THE RIGHT ANGLE TO LOOK AT ORTHOGONAL SETS

FRANK O. WAGNER

ABSTRACT. If X and Y are orthogonal hyperdefinable sets such that X is simple, then any group G interpretable in $X \cup Y$ has a normal hyperdefinable X-internal subgroup N such that G/N is Y-internal; N is unique up to commensurability. In order to make sense of this statement, local simplicity theory for hyperdefinable sets is developed.

INTRODUCTION

Two definable sets X and Y in some structure are said to be *orthogonal* if every definable subset of $X \times Y$ is a finite union of *rectangles*, i.e. of subsets of the forme $U \times V$ with $U \subseteq X$ and $V \subseteq Y$ definable. It easily follows that if X and Y are orthogonal groups, every definable subgroup of $X \times Y$ is of the form $U \times V$ with $U \leq X$ and $V \leq Y$ subgroups. However, the situation is considerably more complicated for a group G definable, or more generally interpretable, in $X \cup Y$, as it need not be the sum of a group interpretable in X and a group interpretable in Y. In fact, an example by Berarducci and Mamino [2, Example 1.2] shows that G need not have any subgroup interpretable in either X or Y. However, they prove [2, Theorem 7.1] that if X is superstable of finite and definable Lascar rank, then any group G interpretable in $X \cup Y$ has a normal subgroup N interpretable in X, such that G/N is interpretable in Y.

In this paper we shall generalize their result to the case where X is merely simple. In this context, definability has to be replaced by type-definability, as even for a definable group the tools of simplicity theory in general only yield type-definable subgroups. In fact, we even have to study *hyperdefinable* groups, since the quotient G/N, for N

²⁰⁰⁰ Mathematics Subject Classification. 03C45.

Key words and phrases. orthogonality; simplicity; internality.

Partially supported by ANR-09-BLAN-0047 Modig and ANR-13-BS01-0006 ValCoMo.

type-definable, will be of that form. We therefore put ourselves in the hyperdefinable context and assume right from the start that our orthogonal sets X and Y are merely hyperdefinable. To this end, we shall include a quick development of local simplicity theory for hyperdefinable sets in section 4.

Another problem is that of parameters. The usual hypothesis would be that of *stable embedding*, i.e. that every hyperdefinable subset of X is hyperdefinable with parameters in X. We shall circumvent this issue by only ever considering parameters from $X \cup Y$, as orthogonality automatically yields stable embeddedness of X and of Y in $X \cup Y$.

We shall work in a big κ -saturated and strongly κ -homogeneous monster model \mathfrak{M} , where κ is bigger than any cardinality we wish to consider. We shall not usually distinguish between elements and tuples.

1. Orthogonality

Definition 1.1. A set X is hyperdefinable over some parameters A if it is of the form Y/E, where Y is a type-definable set in (at most) countably many variables and E a type-definable equivalence relation on Y, both with parameters in A. For an element $y \in Y$ we denote the class of y modulo E by y_E . If $y = (y_0, \ldots, y_n)$ is a tuple, we put $y_E = ((y_0)_E, \ldots, (y_n)_E)$; similarly, we write yEz if y_iEz_i for all $i \leq n$.

For a tuple y_E in X and some parameters $B \supseteq A$, the type $\operatorname{tp}(y_E/B)$ is given by all partial types over B of the form

$$\exists z \in Y \ [zEy \land \varphi(z)]$$

true of y. It is easy to see that (in the monster model) two tuples in X have the same type over B if and only if they are conjugate by an automorphism fixing B. We similarly define the type over a hyperimaginary set containing A.

Note that we can also consider the type of a hyperimaginary over B as a partial real type over B. If B is hyperimaginary, this corresponds to a partial type over a representative of B, and any two such types (for different representatives) are equivalent. We shall say that a partial type $\pi(y)$ is a (partial) X-type if $\pi(y) \vdash y_E \in X$ and $\pi(y)$ is E-invariant.

If a is hyperimaginary, a *representative* for a is any real (or imaginary) tuple \bar{a} with $a \in dcl^{heq}(\bar{a})$.

From now on, all tuples and parameter sets are hyperimaginary, unless stated otherwise.

Definition 1.2. Let X, Y be A-hyperdefinable sets in some structure \mathfrak{M} . We say that X and Y are *orthogonal* over A, denoted $X \perp_A Y$, if for any tuples $a \in X$ and $b \in Y$, the partial type $\operatorname{tp}(a/A) \cup \operatorname{tp}(b/A)$ determines $\operatorname{tp}(ab/A)$.

Example 1.3. If \mathfrak{M}_1 and \mathfrak{M}_2 are two structures and $\mathfrak{N} = \mathfrak{M}_1 \times \mathfrak{M}_2$ with a predicate X for \mathfrak{M} and a predicate Y for \mathfrak{N} , then X and Y are orthogonal in \mathfrak{N} .

Remark 1.4. If X and Y are orthogonal type-definable sets and $Z \subseteq X \times Y$ is relatively definable, then Z is a finite union of rectangles $A_i \times B_i$, where $A_i \subseteq X$ and $B_i \subseteq Y$ are relatively definable.

Proof: For any $z = (x, y) \in Z$ we have that $\operatorname{tp}(x) \cup \operatorname{tp}(y) \vdash (x, y) \in Z$. By compactness there are relatively definable subsets $A_z \subseteq X$ in $\operatorname{tp}(x)$ and $B_z \subseteq Y$ in $\operatorname{tp}(y)$ with $A_z \times B_z \subseteq Z$. Again by compactness, finitely many of these rectangles suffice to cover Z.

For the rest of this section, X and Y will be orthogonal \emptyset -hyper-definable sets.

Proposition 1.5. If $X' \subseteq X^{heq}$ and $Y' \subseteq Y^{heq}$ are hyperdefinable over some parameters $A \subseteq X^{heq} \cup Y^{heq}$, then $X' \perp_A Y'$.

Proof: Suppose A = (a, b) with $a \in X^{heq}$ and $b \in Y^{heq}$, and consider tuples $a' \in X'$ and $b' \in Y'$. Choose representatives $\bar{a}, \bar{a}' \in X$ of a, a' and $\bar{b}, \bar{b}' \in Y$ of b, b'. Then $\operatorname{tp}(\bar{a}\bar{a}') \cup \operatorname{tp}(\bar{b}\bar{b}') \vdash \operatorname{tp}(\bar{a}\bar{a}'\bar{b}\bar{b}')$.

Now if $a'' \equiv_A a'$ and $b'' \equiv_A b'$, we can find A-conjugates $\tilde{a}\bar{a}''$ of $\bar{a}\bar{a}'$ and $\tilde{b}\bar{b}''$ of $\bar{b}\bar{b}'$ such that $a''\tilde{a}\bar{a}'' \equiv_A a'\bar{a}\bar{a}'$ and $b''\tilde{b}\bar{b}'' \equiv_A b'\bar{b}\bar{b}'$. By orthogonality of X and Y, we obtain $\bar{a}''\tilde{a}\bar{b}''\tilde{b} \equiv \bar{a}'\bar{a}\bar{b}'\bar{b}$, whence $a''ab''b \equiv a'ab'b$, and thus $a''b'' \equiv_A a'b'$.

Note that this in particular shows that orthogonality is preserved under adding parameters from $X^{heq} \cup Y^{heq}$.

Proposition 1.6. X is stably embedded in $X \cup Y$: For tuples $a \in X^{heq}$ and $b \in Y^{heq}$, every ab-hyperdefinable subset X' of X^{heq} is hyperdefinable over a.

Proof: If $\Phi(x, a, b)$ hyperdefines X and $\Psi(y) = \operatorname{tp}(b)$, put

 $\Phi'(x,a) = \exists y \, [\Psi(y) \land \Phi(x,a,y)].$

FRANK O. WAGNER

Clearly $\Phi(x, a, b) \vdash \Phi'(x, a)$. Conversely, suppose $a' \models \Phi'(x, a)$, and choose $b' \models \Psi$ with $a' \models \Phi(x, a, b')$. By orthogonality $a'ab \equiv a'ab'$, whence $a' \models \Phi(x, a, b)$, and $\Phi'(x, a)$ hyperdefines X'. \Box

We put $\operatorname{dcl}_X^{heq}(A) = \operatorname{dcl}^{heq}(A) \cap X^{heq}$ and $\operatorname{bdd}_X(A) = \operatorname{bdd}(A) \cap X^{heq}$.

Corollary 1.7. Suppose $a \in X^{heq}$ and $b \in Y^{heq}$. Then

$$\operatorname{dcl}_X^{heq}(a,b) = \operatorname{dcl}_X^{heq}(a)$$
 and $\operatorname{bdd}_X(a,b) = \operatorname{bdd}_X(a)$.

Proof: Immediate from Proposition 1.6.

2. Weak elimination of hyperimaginaries

In this section, X and Y will be \emptyset -hyperdefinable sets.

Definition 2.1. Let Z be \emptyset -hyperdefinable. We say that Z has weak elimination of hyperimaginaries with respect to X^{heq} and Y^{heq} if for every $z \in (X \cup Y)^{heq}$ there is some $x \in X^{heq}$ and $y \in Y^{heq}$ with $xy \in bdd(z)$ and $z \in dcl^{heq}(xy)$.

Theorem 2.2. If X and Y are orthogonal, then $X \cup Y$ has weak elimination of hyperimaginaries with respect to X^{heq} and Y^{heq} .

Proof: Consider $z \in (X \cup Y)^{heq}$, say $z = (z_X, z_Y)_E$ for some tuples $z_X \in X, z_Y \in Y$ and type-definable equivalence relation E. For $x \equiv z_X$ consider the hyperdefinable equivalence relation E_x on $tp(z_Y)$ given by

$$yE_xy' \quad \Leftrightarrow \quad (x,y)E(x,y').$$

Then E_x is \emptyset -hyperdefinable by Proposition 1.6, and we may replace z_Y by z_Y/E_x . Similarly, we may replace z_X by z_X/E_y . We claim that now E has bounded classes on $\operatorname{tp}(z_X) \times \operatorname{tp}(z_Y)$. If not, there is a nonconstant indiscernible sequence $(x_i, y_i : i < \omega)$ in some E-class. By orthogonality, for i < j

$$\operatorname{tp}(x_i, x_j) \cup \operatorname{tp}(y_i, y_j) \vdash \operatorname{tp}((x_i, y_i), (x_j, y_j)).$$

But $tp(y_i, y_j) = tp(y_i, y_k)$ for i < j < k, whence

$$tp((x_i, y_i), (x_j, y_j)) = tp((x_i, y_i), (x_j, y_k))$$

and $(x_j, y_k)E(x_i, y_i)E(x_j, y_j)$ holds. By triviality of E_x we get $y_j = y_k$, whence $x_j = x_k$ by triviality of E_y , a contradiction.

Thus
$$(z_X, z_Y) \in bdd(z)$$
, and trivially $z \in dcl^{heq}(z_X, z_Y)$.

We shall put $bdd_{XY}(A) = bdd(A) \cap (X^{heq} \cup Y^{heq}).$

4

Corollary 2.3. If $X \perp Y$, then $\operatorname{bdd}_{XY}(A)$ and $\operatorname{bdd}(A) \cap (X \cup Y)^{heq}$ are interdefinable for any $A \subset X \cup Y$. Moreover, for $a \in (X \cup Y)^{heq}$ we have $\operatorname{tp}(a/\operatorname{bdd}_{XY}(A)) \vdash \operatorname{tp}(a/\operatorname{bdd}(A))$.

Proof: The first assertion is immediate from weak elimination of hyperimaginaries. For the second assertion, note that equality of type over bdd(A) is a bounded type-definable equivalence relation, and the class of a is definable over $bdd_{XY}(A)$.

3. INTERNALITY AND ANALYSABILITY

Again, X and Y will be \emptyset -hyperdefinable sets.

Definition 3.1. We say that X is (almost) Y-internal if there is some parameter set A such that for every $a \in X$ there is a tuple $b \in Y$ with $a \in dcl^{heq}(Ab)$ (or $a \in bdd(Ab)$, respectively).¹

If the parameters A can be chosen in some set Z, we say that X is Y-internal within Z.

We say that X is Y-analysable (within Z) if there is a sequence $(a_i : i < \alpha)$ such that $\operatorname{tp}(a_i/a_j : j < i)$ is Y-internal (within Z) for every $i < \alpha$, and $a \in \operatorname{bdd}(a_i : i < \alpha)$.

Proposition 3.2. Suppose that X and Y are orthogonal. If an \emptyset -hyperdefinable set X' is X-analysable within $X \cup Y$, then X' is almost X-internal within $\operatorname{bdd}_Y(\emptyset)$; if X' is X-internal within $X \cup Y$, then X' is X-internal within $\operatorname{bdd}_Y(\emptyset)$.

Proof: We first show the assertion for (almost) X-internal X'. So suppose $\bar{a} \in X$ and $\bar{b} \in Y$ are such that for every $x \in X'$ there is a tuple $a \in X$ with $x \in bdd(\bar{a}\bar{b}a)$. Let \bar{x} be the set of $\bar{a}\bar{b}a$ -conjugates of x, and E the type-definable equivalence relation on $tp(\bar{a}\bar{b}a)$ given by

$$(\bar{a}'\bar{b}'a')E(\bar{a}''\bar{b}''a'') \Leftrightarrow \exists \bar{x}' \ \bar{x}'\bar{a}'\bar{b}'a' \equiv \bar{x}'\bar{a}''\bar{b}''a'' \equiv \bar{x}\bar{a}\bar{b}a.$$

Clearly, \bar{x} is interdefinable with $(\bar{a}ba)_E$. By weak elimination of hyperimaginaries, there is $\tilde{a} \in X^{heq}$ and $\tilde{b} \in Y^{heq}$ with $\tilde{a}\tilde{b} \in \text{bdd}(\bar{x})$ and $\bar{x} \in \text{dcl}^{heq}(\tilde{a}\tilde{b})$. Note that if X' is X-internal and $x \in \text{dcl}^{heq}(\bar{a}\bar{b}a)$, then $x = \bar{x}$.

Suppose $\tilde{b} \notin \text{bdd}_Y(\emptyset)$. Then there is an \emptyset -conjugate \tilde{b}' of \tilde{b} outside $\text{bdd}(\bar{a}\bar{b})$; if σ is an automorphism mapping \tilde{b}' to \tilde{b} , put $\bar{a}'\bar{b}' = \sigma(\bar{a}\bar{b})$.

¹In simplicity theory, this is called *finite generation*; for *internality* we would require for every $a \in X$ the existence of some $A \perp a$ and tuple $b \in Y$ with $a \in dcl^{heq}(Ab)$.

FRANK O. WAGNER

Then $\tilde{b} \notin \text{bdd}(\bar{a}'\bar{b}')$. On the other hand, since $\bar{a}'\bar{b}' \equiv \bar{a}\bar{b}$ and $\bar{x} \subset X'$, there is $a' \in X$ with $x' \in \text{bdd}(\bar{a}'\bar{b}'a')$ for all $x' \in \bar{x}$. Then in particular $\tilde{b} \in \text{bdd}(\bar{a}'\bar{b}'a')$, whence $\tilde{b} \in \text{bdd}(\bar{b}')$ by Corollary 1.7, a contradiction.

Now assume that $x \in X'$ and $(x_i : i < \alpha)$ is an X-analysis of x within $X \cup Y$. We show inductively on i that $\operatorname{tp}(x_j : j < i)$ is X-internal within $\operatorname{bdd}_Y(\emptyset)$. So suppose $\operatorname{tp}(x_j : j < k)$ is X-internal within $\operatorname{bdd}_Y(\emptyset)$ for all k < i. If i is limit, then clearly $\operatorname{tp}(x_j : j < i)$ is X-internal within $\operatorname{bdd}_Y(\emptyset)$. If i = k + 1, then $\operatorname{tp}(x_k/x_j : j < k)$ is X-internal within $\operatorname{bdd}_Y(x_j : j < k)$, and there is $a \in X$ with

$$x_k \in \operatorname{dcl}^{heq}(a, \operatorname{bdd}_Y(x_j : j < k), x_j : j < k).$$

Or, by X-internality of $\operatorname{tp}(x_j : j < k)$ within $\operatorname{bdd}_Y(\emptyset)$ there is $a' \in X$ with $(x_j : j < k) \in \operatorname{dcl}^{heq}(a', \operatorname{bdd}_Y(\emptyset))$. Then

 $\operatorname{bdd}_Y(x_j : j < k) \subseteq \operatorname{bdd}_Y(a', \operatorname{bdd}_Y(\emptyset)) = \operatorname{bdd}_Y(\emptyset)$

by Corollary 1.7, and $x_k \in bdd(a, a', bdd_Y(\emptyset))$. So $tp(x_j : j < i)$ is X-internal within $bdd_Y(\emptyset)$, and tp(x) is almost X-internal within $bdd_Y(\emptyset)$.

Corollary 3.3. Suppose that X and Y are orthogonal. Let X' and Y' be \emptyset -hyperdefinable. If X' is X-internal within $X \cup Y$ and Y' is Y-internal within $X \cup Y$, then $X' \perp_{\text{bdd}_{XY}(\emptyset)} Y'$.

Proof: This is immediate from Propositon 3.2 and 1.5.

Corollary 3.4. Suppose that X and Y are orthogonal. If an $(X \cup Y)$ -hyperdefinable set Z is almost X- and almost Y-internal within $X \cup Y$, then it is bounded.

Proof: We may assume that Z is hyperdefinable over \emptyset . Let $z \in Z$. Since Z is almost X-internal, there is $b \in \text{bdd}_Y(\emptyset)$ and $x \in X$ such that $z \in \text{bdd}(xb)$. Let \bar{z} be the set of xb-conjugates of z. Then $\text{tp}(\bar{z})$ is X-internal within $\text{bdd}_Y(\emptyset)$, and still almost Y-internal within $X \cup Y$. So there is $a \in \text{bdd}_X(\emptyset)$ and $y \in Y$ such that $\bar{z} \in \text{bdd}(ya)$. Let \bar{z} be the set of ya-conjugates of \bar{z} . Then $\text{tp}(\bar{z})$ is Y-internal within $\text{bdd}_X(\emptyset)$, and still X-internal within $\text{bdd}_Y(\emptyset)$. Hence $\text{tp}(\bar{z}) \perp_{\text{bdd}_{XY}(\emptyset)} \text{tp}(\bar{z})$, so $\text{tp}(\bar{z})$ is bounded. Thus Z is bounded as well. \Box

Corollary 3.5. Suppose that X and Y are orthogonal. If $Z \subseteq (X \cup Y)^{heq}$ is \emptyset -hyperdefinable and almost X-internal within $X \cup Y$, then it is X-internal within $\operatorname{bdd}_Y(\emptyset)$.

Proof: By weak elimination of hyperimaginaries there is $x \in X^{heq}$ and $y \in Y^{heq}$ with $z \in dcl^{heq}(xy)$ and $xy \in bdd(z)$. So tp(y) is Y-internal and almost X-internal, whence bounded.

 $\mathbf{6}$

4. Local simplicity

Definition 4.1. Let $A \subseteq B$, and $\pi(x, B)$ be a partial type over B. We say that $\pi(x, B)$ does not divide over A if for any indiscernible sequence $(B_i : i < \omega)$ in $\operatorname{tp}(B/A)$ the partial type

$$\bigcup_{i<\omega}\pi(x,B_i)$$

is consistent. Clearly, tp(a/B) divides over A if and only if $tp(a_0/B)$ does so for some finite subtuple $a_0 \subseteq a$.

Example 4.2. If $tp(a) \perp tp(b)$, then tp(a/b) does not divide over \emptyset .

We now define the appropriate version of local rank. We follow Ben Yaacov's terminology [1, Definition 1.4], more general than [5, Definiton 4.3.5].

Definition 4.3. Let $\pi(x)$, $\Phi(x, y)$ and $\Psi(y_1, \ldots, y_k)$ be partial types in (at most) countably many variables.

(1) Ψ is a *k*-inconsistency witness for Φ if

$$\models \forall y_1 \dots y_k \neg \exists x \left[\Psi(y_1, \dots, y_k) \land \bigwedge_{i=1}^k \Phi(x, y_i) \right].$$

- (2) The local (Φ, Ψ) -rank $D(., \Phi, \Psi)$ is defined on partial types in x as follows:
 - $D(\pi(x), \Phi, \Psi) \ge 0$ if $\pi(x)$ is consistent.
 - $D(\pi(x), \Phi, \Psi) \ge n + 1$ if there is a sequence $(a_i : i < \omega)$ such that $\models \Psi(\bar{a})$ for any k-tuple $\bar{a} \subset (a_i : i < \omega)$, and $D(\pi(x) \land \Phi(x, a_i), \Phi, \Psi) \ge n$ for all $i < \omega$.
 - If $D(\pi, \Phi, \Psi) \ge n$ for all $n < \omega$, we put $D(\pi, \Phi, \Psi) = \infty$.

Note that in Definition 4.3(2) we may require $(a_i : i < \omega)$ to be indiscernible. Moreover, $D(\pi(x, a), \Phi, \Psi) \ge n$ is a closed condition on a, and $D(\operatorname{tp}(x/a), \Phi, \Psi) \ge n$ is a closed condition on x over a.

Definition 4.4. Let I be an ordered set. A sequence $I = (a_i : i \in I)$ is *independent over* A, or A-*independent*, if $tp(a_i/A, a_j : j < i)$ does not divide over A for all $i \in I$. If $A \subseteq B$ and $p \in S(B)$, the sequence $(a_i : i \in I)$ is a Morley sequence in p over A if it is B-indiscernible, $a_i \models p$ and $tp(a_i/B, a_j : j < i)$ does not divide over A for all $i \in I$. If $A \subseteq B$ are $p \in S(B)$, the sequence $a_i \models p$ and $tp(a_i/B, a_j : j < i)$ does not divide over A for all $i \in I$. If A = B, we simply call it a Morley sequence in p.

Fact 4.5. [5, Corollary 3.2.5] or [4, Proposition 16.12] If tp(b/cd) does not divide over d and tp(a/cbd) does not divide over bd, then tp(ab/cd) does not divide over d.

Theorem 4.6. Let X be a hyperdefinable set over \emptyset . The following are equivalent:

- (1) Symmetry holds on X: For all $a, b, c \in X$, tp(a/bc) does not divide over b if and only if tp(c/ab) does not divide over b.
- (2) Transitivity holds on X: If $a, b, c, d \in X$, then tp(a/bcd) does not divide over b if and only if tp(a/bc) does not divide over b and tp(a/bcd) does not divide over bc.
- (3) Local character holds on X: There is κ such that for all countable $a \in X$ and $A \subset X$ there is $A_0 \subseteq A$ with $|A_0| \leq \kappa$ such that $\operatorname{tp}(a/A)$ does not divide over A_0 . In fact, we can take $\kappa = 2^{|T|}$.
- (4) $D(., \Phi, \Psi) < \infty$ for any partial X-type $\Phi(x, y)$ and inconsistency witness Ψ for Φ .
- (5) For any $A \subseteq B \subset X$, a partial X-type $\pi(x, B)$ does not divide over A if and only if there is a Morley sequence I in $\operatorname{tp}(B/A)$ such that $\{\pi(x, B') : B' \in I\}$ is consistent.

If any of these conditions is satisfied, then for all $A \subseteq B \subset X$ and $a \in X$ the type $\operatorname{tp}(a/B)$ does not divide over A if and only if

$$D(\operatorname{tp}(a/B), \Phi, \Psi) = D(\operatorname{tp}(a/A), \Phi, \Psi)$$

for all (Φ, Ψ) . Moreover, Extension holds on X: For any partial Xtype $\pi(x)$ over B, if π does not divide over A then it has a completion which does not divide over A.

Proof: (1) \Rightarrow (2) Clearly, if tp(a/bcd) does not divide over b, it does not divide over bc and tp(a/bc) does not divide over b. Conversely, suppose that tp(a/bcd) does not divide over bc and tp(a/bc) does not divide over b. By symmetry, tp(d/abc) does not divide over bc and tp(c/ab) does not divide over b. By Fact 4.5 tp(cd/ab) does not divide over b, so again by symmetry tp(a/bcd) does not divide over b.

(2) \Rightarrow (4) Suppose there is a partial X-type Φ and an inconsistency witness Ψ for Φ such that $D(x = x, \Phi, \Psi) = \infty$. This means that for all $n < \omega$ there are

$$(b_i, a_i^j : i < n, j < \omega)$$

such that $\models \Psi(\bar{a})$ for all i < n and $\bar{a} \subset (a_i^j : j < \omega)$ of the right length, $b_i \models \bigwedge_{k \le i} \Phi(x, a_k^0)$, and $(a_i^j : j < \omega)$ is indiscernible over $\{b_k a_k^0 : k < i\}$.

By Ramsey's Theorem and compactness we may assume that i is indexed by $\{\pm(1+\frac{1}{n}): n > 0\}$ and that the sequence $(b_i a_i^0)_i$ is indiscernible. Put $I = \{b_i a_i^0: i < -1\}$ and $J = \{b_i a_i^0: i > 1\}$. Then $\operatorname{tp}(b_1/IJ)$ does not divide over I and $\operatorname{tp}(b_1/IJa_{-1})$ does not divide over IJ, since the former is finitely satisfiable in I and the latter in J. However, $(a_{-1}^j: j < \omega)$ witnesses that $\Phi(x, a_{-1})$, and hence $\operatorname{tp}(b_1/IJa_{-1})$, divides over I, contradicting transitivity.

(4)
$$\Rightarrow$$
 (3) Assume (4). First, we note that for $A \subseteq B \subset X$, if
 $D(\operatorname{tp}(a/B), \Phi, \Psi) = D(\operatorname{tp}(a/A), \Phi, \Psi)$

for all (Φ, Ψ) , then $\operatorname{tp}(a/B)$ does not divide over A. This is obvious, as if some A-indiscernible sequence $(B_i : i < \omega)$ in $\operatorname{tp}(B/A)$ witnesses dividing, we can take $\Phi(x, y) = \operatorname{tp}(a, B)$ and $\Psi = \operatorname{tp}(B_1, B_2, \ldots, B_n)$ for $n < \omega$ sufficiently large. Then Ψ is an *n*-inconsistency witness (clearly, we may restrict to countable B), and

$$D(\operatorname{tp}(a/B), \Phi, \Psi) < D(\operatorname{tp}(a/A), \Phi, \Psi).$$

Given $\operatorname{tp}(a/A)$ it is hence enough to take $A_0 \subseteq A$ big enough such that

$$D(\operatorname{tp}(a/A), \Phi, \Psi) = D(\operatorname{tp}(a/A_0), \Phi, \Psi)$$

for all (Φ, Ψ) . There are only $2^{|T|}$ such pairs, so we need at most that many parameters.

(3) \Rightarrow (4) Suppose $D(x = x, \Phi, \Psi) = \infty$. Then for any cardinal κ we can find an indiscernible sequence $(a_i b_i : i \leq \kappa^+)$ as in (2) \Rightarrow (4), such that $b_{\kappa^+} \models \bigwedge_{i \leq \kappa^+} \Phi(x, a_i)$ and $\Phi(x, a_i)$ divides over $\{a_j : j < i\}$ for all $i \leq \kappa^+$. Then $\operatorname{tp}(b_{\kappa^+}/a_i : i < \kappa^+)$ divides over any subset of its domain of cardinality $\leq \kappa$.

 $(4) \Rightarrow (5)$. Assume (4). Given $a \in X$ and $A \subseteq B \subset X$, for any pair (Φ, Ψ) and any formula $\varphi(y)$ we can adjoin either $\exists y [xEy \land \varphi(y)]$ or $\exists y [xEy \land \neg \varphi(y)]$ and preserve $D(., \Phi, \Psi)$ -rank. By compactness we can thus complete $\operatorname{tp}(a/A)$ to a type p over B of the same $D(., \Phi, \Psi)$ -rank. In particular, no Φ -instance in p divides over A with Ψ as inconsistency witness. Coding finitely many pairs $(\Phi_i, \Psi_i : i < n)$ in a single one, one obtains an extension such that no Φ_i -instance Ψ_i -divides for any i < n; by compactness we can do this for all pairs (Φ, Ψ) simultaneously and obtain an extension which does not divide over A. Taking for B a sufficiently saturated model, a sequence $(a_i : i < \omega) \subset B$ such that $a_i \models p \upharpoonright_{(A,a_j:j < i)}$ is a Morley sequence in $\operatorname{tp}(a/A)$.

This shows in particular that if $\pi(x, B)$ does not divide over A, then there is a Morley sequence I in $\operatorname{tp}(B/A)$ such that $\{\pi(x, B') : B' \in I\}$ is consistent.

FRANK O. WAGNER

Conversely, suppose that $\pi(x, B)$ divides over A, as witnessed by an A-indiscernible sequence $(B_i : i < \omega)$ in $\operatorname{tp}(B/A)$ with $\bigcup_{i < \omega} \pi(x, B_i)$ inconsistent. Take any Morley sequence I in $\operatorname{tp}(B/A)$. By [5, Corollary 2.2.8] (which is shown there for real tuples, but transfers easily to hyperimaginaries) we may assume that $B_i \cap I$ is A-conjugate to I for all $i \in I$ and that $(B_i : i < \omega)$ is indiscernible over AI. If $\overline{\pi}(x) = \bigcup_{B' \in I} \pi(x, B')$ were consistent, then $(B_i : i < \omega)$ would witness that

$$D(\bar{\pi}(x) \wedge \pi(x, B_0), \pi(x, y), \Psi) < D(\bar{\pi}(x), \pi(x, y), \Psi)$$

for some inconsistency witness Ψ . But by A-conjugacy the two ranks must be equal, a contradiction.

 $(5) \Rightarrow (1)$ Let us first show *Extension*. If $A \subseteq B \subset X$ and $\pi(x, B)$ is a partial X-type which does not divide over A, let $(B_i : i < \alpha)$ be a very long Morley sequence in $\operatorname{tp}(B/A)$. Consider any realization $a \models \bigwedge_{i < \alpha} \pi(x, B_i)$. Since α is large, there is an infinite subset $J \subset \alpha$ such that $p(aAX) = \operatorname{tp}(aAB_i)$ is constant for $i \in J$. Then p(xAB) is a completion of π which does not divide over A, as witnessed by $(B_i : i \in J)$.

Now given $a, b, c \in X$ such that $\operatorname{tp}(a/bc)$ does not divide over b, let $B \ni bc$ be a sufficiently saturated model, and p an extension of $\operatorname{tp}(a/bc)$ to B which does not divide over b. Choose a sequence $(a_i : i < \omega) \subset B$ such that $a_i \models p \upharpoonright_{(bc,a_j:j < i)}$. This is a Morley sequence in $\operatorname{tp}(a/bc)$ over b. Then $(a_i : i < \omega)$ is a Morley sequence in $\operatorname{tp}(a/bc)$, and $a_i \models \operatorname{tp}(a/bc)$ for all $i < \omega$. Hence $\operatorname{tp}(c/ba)$ does not divide over b, and symmetry holds.

Finally we show that if (1) - (5) hold and $\operatorname{tp}(a/B)$ does not divide over A for $A \subseteq B \subset X$ and $a \in X$, then $D(\operatorname{tp}(a/A), \Phi, \Psi) \ge n$ implies $D(\operatorname{tp}(a/B), \Phi, \Psi) \ge n$ for all (Φ, Ψ) . For n = 0 this is obvious. So suppose $D(\operatorname{tp}(a/A), \Phi, \Psi) \ge n + 1$. Then there is $(d_i : i < \omega)$ indiscernible over A such that $\overline{d} \models \Psi$ for all $\overline{d} \subset (d_i : i < \omega)$ of the right length, and $D(\operatorname{tp}(a/A) \land \Phi(x, d_i), \Phi, \Psi) \ge n$ for all $i < \omega$. Let q be a completion of $\operatorname{tp}(a/A) \land \Phi(x, d_0)$ with $D(q, \Phi, \Psi) \ge n$. Clearly, we may assume $a \models q$, and that $\operatorname{tp}(d_0/aB)$ does not divide over aA. As $\operatorname{tp}(a/B)$ does not divide over A, by symmetry and transitivity $\operatorname{tp}(ad_0/B)$ does not divide over A, and $\operatorname{tp}(a/d_0B)$ does not divide over d_0A . By induction hypothesis,

$$D(\operatorname{tp}(a/d_0A), \Phi, \Psi) \ge n$$
 implies $D(\operatorname{tp}(a/d_0B), \Phi, \Psi) \ge n$.

As $\operatorname{tp}(d_0/B)$ does not divide over A and $(d_i : i < \omega)$ is A-indiscernible, we may assume that it remains indiscernible over B. But then it witnesses

$$D(\operatorname{tp}(a/B), \Phi, \Psi) \ge D(\operatorname{tp}(a/d_0B), \Phi, \Psi) + 1 \ge n + 1.$$

Definition 4.7. An A-hyperdefinable set X is simple (over A) if it satisfies any of the conditions of Theorem 4.6 when we adjoin A to the language. If X is simple over A and $a, b, c \in X$, we shall say that a and c are independent over Ab, written $a op_{Ab} c$, if tp(a/Abc) does not divide over Ab.

Note that we only allow tuples and parameters from $A \cup X$. If X is stably embedded, we can of course allow parameters from anywhere.

Remark 4.8. If X is merely hyperdefinable, it may be simple although no definable or even type-definable imaginary set in the ambient structure is simple.

If X is simple, it is now standard to extend the notions of dividing and independence to hyperimaginaries in X^{heq} . Moreover, we can develop basic simplicity theory (canonical bases, the independence theorem, stratified ranks, generic types, stabilizers, see [5]) within X^{heq} , replacing the notion of a model by a boundedly closed subset C of X^{heq} such that X^{heq} -types over C are finitely satisfiable in C.

Proposition 4.9. Let X and Y be orthogonal \emptyset -hyperdefinable sets such that X is simple over \emptyset . If $A \subset Y$ is a set of parameters, then X is simple over A, and over $bdd_Y(A)$. In particular, let Z be a set hyperdefinable over some parameters $A \subset X \cup Y$. If Z is X-internal within $X \cup Y$, then Z is simple over A; if $Z \subseteq (X \cup Y)^{heq}$ is almost X-internal, then Z is simple as well.

Proof: Simplicity over A is obvious from orthogonality; simplicity over $\operatorname{bdd}_Y(A)$ follows. Now if Z is X-internal within $X \cup Y$, it lives in $\operatorname{dcl}^{eq}(X, \operatorname{bdd}_Y(A))$ by Corollary 3.2, and must be simple as well; if $Z \subseteq (X \cup Y)^{heq}$ is almost X-internal within $X \cup Y$, it is X-internal within $\operatorname{bdd}_Y(\emptyset)$ by Corollary 3.5.

5. Groups interpretable in orthogonal sets

Recall that two hyperdefinable subgroups H_1 and H_2 of some group G are *commensurable* if $H_1 \cap H_2$ has bounded index both in H_1 and in H_2 .

Theorem 5.1. Suppose X and Y are orthogonal \emptyset -hyperdefinable sets in a structure \mathfrak{M} , and G is an \emptyset -hyperdefinable group in $(X \cup Y)^{heq}$. If X is simple over \emptyset , there is an \emptyset -hyperdefinable normal X-internal subgroup N of G such that the quotient G/N is Y-internal. N is unique up to commensurability.

Proof: Let us first show uniqueness: If N' is a second such group, then $N/(N \cap N')$ and $N'/(N \cap N')$ are X-internal and Y-internal, and hence bounded by orthogonality of X and Y. Thus N and N' are commensurable.

By Theorem 2.2 every element $g \in G$ is of the form $(g_X, g_Y)_E$ for some $g_X \in X^{heq}$ and $g_Y \in Y^{heq}$, both bounded over g, and some typedefinable equivalence relation E with bounded classes, depending on $\operatorname{tp}(g)$. Hence $\operatorname{tp}(g/g_Y)$ is X-internal and $\operatorname{tp}(g/g_X)$ is Y-internal. Now if $h = (h_X, h_Y)_E$ and $gh = ((gh)_X, (gh)_Y)_E$, then

$$(gh)_X \in \mathrm{bdd}(g_X, g_Y, h_X, h_Y),$$

whence $(gh)_X \in \text{bdd}(g_X, h_X)$ by Corollary 1.7. Similarly $(gh)_Y \in \text{bdd}(g_Y, h_Y)$.

Now X is simple, as is $\operatorname{tp}(g, h/g_Y, h_Y)$ for any $g, h \in G$. Hence we can consider $g, h \in G$ such that $g \bigcup_{g_Y, h_Y} h$. Then for any stratified local rank D

(†)
$$D(gh/(gh)_Y) \ge D(gh/(gh)_Y, g_Y, h_Y, g) = D(h/g_Y, h_Y, g) = D(h/g_Y, h_Y, g) = D(h/g_Y, h_Y) = D(h/h_Y),$$

as also $h
ightarrow g_Y$ by orthogonality (Example 4.2). Similarly

$$D(gh/(gh)_Y) \ge D(g/g_Y).$$

Now suppose G is a subset of $(X^m \times Y^n)/E$, where m, n are at most countable. Then if $g = (\bar{x}_g, \bar{y}_g)_E$ we have $g
eq g_Y \bar{y}_g$, and $g_Y \in \text{bdd}(\bar{y}_g)$, whence $D(g/g_Y) = D(g/\bar{y}_g)$. By compactness, there is a G-type $p((\bar{x}, \bar{y})_E)$ implying that $D((\bar{x}, \bar{y})_E/\bar{y})$ is maximal for all local stratified ranks. But if $g, h \models p$ with $g
eq g_{Y,h_Y} h$, then we must have equality in (\dagger) , which implies that g, h and gh are pairwise independent over $g_Y, h_Y, (gh)_Y$. Put

$$S = \operatorname{stab}(g/g_Y, h_Y, (gh)_Y).$$

By [3, Lemme 1.2 and Remarque 1.3] the element g is generic in the coset Sg, and this coset is hyperdefinable over $bdd(g_Y, h_Y, (gh)_Y)$. Moreover, S is X-internal since $tp(g/g_Y)$ is.

Suppose that S is not commensurable with S^h for some $h \in G$. Then SS^h is still X-internal, with

$$D(SS^h) \ge D(S) = D(p)$$

for every stratified local rank D, and for at least one such rank D_0 we have $D_0(SS^h) > D_0(p)$. Choose $g' \in SS^h$ with $D_0(g'/h) = D_0(SS^h)$. By pre-multiplying with a generic element of S and post-multiplying with a generic element of S^h , the inequality (\dagger) implies that we may assume $D(g'/h) \ge D(p)$ for every stratified local rank D. However, $\operatorname{tp}(g'/h)$ is X-internal, so $g'_Y \in \operatorname{bdd}(g')$ implies $g'_Y \in \operatorname{bdd}(h)$ by Lemma 1.7 and Proposition 3.2. Thus

$$D(g'/g'_Y) \ge D(g'/h) \ge D(p)$$
 and $D_0(g'/g'_Y) \ge D_0(g'/h) > D_0(p)$,

contradicting our choice of p. Hence S is commensurable with all its conjugates, and the locally connected component N of S is normal in G [5, Definition 4.5.15 and Corollary 4.5.16]. In fact the same proof, with NZ instead of SS^h , shows that if Z is an X-internal hyperdefinable subset of G, then Z is covered by boundedly many cosets of N. In particular for any $g' \in G$ the type $\operatorname{tp}(g'/g'_Y)$ is covered by boundedly many cosets of N. But then $g'N \in \operatorname{bdd}(g'_Y)$, and G/N is almost Y-internal, whence Y-internal by Corollary 3.5.

Question 5.2. If X and Y are orthogonal type-definable sets and G is a relatively definable group in $(X \cup Y)^{eq}$, can we find a relatively definable normal X-internal subgroup N such that G/N is Y-internal?

Question 5.3. What can we say if neither X nor Y is simple? Is it true that in every hyperdefinable subgroup of $((X \cup Y)^{heq})$ there is a maximal normal hyperdefinable X-internal subgroup N_X , a maximal normal hyperdefinable Y-internal subgroup N_Y , an X-internal hyperdefinable local group G_X , a Y-internal hyperdefinable local group G_Y and a hyperdefinable locally bounded equivalence relation E on $G_X \times G_Y$ such that $G/(N_X N_Y)$ is isogenous, or even isomorphic, to $(G_X \times G_Y)/E$?

References

- Itaï Ben Yaacov. Simplicity in compact abstract theories. J. Math. Logic 3(2):163–191, 2003.
- [2] Alessandro Berarducci and Marcello Mamino. Groups definable in two orthogonal sorts. Preprint. arXiv:1304.1380.
- [3] Thomas Blossier, Amador Martín Pizarro and Frank O. Wagner. A la recherche du tore perdu. Submitted.

http://hal.archives-ouvertes.fr/hal-00758982

[4] Enrique Casanovas. Simple Theories and Hyperimaginaries. Lecture Notes in Logic 39. Cambridge University Press, 2011. [5] Frank O. Wagner. *Simple Theories*. Mathematics and Its Applications 503. Kluwer Academic Publishers, 2000.

Université de Lyon; CNRS; Université Lyon 1; Institut Camille Jordan UMR5208, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France

E-mail address: wagner@math.univ-lyon1.fr