THE RIGHT ANGLE TO LOOK AT
ORTHOGONAL SETS

FRANK O. WAGNER

ABSTRACT. If X and Y are orthogonal hyperdefinable sets such
that X is simple, then any group G interpretable in X UY has a
normal hyperdefinable X-internal subgroup N such that G/N is
Y-internal; N is unique up to commensurability. In order to make
sense of this statement, local simplicity theory for hyperdefinable
sets is developped.

INTRODUCTION

Two definable sets X and Y in some structure are said to be orthog-
onal if every definable subset of X x Y is a finite union of rectangles,
i.e. of subsets of the forme U x V with U C X and V C Y definable. It
easily follows that if X and Y are orthogonal groups, every definable
subgroup of X x Y is of the form U x V with U < X and V <Y sub-
groups. However, the situation is considerably more complicated for a
group G definable, or more generally interpretable, in X UY, as it need
not be the sum of a group interpretable in X and a group interpretable
in Y. In fact, an example by Berarducci and Mamino [2, Example 1.2]
shows that G need not have any subgroup interpretable in either X
or Y. However, they prove [2, Theorem 7.1] that if X is superstable
of finite and definable Lascar rank, then any group G interpretable in
X UY has a normal subgroup N interpretable in X, such that G/N is
interpretable in Y.

In this paper we shall generalize their result to the case where X
is merely simple. In this context, definability has to be replaced by
type-definability, as even for a definable group the tools of simplicty
theory in general only yield type-definable subgroups. In fact, we even
have to study hyperdefinable groups, since the quotient G/N, for N
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type-definable, will be of that form. We therefore put ourselves in the
hyperdefinable context and assume right from the start that our or-
thogonal sets X and Y are merely hyperdefinable. To this end, we
shall include a quick development of local simplicity theory for hyper-
definable sets in section 4.

Another problem is that of parameters. The usual hypothesis would
be that of stable embedding, i.e. that every hyperdefinable subset of
X is hyperdefinable with parameters in X. We shall circumvent this
issue by only ever considering parameters from X UY | as orthogonality
automatically yields stable embeddedness of X and of Y in X UY.

We shall work in a big x-saturated and strongly x-homogeneous mon-
ster model 9, where x is bigger than any cardinality we wish to con-
sider. We shall not usually distinguish between elements and tuples.

1. ORTHOGONALITY

Definition 1.1. A set X is hyperdefinable over some parameters A if
it is of the form Y/E, where Y is a type-definable set in (at most)
countably many variables and E a type-definable equivalence relation
on Y, both with parameters in A. For an element y € Y we denote
the class of y modulo F by yg. If y = (yo,...,yn) is a tuple, we put
ye = ((Yo)B, - - -, (Yn)p); similarly, we write yEz if y;Ez; for all i < n.

For a tuple yg in X and some parameters B O A, the type tp(yg/B)
is given by all partial types over B of the form

dz €Y [zEy A p(2)]

true of y. It is easy to see that (in the monster model) two tuples
in X have the same type over B if and only if they are conjugate
by an automorphism fixing B. We similarly define the type over a
hyperimaginary set containing A.

Note that we can also consider the type of a hyperimaginary over B
as a partial real type over B. If B is hyperimaginary, this corresponds
to a partial type over a representative of B, and any two such types (for
different representatives) are equivalent. We shall say that a partial
type 7(y) is a (partial) X-type if n(y) F yg € X and n(y) is E-
invariant.

If a is hyperimaginary, a representative for a is any real (or imagi-
nary) tuple a with a € dcl(a).
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From now on, all tuples and parameter sets are hyperimaginary,
unless stated otherwise.

Definition 1.2. Let X, Y be A-hyperdefinable sets in some structure
M. We say that X and Y are orthogonal over A, denoted X 1,4 Y, if
for any tuples @ € X and b € Y, the partial type tp(a/A) Utp(b/A)
determines tp(ab/A).

Example 1.3. If 9; and 9, are two structures and DT = Ny x My
with a predicate X for 91 and a predicate Y for 9, then X and Y are
orthogonal in M.

Remark 1.4. If X and Y are orthogonal type-definable sets and Z C
X x Y is relatively definable, then Z is a finite union of rectangles
A; x B;, where A; C X and B; C Y are relatively definable.

Proof: For any z = (z,y) € Z we have that tp(z) Utp(y) F (z,y) € Z.
By compactness there are relatively definable subsets A, C X in tp(x)
and B, C Y in tp(y) with A, x B, C Z. Again by compactness, finitely
many of these rectangles suffice to cover Z. O

For the rest of this section, X and Y will be orthogonal (-hyper-
definable sets.

Proposition 1.5. If X’ C X" and Y’ C Y"*1 are hyperdefinable over
some parameters A C XU Y then X' 1, Y.

Proof: Suppose A = (a,b) with a € X" and b € Y"* and consider
tuples @’ € X’ and 0’ € Y'. Choose representatives a,a’ € X of a,a’
and b,0' € Y of b,0/. Then tp(aa’) Utp(bd') F tp(aa’dt’).

Now ifa” =4 a’ and V" =4 I/, we can find A-conjugates aa” of aa’ and

by of b’ such that a”aa” = adaa’ and b” by’ =4 b'bb. By orthogonality
of X and Y, we obtain a”ab”’b = a'ab'b, whence a”ab”b = da’ab’b, and
thus a”b" =4 a'l'. O

Note that this in particular shows that orthogonality is preserved
under adding parameters from X"¢? J Yheq,

Proposition 1.6. X is stably embedded in X UY : For tuples a € X"
and b € Y"® every ab-hyperdefinable subset X' of X9 is hyperdefin-
able over a.

Proof: 1f ®(x,a,b) hyperdefines X and ¥(y) = tp(b), put
®'(z,a) = 3y [U(y) A (z, a,y)].
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Clearly ®(z,a,b) = ®'(x,a). Conversely, suppose o’ = ®'(z,a), and
choose V' = U with ' | ®(x,a,b). By orthogonality a’'ab = d’al/,
whence a' = ®(x,a,b), and ®'(x, a) hyperdefines X'. O

We put del’s?(A) = del"™(A)N X" and bddx(A) = bdd(A) N X",
Corollary 1.7. Suppose a € X" and b € Y"1, Then
dcl’s(a,b) = dcl%(a) and bddx(a,b) = bddx(a).

Proof: Immediate from Proposition 1.6. U

2. WEAK ELIMINATION OF HYPERIMAGINARIES

In this section, X and Y will be (-hyperdefinable sets.

Definition 2.1. Let Z be (-hyperdefinable. We say that Z has weak
elimination of hyperimaginaries with respect to X" and Y if for
every z € (X UY)" there is some z € X" and y € Y" with
zy € bdd(z) and z € dcl™(zy).

Theorem 2.2. If X and Y are orthogonal, then X UY has weak elim-
ination of hyperimaginaries with respect to X" and Y"ed.

Proof: Consider z € (X UY)"4 say 2 = (2x,2y)p for some tuples
zx € X, zy € Y and type-definable equivalence relation E. For z = zx
consider the hyperdefinable equivalence relation E, on tp(zy) given by

yEy' e (z,y)E(xy).
Then FE, is (-hyperdefinable by Proposition 1.6, and we may replace
2y by zy/E,. Similarly, we may replace zx by zx/E,. We claim that
now £ has bounded classes on tp(zx) X tp(zy). If not, there is a non-
constant indiscernible sequence (x;,7; : i < w) in some E-class. By
orthogonality, for i < j
tp(zi, 2;) Utp(yi, ;) b tp((@i, a), (25, 9;))-

But tp(yi, y;) = tp(vi, yx) for i < j < k, whence

to((zi, yi)s (5, 95)) = to((w6, 9), (05, Yx))

and (z;, yx) E(x;, yi)E(z;, y;) holds. By triviality of £, we get y; = yx,
whence x; = z;, by triviality of E,, a contradiction.

Thus (zx, zy) € bdd(2), and trivially z € dcl"™?(zx, zy). O
We shall put bddyy (A) = bdd(A) N (X" U Yhe).
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Corollary 2.3. If X 1Y, then bddxy(A) and bdd(A) N (X UY )«
are interdefinable for any A C X UY. Moreover, for a € (X UY )
we have tp(a/bddxy (A)) F tp(a/bdd(A)).

Proof: The first assertion is immediate from weak elimination of hy-
perimaginaries. For the second assertion, note that equality of type
over bdd(A) is a bounded type-definable equivalence relation, and the
class of a is definable over bddyy (A). O

3. INTERNALITY AND ANALYSABILITY

Again, X and Y will be (-hyperdefinable sets.

Definition 3.1. We say that X is (almost) Y -internal if there is some
parameter set A such that for every a € X there is a tuple b € Y with
a € dcl™(Ab) (or a € bdd(Ab), respectively).!

If the parameters A can be chosen in some set Z, we say that X is
Y-internal within Z.

We say that X is Y-analysable (within Z) if there is a sequence
(a; : i < a) such that tp(a;/a; : j < i) is Y-internal (within Z) for
every i < a, and a € bdd(a; : i < «).

Proposition 3.2. Suppose that X and Y are orthogonal. If an (-
hyperdefinable set X' is X -analysable within X UY , then X' is almost
X -internal within bddy (0); if X' is X -internal within X UY, then X'
is X -internal within bddy (().

Proof: We first show the assertion for (almost) X-internal X’. So
suppose @ € X and b € Y are such that for every x € X’ there is a
tuple a € X with # € bdd(aba). Let Z be the set of aba-conjugates of
r, and E the type-definable equivalence relation on tp(aba) given by

(@Vad)E(@'V'd") < 37 7'dtd = 7a"V'd" = zaba.
Clearly, 7 is interdefinable with (aba) p. By weak elimination of hy-
perimaginaries, there is @ € X hed and b € Yh* with ab € bdd(z) and
z € dcl"™(ab). Note that if X' is X-internal and z € dcl"(aba), then
Tr=2x.
Suppose b ¢ bddy (). Then there is an Q):Conjligate b of b outside
bdd(ab); if o is an automorphism mapping b’ to b, put a't’ = o(ab).

I simplicity theory, this is called finite generation; for internality we would
require for every a € X the existence of some A | a and tuple b € Y with a €

dcl™®9(Ab).
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Then b ¢ bdd(@¥). On the other hand, since @'t/ = ab and 7 C X',
there is @’ € X with 2’ € bdd(a't'a’) for all 2 € 7. Then in particular
b € bdd(a'V'a’), whence b € bdd(V') by Corollary 1.7, a contradiction.

Now assume that x € X’ and (z; : i < «) is an X-analysis of x within
XUY. We show inductively on ¢ that tp(z; : j < 4) is X-internal within
bddy (0). So suppose tp(z; : j < k) is X-internal within bddy (f) for
all k <. If 4 is limit, then clearly tp(z; : j < ¢) is X-internal within
bddy (0). If i = k + 1, then tp(zgx/x; : j < k) is X-internal within
bddy (z; : j < k), and there is a € X with

), € del"™(a, bddy (z; : j < k),z;:j < k).

Or, by X-internality of tp(x; : j < k) within bddy () there is ¢’ € X
with (z; : j < k) € dcl™(a’, bddy (0)). Then

bddy (z; : j < k) € bddy(a/, bddy (8)) = bddy ()

by Corollary 1.7, and z; € bdd(a,a’,bddy(0)). So tp(z; : j < i)
is X-internal within bddy (0), and tp(x) is almost X-internal within
bdy (0). 0

Corollary 3.3. Suppose that X and Y are orthogonal. Let X' and
Y’ be O-hyperdefinable. If X' is X-internal within X UY and Y’ is
Y -internal within X UY, then X' Lyqayy @) Y-

Proof: This is immediate from Propositon 3.2 and 1.5. U

Corollary 3.4. Suppose that X and Y are orthogonal. If an (X UY)-
hyperdefinable set Z is almost X - and almost Y -internal within X UY,
then it is bounded.

Proof: We may assume that Z is hyperdefinable over (). Let z € Z.
Since Z is almost X-internal, there is b € bddy () and x € X such
that z € bdd(zb). Let Z be the set of of zb-conjugates of z. Then tp(Z)
is X-internal within bddy (0), and still almost Y-internal within X UY".
So there is a € bddx () and y € Y such that z € bdd(ya). Let Z be
the set of ya-conjugates of z. Then tp(Z) is Y-internal within bddx (),
and still X-internal within bddy (§). Hence tp(Z) Lpaay, @) tP(Z), so
tp(z) is bounded. Thus Z is bounded as well. O

Corollary 3.5. Suppose that X and Y are orthogonal. If Z C (X U

Y)hed is ()-hyperdefinable and almost X -internal within X UY, then it
is X -internal within bddy (().

Proof: By weak elimination of hyperimaginaries there is z € X"¢? and
y € Y with z € dcl™(xy) and zy € bdd(z). So tp(y) is Y-internal
and almost X-internal, whence bounded. U
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4. LOCAL SIMPLICITY

Definition 4.1. Let A C B, and 7w (z, B) be a partial type over B. We
say that 7(z, B) does not divide over A if for any indiscernible sequence
(B; :i < w) in tp(B/A) the partial type

U m(x, B;)

is consistent. Clearly, tp(a/B) divides over A if and only if tp(ay/B)
does so for some finite subtuple ay C a.

Example 4.2. If tp(a) L tp(b), then tp(a/b) does not divide over ().

We now define the appropriate version of local rank. We follow Ben
Yaacov’s terminology [1, Definition 1.4], more general than [5, Definiton

4.3.5].
Definition 4.3. Let n(x), ®(z,y) and V(yi,...,yr) be partial types

in (at most) countably many variables.
(1) U is a k-inconsistency witness for @ if

F VY g o3 [Py, ye) A /\ O (z,y;)]-

i=1

(2) The local (®,V)-rank D(.,®, V) is defined on partial types in z

as follows:

e D(m(x),®, V) >0 if w(x) is consistent.

e D(m(x),®, V) > n+ 1if there is a sequence (a; : i < w)
such that = ¥(a) for any k-tuple a C (a; : ¢ < w), and
D(m(z) A ®(z,a;),P,¥) >n for all i < w.

If D(m,®,¥) > fralln<w, we put D(m, &, V) =

Note that in Definition 4.3 (2) we may require (a; : ¢ < w) to be
indiscernible. Moreover, D(m(z,a),®,¥) > n is a closed condition
on a, and D(tp(z/a),®, V) > n is a closed condition on z over a.

Definition 4.4. Let I be an ordered set. A sequence [ = (a; : 1 € I)
is independent over A, or A-independent, if tp(a;/A,a; : j < i) does
not divide over A for alli € I. If A C B and p € S(B), the sequence
(a; : 1 € I)is a Morley sequence in p over A if it is B-indiscernible,
a; = p and tp(a;/B, a; : j < 1) does not divide over A for all i € . If
A = B, we simply call it a Morley sequence in p.
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Fact 4.5. [5, Corollary 3.2.5] or [4, Proposition 16.12] If tp(b/cd) does
not divide over d and tp(a/cbd) does not divide over bd, then tp(ab/cd)
does not divide over d.

Theorem 4.6. Let X be a hyperdefinable set over (). The following are
equivalent:

(1) Symmetry holds on X: For all a,b,c € X, tp(a/bc) does not
divide over b if and only if tp(c/ab) does not divide over b.

(2) Transitivity holds on X: If a,b,c,d € X, then tp(a/bed) does
not divide over b if and only if tp(a/bc) does not divide over b
and tp(a/bed) does not divide over be.

(3) Local character holds on X : There is k such that for all count-
able a € X and A C X there is Ay C A with |Ao| < K such that
tp(a/A) does not divide over Ay. In fact, we can take r = 271,

(4) D(.,®,¥) < oo for any partial X -type ®(x,y) and inconsis-
tency witness ¥ for ®.

(5) For any A C B C X, a partial X -type 7(x, B) does not divide
over A if and only if there is a Morley sequence I in tp(B/A)
such that {m(x,B") : B' € I} is consistent.

If any of these conditions is satisfied, then for all A C B C X and
a € X the type tp(a/B) does not divide over A if and only if

D(tp(a/B),®, V) = D(tp(a/A), P, V)

for all (&, V). Moreover, Extension holds on X: For any partial X -
type w(x) over B, if m does not divide over A then it has a completion
which does not divide over A.

Proof: (1) = (2) Clearly, if tp(a/bed) does not divide over b, it does not
divide over bc and tp(a/bc) does not divide over b. Conversely, suppose
that tp(a/bed) does not divide over be and tp(a/bc) does not divide
over b. By symmetry, tp(d/abc) does not divide over bc and tp(c/ab)
does not divide over b. By Fact 4.5 tp(cd/ab) does not divide over b,
so again by symmetry tp(a/bcd) does not divide over b.

(2) = (4) Suppose there is a partial X-type ® and an inconsistency
witness W for ® such that D(x = z,®, V) = co. This means that for
all n < w there are

(bi,ag ti<n,j <w)

such that = W¥(a) for alli <mn and a C (al - j < w) of the right length,
bi = Ni<i ®(2,a7), and (a] : j < w) is indiscernible over {bray : k < i}.
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By Ramsey’s Theorem and compactness we may assume that ¢ is in-
dexed by {£(1 + %) : n > 0} and that the sequence (b;ay); is in-
discernible. Put I = {b;a? : i < —1} and J = {b;a? : i > 1}. Then
tp(b1/1J) does not divide over I and tp(by/I.Ja_1) does not divide over
I.J, since the former is finitely satisfiable in I and the latter in J. How-
ever, (a’; : j < w) witnesses that ®(z,a_,), and hence tp(b;/IJa_1),

divides over I, contradicting transitivity.
(4) = (3) Assume (4). First, we note that for A C B C X, if
D(tp(a/B),®, V) = D(tp(a/A), @, ¥)

for all (®, W), then tp(a/B) does not divide over A. This is obvious,
as if some A-indiscernible sequence (B; : i < w) in tp(B/A) witnesses
dividing, we can take ®(x,y) = tp(a, B) and ¥ = tp(By, Bo, ..., B,)
for n < w sufficiently large. Then V¥ is an n-inconsistency witness
(clearly, we may restrict to countable B), and

D(tp(a/B),®,¥) < D(tp(a/A), ®, V).
Given tp(a/A) it is hence enough to take Ay C A big enough such that
D(tp(a/A),®, V) = D(tp(a/Ay), P, V)

for all (&, ¥). There are only 2/71 such pairs, so we need at most that
many parameters.

(3) = (4) Suppose D(x =z, P, ¥) = oo. Then for any cardinal x we
can find an indiscernible sequence (a;b; : i < k1) as in (2) = (4), such
that b+ = A<+ ©(2,a;) and ®(z, a;) divides over {a; : j < i} for all
i < kT Then tp(be+ /a; - i < k1) divides over any subset of its domain
of cardinality < k.

(4) = (5). Assume (4). Given a € X and A C B C X, for any pair
(®, V) and any formula ¢(y) we can adjoin either Jy [zEy A ¢(y)] or
Jy [tEy A—p(y)] and preserve D(., ®, U)-rank. By compactness we can
thus complete tp(a/A) to a type p over B of the same D(., ®, ¥)-rank.
In particular, no ®-instance in p divides over A with ¥ as inconsistency
witness. Coding finitely many pairs (®;, ¥; : ¢ < n) in a single one, one
obtains an extension such that no ®;-instance ¥;-divides for any i < n;
by compactness we can do this for all pairs (®, ¥) simultaneously and
obtain an extension which does not divide over A. Taking for B a
sufficiently saturated model, a sequence (a; : i < w) C B such that
ai = P [(4,;:5<i) 15 @ Morley sequence in tp(a/A).

This shows in particular that if 7(x, B) does not divide over A, then
there is a Morley sequence I in tp(B/A) such that {n(z,B’): B’ € I}
is consistent.
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Conversely, suppose that 7(x, B) divides over A, as witnessed by an
A-indiscernible sequence (B; : i < w) in tp(B/A) with (J,_, 7(z, B;)
inconsistent. Take any Morley sequence [ in tp(B/A). By [5, Corollary
2.2.8] (which is shown there for real tuples, but transfers easily to
hyperimaginaries) we may assume that B;"[ is A-conjugate to I for
all i € I and that (B; : i < w) is indiscernible over Al. If 7(x) =
Upe; m(x, B') were consistent, then (B; : i < w) would witness that

D(w(z) Am(z, By), 7(x,y), ¥) < D(7(x), m(x,y), ¥)

for some inconsistency witness W. But by A-conjugacy the two ranks
must be equal, a contradiction.

(5) = (1) Let us first show Eztension. If A C B C X and 7(x, B)
is a partial X-type which does not divide over A, let (B; : i < «)
be a very long Morley sequence in tp(B/A). Consider any realization
a = Nieom(x, B;). Since « is large, there is an infinite subset J C «
such that p(aAX) = tp(aAB;) is constant for i € J. Then p(zAB)
is a completion of m which does not divide over A, as witnessed by

Now given a,b,c € X such that tp(a/bc) does not divide over b, let
B 3 be be a sufficiently saturated model, and p an extension of tp(a/bc)
to B which does not divide over b. Choose a sequence (a; : i < w) C B
such that a; = p [(be,a;:j<i)- This is a Morley sequence in tp(a/be) over
b. Then (a; : i < w) is a Morley sequence in tp(a/b), and a; |= tp(a/be)
for all i < w. Hence tp(c/ba) does not divide over b, and symmetry

holds.

Finally we show that if (1) — (5) hold and tp(a/B) does not divide
over A for AC B C X and a € X, then D(tp(a/A), P, V) > n implies
D(tp(a/B),®, V) > n for all (®,V). For n = 0 this is obvious. So sup-
pose D(tp(a/A),®, V) > n+ 1. Then there is (d; : i < w) indiscernible
over A such that d = W for all d C (d; : i < w) of the right length, and
D(tp(a/A) A ®(x,d;), P, ¥) > n for all i < w. Let g be a completion
of tp(a/A) A ®(x,dy) with D(q, ®,¥) > n. Clearly, we may assume
a = ¢q, and that tp(dy/aB) does not divide over aA. As tp(a/B) does
not divide over A, by symmetry and transitivity tp(ady/B) does not
divide over A, and tp(a/dyB) does not divide over dyA. By induction
hypothesis,

D(tp(a/dpA),®,¥) > n implies D(tp(a/doB),®, V) > n.
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As tp(dy/B) does not divide over A and (d; : i < w) is A-indiscernible,
we may assume that it remains indiscernible over B. But then it wit-
nesses

D(tp(a/B), ®, V) > D(tp(a/dyB),®,¥) +1>n+1. O

Definition 4.7. An A-hyperdefinable set X is simple (over A) if it
satisfies any of the conditions of Theorem 4.6 when we adjoin A to the
language. If X is simple over A and a,b,c € X, we shall say that a
and ¢ are independent over Ab, written a | ,, ¢, if tp(a/Abc) does not
divide over Ab.

Note that we only allow tuples and parameters from AU X. If X is
stably embedded, we can of course allow parameters from anywhere.

Remark 4.8. If X is merely hyperdefinable, it may be simple although
no definable or even type-definable imaginary set in the ambient struc-
ture is simple.

If X is simple, it is now standard to extend the notions of divid-
ing and independence to hyperimaginaries in X"¢. Moreover, we can
develop basic simplicity theory (canonical bases, the independence the-
orem, stratified ranks, generic types, stabilizers, see [5]) within X"ed,
replacing the notion of a model by a boundedly closed subset C' of X"
such that X"®-types over C' are finitely satisfiable in C.

Proposition 4.9. Let X and Y be orthogonal O-hyperdefinable sets
such that X is simple over ). If A C'Y is a set of parameters, then
X is simple over A, and over bddy (A). In particular, let Z be a set
hyperdefinable over some parameters A C X UY. If Z is X-internal
within X UY, then Z is simple over A; if Z C (X UY)" js almost
X-internal, then Z is simple as well.

Proof: Simplicity over A is obvious from orthogonality; simplicity over
bddy (A) follows. Now if Z is X-internal within X U Y, it lives in
dcl“(X, bddy (A)) by Corollary 3.2, and must be simple as well; if
Z C (X UY)he is almost X-internal within X UY, it is X-internal
within bddy () by Corollary 3.5. O

5. GROUPS INTERPRETABLE IN ORTHOGONAL SETS

Recall that two hyperdefinable subgroups H; and Hs of some group
G are commensurable if H; N Hy has bounded index both in H; and in
H,.
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Theorem 5.1. Suppose X andY are orthogonal O-hyperdefinable sets
in a structure M, and G is an O-hyperdefinable group in (X U Y )red,
If X is simple over (), there is an O-hyperdefinable normal X -internal
subgroup N of G such that the quotient G/N isY -internal. N is unique
up to commensurability.

Proof: Let us first show uniqueness: If N’ is a second such group,
then N/(NNN') and N'/(NNN') are X-internal and Y-internal, and
hence bounded by orthogonality of X and Y. Thus N and N’ are
commensurable.

By Theorem 2.2 every element g € G is of the form (gx,gy)g for
some gx € X" and gy € Y"* both bounded over g, and some type-
definable equivalence relation E with bounded classes, depending on
tp(g). Hence tp(g/gy) is X-internal and tp(g/gx) is Y-internal. Now
if h = (hx, hy)g and gh = ((gh)x, (gh)y)E, then

(gh)X € bdd(gX7 gy, h’X; hY)7

whence (gh)x € bdd(gx,hx) by Corollary 1.7. Similarly (gh)y €
bdd(gy,hy)

Now X is simple, as is tp(g, h/gy, hy) for any g,h € G. Hence we
can consider g, h € G such that g J/gy by h. Then for any stratified
local rank D 7

D(gh/(gh)y) > D(gh/(gh)y,gv,hv,g) = D(h/gy, hy,q)
= D(h/gy,hy) = D(h/hy),

as also h | By Y by orthogonality (Example 4.2). Similarly

D(gh/(gh)y) > D(g/gv).

Now suppose G is a subset of (X™ x Y™)/E, where m,n are at most
countable. Then if g = (z,,y,)r We have g J/gy g, and gy € bdd(y,),
whence D(g/gy) = D(g/y,). By compactness, there is a G-type p((Z, y) k)
implying that D((Z,y)g/y) is maximal for all local stratified ranks. But
if g,h = p with g J/g%hy h, then we must have equality in (}), which

implies that g, h and gh are pairwise independent over gy, hy, (gh)y.
Put

S =stab(g/gy, hy, (gh)y).

By [3, Lemme 1.2 and Remarque 1.3] the element g is generic in the
coset Sg, and this coset is hyperdefinable over bdd(gy,hy, (gh)y).
Moreover, S is X-internal since tp(g/gy) is.
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Suppose that S is not commensurable with S” for some h € G. Then
SSh is still X-internal, with

D(SS") = D(S) = D(p)

for every stratified local rank D, and for at least one such rank Dy we
have Dy(SS") > Dy(p). Choose g’ € SS™ with Dy(g'/h) = Do(SSh).
By pre-multiplying with a generic element of S and post-multiplying
with a generic element of S”, the inequality (f) implies that we may
assume D(¢'/h) > D(p) for every stratified local rank D. However,
tp(g’/h) is X-internal, so g3 € bdd(¢’) implies g3 € bdd(h) by Lemma
1.7 and Proposition 3.2. Thus

D(g'/gy) = D(g'/h) = D(p) and  Do(g'/gy) = Dol(g'/h) > Do(p),

contradicting our choice of p. Hence S is commensurable with all its
conjugates, and the locally connected component N of S is normal in G
[5, Definition 4.5.15 and Corollary 4.5.16]. In fact the same proof, with
NZ instead of SS”, shows that if Z is an X-internal hyperdefinable
subset of G, then Z is covered by boundedly many cosets of N. In
particular for any ¢' € G the type tp(¢'/gy ) is covered by boundedly
many cosets of N. But then ¢’N € bdd(g} ), and G/N is almost Y-
internal, whence Y-internal by Corollary 3.5. U

Question 5.2. If X and Y are orthogonal type-definable sets and G
is a relatively definable group in (X U Y)%, can we find a relatively
definable normal X-internal subgroup N such that G/N is Y-internal?

Question 5.3. What can we say if neither X nor Y is simple? Is it true
that in every hyperdefinable subgroup of ((X UY )"¢? there is a maximal
normal hyperdefinable X-internal subgroup Ny, a maximal normal
hyperdefinable Y-internal subgroup Ny, an X-internal hyperdefinable
local group Gy, a Y-internal hyperdefinable local group Gy and a
hyperdefinable locally bounded equivalence relation E on G'x x Gy such
that G/(NxNy) is isogenous, or even isomorphic, to (Gx x Gy)/E ?
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