) ≤
i(K1) for K0 ≤ K1, there is some bounded intersection K of groups in
H such that i(K) is minimal possible, say i0. We shall call K strong if
i(K) = i0.

If K is strong, we put

H(K) = {H ∈ H : ∃ (γ, a) |= Γ× π [H = Hγ,a ∧ i(K, a, γ) = i0]}.

Then γ′K is also strong for any γ′ ∈ Γ, and

H(γ′K) = {Ha′,γγ′−1 : Ha′,γ ∈ H(K)} = γ′(H(K)).

Now for H ∈ H(K) the set
⋂
g∈K(KH)g is a subgroup of G contain-

ing K; it is hyperdefinable, as we only have to conjugate by a set of
representatives of K/H , which is bounded. Then

N(K) =
⋂

H∈H(K)

⋂

g∈K

(KH)g

is a subgroup of G containing K; it is hyperdefinable as it contains K
and must have bounded index in

⋂
g∈K(KH)g for any H ∈ H(K), so is

a bounded intersection.

Now if K1 is strong and K0 ≤ K1, then K0 is again strong and
H(K0) ⊆ H(K1). Moreover K0H = K1H for any H ∈ H(K0), whence

⋂

g∈K0

(K0H)g =
⋂

g∈K1

(K1H)g,

and

K1 ≤ N(K1) ≤ N(K0) ≤ K0H = K1H.

It follows that there is an absolute bound on the index |N(K) : K1|,
independent of the choice of strong K. As for strong (Ki : i ∈ I)
the intersection

⋂
i∈I Ki is again strong, there is some strong K such

that N = N(K) is maximal possible. Then N is hyperdefinable, com-
mensurable with all groups in H, and invariant under Γ and all model-
theoretic automorphisms stabilizing H setwise. �

Corollary 6.2. Let G be a hyperdefinable group, and H a subgroup
commensurable with all its G-conjugates. Then there is a normal hy-
perdefinable subgroup N commensurable with H.

Proof: We apply Theorem 6.1 to the family H of G-conjugates of H ,
with the action of Γ = G by conjugation. �
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7. Groups interpretable in orthogonal sets

Recall that two hyperdefinable subgroups H1 and H2 of some group
G are commensurable if H1 ∩H2 has bounded index both in H1 and in
H2.

Theorem 7.1. Suppose X and Y are orthogonal ∅-hyperdefinable sets
in a structure M, and G is an ∅-hyperdefinable group in (X ∪ Y )heq.
If X is simple over ∅, there is an ∅-hyperdefinable normal X-internal
subgroup N of G such that the quotient G/N is Y -internal. N is unique
up to commensurability.

Proof: Let us first show uniqueness: If N ′ is a second such group,
then N/(N ∩N ′) and N ′/(N ∩N ′) are X-internal and Y -internal, and
hence bounded by orthogonality of X and Y . Thus N and N ′ are
commensurable.

By Theorem 3.2 every element g ∈ G is of the form (gX , gY )E for
some gX ∈ Xheq and gY ∈ Y heq, both bounded over g, and some type-
definable equivalence relation E with bounded classes, depending on
tp(g). Hence tp(g/gY ) is X-internal and tp(g/gX) is Y -internal. Now
if h = (hX , hY )E and gh = ((gh)X, (gh)Y )E , then

(gh)X ∈ bddX(gX , gY , hX , hY ),

whence (gh)X ∈ bddX(gX , hX) by Corollary 2.8. Similarly (gh)Y ∈
bddY (gY , hY ).

NowX is simple, as is tp(g, h/gY , hY ) for any g, h ∈ G by Proposition
5.11. Hence we can consider g, h ∈ G such that g |⌣gY ,hY

h. Then for

any stratified local rank D

(†)
D(gh/(gh)Y ) ≥ D(gh/(gh)Y , gY , hY , g) = D(h/gY , hY , g)

= D(h/gY , hY ) = D(h/hY ),

where the first equality holds as (gh)Y ∈ bddY (gY , hY ), and the last
equality follows from h |⌣hY

gY by orthogonality (Example 5.2). Simi-

larly

D(gh/(gh)Y ) ≥ D(g/gY ).

Now suppose G is a subset of (Xm × Y n)/E, where m,n are at most
countable. Then if g = (x̄g, ȳg)E ∈ G, we have g |⌣gY

ȳg by X-

internality of tp(g/gY ) and orthogonality, and gY ∈ bdd(ȳg), whence
D(g/gY ) = D(g/ȳg). By compactness, there is a G-type p((x̄, ȳ)E) im-
plying that D((x̄, ȳ)E/ȳ) is maximal for all local stratified ranks. But
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if g, h |= p with g |⌣gY ,hY
h, then we must have equality in (†). There-

fore g, h and gh are pairwise independent over gY , hY , (gh)Y . Put
A = (gY , hY , (gh)Y ). Then X ′ = tp(g/A) is X-internal and simple, as
is X ′X ′−1. We may therefore define

S0 = {g ∈ G : ∃x (x ≡lstp
A gx ≡lstp a ∧ x |⌣

A

g ∧ gx |⌣
A

g} ⊆ X ′X ′−1

and the stabilizer S = stab(g/A) = S2
0 , an X-internal hyperdefinable

subgroup of G.

Now [4, Lemme 1.2] (see [4, Remarque 1.3] for the extension from
the stable to the simple context) states that whenever g, h and gh are
pairwise independent over A, then g is generic in the coset Sg, and this
coset is hyperdefinable over bdd(A).

By orthogonality, g |⌣gY
hY , (gh)Y . This implies in particular

D(S) = D(Sg) = D(g/gY , hY , (gh)Y ) = D(g/gY ) = D(p).

Suppose that S is not commensurable with Sh for some h ∈ G. Then
SSh is still X-internal, with

D(SSh) ≥ D(S) = D(p)

for every stratified local rank D, and for at least one such rank D0 we
have D0(SS

h) > D0(p). Choose g′ ∈ SSh with D0(g
′/h) = D0(SS

h).
By pre-multiplying with a generic element of S and post-multiplying
with a generic element of Sh, the inequality (†) implies that we may
assume D(g′/h) ≥ D(p) for every stratified local rank D. However,
tp(g′/h) is X-internal, so g′Y ∈ bddY (g

′) implies g′Y ∈ bddY (h) by
Lemma 2.8 and Proposition 4.2. Thus

D(g′/g′Y ) ≥ D(g′/h) ≥ D(p) and D0(g
′/g′Y ) ≥ D0(g

′/h) > D0(p),

contradicting our choice of p. Hence S is commensurable with all its
conjugates. By Corollary 6.2 there is a hyperdefinable normal subgroup
N of G commensurable with S. So N is X-internal, and D(N) =
D(S) = D(p) for all stratified local ranks D. Now the same proof, with
NZ instead of SSh, shows that if Z is an X-internal hyperdefinable
subset of G, then Z is covered by boundedly many cosets of N . In
particular, for any g′ ∈ G the type tp(g′/g′Y ) is covered by boundedly
many cosets of N . But then g′N ∈ bdd(g′Y ), and G/N is almost Y -
internal, whence Y -internal by Corollary 4.5. �

Corollary 7.2. Suppose X and Y are orthogonal type-definable sets
over ∅ in a structure M, and G is a type-interpretable group over ∅
in (X ∪ Y )eq. If X is simple over ∅, there is a normal X-internal
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subgroup N of G type-interpretable over ∅, such that the quotient G/N
is Y -internal. N is unique up to commensurability. If X is definable
and supersimple, then we can take N relatively interpretable.

Proof: The first part is obvious from Theorem 7.1, as a hyperdefinable
subgroup of a type-interpretable group is again type-interpretable.

If X is definable and supersimple, N must be contained in a de-
finable X-internal set X̄ by [7, Lemma 3.4.17]; note that X̄ will also
be supersimple. So N is the intersection of definable supergroups by
[7, Theorem 5.5.4], one of which, say N0, must be contained in X̄ by
compactness. Then N0 is X-internal. As above, N0 must be com-
mensurable with all its G-conjugates; moreover, commensurability is
uniform by compactness (or [7, Lemma 4.2.6]). By [7, Theorem 4.2.4]
there is a relatively interpretable normal subgroup N̄ commensurable
with N0. So N̄ is X-internal, and G/N̄ is Y -internal. �

Question 7.3. If X and Y are orthogonal type-definable sets (or even
definable sets), X is simple and G is a relatively definable group in
(X∪Y )eq, can we find a relatively definable normalX-internal subgroup
N such that G/N is Y -internal?

Question 7.4. What can we say if neither X nor Y is simple? Is it true
that in every hyperdefinable subgroup of ((X∪Y )heq there is a maximal
normal hyperdefinable X-internal subgroup NX , a maximal normal
hyperdefinable Y -internal subgroup NY , an X-internal hyperdefinable
local group GX , a Y -internal hyperdefinable local group GY and a
hyperdefinable locally bounded equivalence relation E on GX×GY such
that G/(NXNY ) is isogenous, or even isomorphic, to (GX ×GY )/E ?
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