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THE RIGHT ANGLE TO LOOK AT

ORTHOGONAL SETS

FRANK O. WAGNER

Abstract. If X and Y are orthogonal hyperdefinable sets such
that X is simple, then any group G interpretable in X ∪ Y has a
normal hyperdefinable X-internal subgroup N such that G/N is
Y -internal; N is unique up to commensurability. In order to make
sense of this statement, local simplicity theory for hyperdefinable
sets is developped.

Introduction

Two definable sets X and Y in some structure are said to be orthog-
onal if every definable subset of X × Y is a finite union of rectangles,
i.e. of subsets of the forme U ×V with U ⊆ X and V ⊆ Y definable. It
easily follows that if X and Y are orthogonal groups, every definable
subgroup of X × Y is of the form U × V with U ≤ X and V ≤ Y sub-
groups. However, the situation is considerably more complicated for a
group G definable, or more generally interpretable, in X∪Y , as it need
not be the sum of a group interpretable in X and a group interpretable
in Y . In fact, an example by Berarducci and Mamino [2, Example 1.2]
shows that G need not have any subgroup interpretable in either X
or Y . However, they prove [2, Theorem 7.1] that if X is superstable
of finite and definable Lascar rank, then any group G interpretable in
X ∪ Y has a normal subgroup N interpretable in X , such that G/N is
interpretable in Y .

In this paper we shall generalize their result to the case where X
is merely simple. In this context, definability has to be replaced by
type-definability, as even for a definable group the tools of simplicty
theory in general only yield type-definable subgroups. In fact, we even
have to study hyperdefinable groups, since the quotient G/N , for N
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2 FRANK O. WAGNER

type-definable, will be of that form. We therefore put ourselves in the
hyperdefinable context and assume right from the start that our or-
thogonal sets X and Y are merely hyperdefinable. To this end, we
shall include a quick development of local simplicity theory for hyper-
definable sets in section 4.

Another problem is that of parameters. The usual hypothesis would
be that of stable embedding, i.e. that every hyperdefinable subset of
X is hyperdefinable with parameters in X . We shall circumvent this
issue by only ever considering parameters from X∪Y , as orthogonality
automatically yields stable embeddedness of X and of Y in X ∪ Y .

We shall work in a big κ-saturated and strongly κ-homogeneous mon-
ster model M, where κ is bigger than any cardinality we wish to con-
sider. We shall not usually distinguish between elements and tuples.

1. Orthogonality

Definition 1.1. A set X is hyperdefinable over some parameters A if
it is of the form Y/E, where Y is a type-definable set in (at most)
countably many variables and E a type-definable equivalence relation
on Y , both with parameters in A. For an element y ∈ Y we denote
the class of y modulo E by yE. If y = (y0, . . . , yn) is a tuple, we put
yE = ((y0)E, . . . , (yn)E); similarly, we write yEz if yiEzi for all i ≤ n.

For a tuple yE in X and some parameters B ⊇ A, the type tp(yE/B)
is given by all partial types over B of the form

∃z ∈ Y [zEy ∧ ϕ(z)]

true of y. It is easy to see that (in the monster model) two tuples
in X have the same type over B if and only if they are conjugate
by an automorphism fixing B. We similarly define the type over a
hyperimaginary set containing A.

Note that we can also consider the type of a hyperimaginary over B
as a partial real type over B. If B is hyperimaginary, this corresponds
to a partial type over a representative of B, and any two such types (for
different representatives) are equivalent. We shall say that a partial
type π(y) is a (partial) X-type if π(y) ⊢ yE ∈ X and π(y) is E-
invariant.

If a is hyperimaginary, a representative for a is any real (or imagi-
nary) tuple ā with a ∈ dclheq(ā).
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From now on, all tuples and parameter sets are hyperimaginary,
unless stated otherwise.

Definition 1.2. Let X , Y be A-hyperdefinable sets in some structure
M. We say that X and Y are orthogonal over A, denoted X ⊥A Y , if
for any tuples a ∈ X and b ∈ Y , the partial type tp(a/A) ∪ tp(b/A)
determines tp(ab/A).

Example 1.3. If M1 and M2 are two structures and N = M1 ×M2

with a predicate X for M and a predicate Y for N, then X and Y are
orthogonal in N.

Remark 1.4. If X and Y are orthogonal type-definable sets and Z ⊆
X × Y is relatively definable, then Z is a finite union of rectangles
Ai × Bi, where Ai ⊆ X and Bi ⊆ Y are relatively definable.

Proof: For any z = (x, y) ∈ Z we have that tp(x) ∪ tp(y) ⊢ (x, y) ∈ Z.
By compactness there are relatively definable subsets Az ⊆ X in tp(x)
and Bz ⊆ Y in tp(y) with Az×Bz ⊆ Z. Again by compactness, finitely
many of these rectangles suffice to cover Z. �

For the rest of this section, X and Y will be orthogonal ∅-hyper-
definable sets.

Proposition 1.5. If X ′ ⊆ Xheq and Y ′ ⊆ Y heq are hyperdefinable over
some parameters A ⊆ Xheq ∪ Y heq, then X ′ ⊥A Y ′.

Proof: Suppose A = (a, b) with a ∈ Xheq and b ∈ Y heq, and consider
tuples a′ ∈ X ′ and b′ ∈ Y ′. Choose representatives ā, ā′ ∈ X of a, a′

and b̄, b̄′ ∈ Y of b, b′. Then tp(āā′) ∪ tp(b̄b̄′) ⊢ tp(āā′b̄b̄′).

Now if a′′ ≡A a′ and b′′ ≡A b′, we can find A-conjugates ãā′′ of āā′ and
b̃b̄′′ of b̄b̄′ such that a′′ãā′′ ≡A a′āā′ and b′′b̃b̄′′ ≡A b′b̄b̄′. By orthogonality
of X and Y , we obtain ā′′ãb̄′′b̃ ≡ ā′āb̄′b̄, whence a′′ab′′b ≡ a′ab′b, and
thus a′′b′′ ≡A a′b′. �

Note that this in particular shows that orthogonality is preserved
under adding parameters from Xheq ∪ Y heq.

Proposition 1.6. X is stably embedded in X∪Y : For tuples a ∈ Xheq

and b ∈ Y heq, every ab-hyperdefinable subset X ′ of Xheq is hyperdefin-
able over a.

Proof: If Φ(x, a, b) hyperdefines X and Ψ(y) = tp(b), put

Φ′(x, a) = ∃y [Ψ(y) ∧ Φ(x, a, y)].
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Clearly Φ(x, a, b) ⊢ Φ′(x, a). Conversely, suppose a′ |= Φ′(x, a), and
choose b′ |= Ψ with a′ |= Φ(x, a, b′). By orthogonality a′ab ≡ a′ab′,
whence a′ |= Φ(x, a, b), and Φ′(x, a) hyperdefines X ′. �

We put dclheqX (A) = dclheq(A)∩Xheq and bddX(A) = bdd(A)∩Xheq.

Corollary 1.7. Suppose a ∈ Xheq and b ∈ Y heq. Then

dclheqX (a, b) = dclheqX (a) and bddX(a, b) = bddX(a).

Proof: Immediate from Proposition 1.6. �

2. Weak elimination of hyperimaginaries

In this section, X and Y will be ∅-hyperdefinable sets.

Definition 2.1. Let Z be ∅-hyperdefinable. We say that Z has weak
elimination of hyperimaginaries with respect to Xheq and Y heq if for
every z ∈ (X ∪ Y )heq there is some x ∈ Xheq and y ∈ Y heq with
xy ∈ bdd(z) and z ∈ dclheq(xy).

Theorem 2.2. If X and Y are orthogonal, then X ∪Y has weak elim-
ination of hyperimaginaries with respect to Xheq and Y heq.

Proof: Consider z ∈ (X ∪ Y )heq, say z = (zX , zY )E for some tuples
zX ∈ X , zY ∈ Y and type-definable equivalence relation E. For x ≡ zX
consider the hyperdefinable equivalence relation Ex on tp(zY ) given by

yExy
′ ⇔ (x, y)E(x, y′).

Then Ex is ∅-hyperdefinable by Proposition 1.6, and we may replace
zY by zY /Ex. Similarly, we may replace zX by zX/Ey. We claim that
now E has bounded classes on tp(zX)× tp(zY ). If not, there is a non-
constant indiscernible sequence (xi, yi : i < ω) in some E-class. By
orthogonality, for i < j

tp(xi, xj) ∪ tp(yi, yj) ⊢ tp((xi, yi), (xj , yj)).

But tp(yi, yj) = tp(yi, yk) for i < j < k, whence

tp((xi, yi), (xj , yj)) = tp((xi, yi), (xj, yk))

and (xj, yk)E(xi, yi)E(xj , yj) holds. By triviality of Ex we get yj = yk,
whence xj = xk by triviality of Ey, a contradiction.

Thus (zX , zY ) ∈ bdd(z), and trivially z ∈ dclheq(zX , zY ). �

We shall put bddXY (A) = bdd(A) ∩ (Xheq ∪ Y heq).
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Corollary 2.3. If X ⊥ Y , then bddXY (A) and bdd(A) ∩ (X ∪ Y )heq

are interdefinable for any A ⊂ X ∪ Y . Moreover, for a ∈ (X ∪ Y )heq

we have tp(a/bddXY (A)) ⊢ tp(a/bdd(A)).

Proof: The first assertion is immediate from weak elimination of hy-
perimaginaries. For the second assertion, note that equality of type
over bdd(A) is a bounded type-definable equivalence relation, and the
class of a is definable over bddXY (A). �

3. Internality and analysability

Again, X and Y will be ∅-hyperdefinable sets.

Definition 3.1. We say that X is (almost) Y -internal if there is some
parameter set A such that for every a ∈ X there is a tuple b ∈ Y with
a ∈ dclheq(Ab) (or a ∈ bdd(Ab), respectively).1

If the parameters A can be chosen in some set Z, we say that X is
Y -internal within Z.

We say that X is Y -analysable (within Z) if there is a sequence
(ai : i < α) such that tp(ai/aj : j < i) is Y -internal (within Z) for
every i < α, and a ∈ bdd(ai : i < α).

Proposition 3.2. Suppose that X and Y are orthogonal. If an ∅-
hyperdefinable set X ′ is X-analysable within X ∪ Y , then X ′ is almost
X-internal within bddY (∅); if X

′ is X-internal within X ∪ Y , then X ′

is X-internal within bddY (∅).

Proof: We first show the assertion for (almost) X-internal X ′. So
suppose ā ∈ X and b̄ ∈ Y are such that for every x ∈ X ′ there is a
tuple a ∈ X with x ∈ bdd(āb̄a). Let x̄ be the set of āb̄a-conjugates of
x, and E the type-definable equivalence relation on tp(āb̄a) given by

(ā′b̄′a′)E(ā′′b̄′′a′′) ⇔ ∃x̄′ x̄′ā′b̄′a′ ≡ x̄′ā′′b̄′′a′′ ≡ x̄āb̄a.

Clearly, x̄ is interdefinable with (āb̄a)E . By weak elimination of hy-

perimaginaries, there is ã ∈ Xheq and b̃ ∈ Y heq with ãb̃ ∈ bdd(x̄) and

x̄ ∈ dclheq(ãb̃). Note that if X ′ is X-internal and x ∈ dclheq(āb̄a), then
x = x̄.

Suppose b̃ /∈ bddY (∅). Then there is an ∅-conjugate b̃′ of b̃ outside

bdd(āb̄); if σ is an automorphism mapping b̃′ to b̃, put ā′b̄′ = σ(āb̄).

1In simplicity theory, this is called finite generation; for internality we would
require for every a ∈ X the existence of some A |⌣a and tuple b ∈ Y with a ∈

dclheq(Ab).
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Then b̃ /∈ bdd(ā′b̄′). On the other hand, since ā′b̄′ ≡ āb̄ and x̄ ⊂ X ′,
there is a′ ∈ X with x′ ∈ bdd(ā′b̄′a′) for all x′ ∈ x̄. Then in particular

b̃ ∈ bdd(ā′b̄′a′), whence b̃ ∈ bdd(b̄′) by Corollary 1.7, a contradiction.

Now assume that x ∈ X ′ and (xi : i < α) is an X-analysis of x within
X∪Y . We show inductively on i that tp(xj : j < i) is X-internal within
bddY (∅). So suppose tp(xj : j < k) is X-internal within bddY (∅) for
all k < i. If i is limit, then clearly tp(xj : j < i) is X-internal within
bddY (∅). If i = k + 1, then tp(xk/xj : j < k) is X-internal within
bddY (xj : j < k), and there is a ∈ X with

xk ∈ dclheq(a, bddY (xj : j < k), xj : j < k).

Or, by X-internality of tp(xj : j < k) within bddY (∅) there is a′ ∈ X

with (xj : j < k) ∈ dclheq(a′, bddY (∅)). Then

bddY (xj : j < k) ⊆ bddY (a
′, bddY (∅)) = bddY (∅)

by Corollary 1.7, and xk ∈ bdd(a, a′, bddY (∅)). So tp(xj : j < i)
is X-internal within bddY (∅), and tp(x) is almost X-internal within
bddY (∅). �

Corollary 3.3. Suppose that X and Y are orthogonal. Let X ′ and
Y ′ be ∅-hyperdefinable. If X ′ is X-internal within X ∪ Y and Y ′ is
Y -internal within X ∪ Y , then X ′ ⊥bddXY (∅) Y

′.

Proof: This is immediate from Propositon 3.2 and 1.5. �

Corollary 3.4. Suppose that X and Y are orthogonal. If an (X ∪Y )-
hyperdefinable set Z is almost X- and almost Y -internal within X ∪Y ,
then it is bounded.

Proof: We may assume that Z is hyperdefinable over ∅. Let z ∈ Z.
Since Z is almost X-internal, there is b ∈ bddY (∅) and x ∈ X such
that z ∈ bdd(xb). Let z̄ be the set of of xb-conjugates of z. Then tp(z̄)
is X-internal within bddY (∅), and still almost Y -internal within X∪Y .
So there is a ∈ bddX(∅) and y ∈ Y such that z̄ ∈ bdd(ya). Let ¯̄z be
the set of ya-conjugates of z̄. Then tp(¯̄z) is Y -internal within bddX(∅),
and still X-internal within bddY (∅). Hence tp(¯̄z) ⊥bddXY (∅) tp(¯̄z), so
tp(¯̄z) is bounded. Thus Z is bounded as well. �

Corollary 3.5. Suppose that X and Y are orthogonal. If Z ⊆ (X ∪
Y )heq is ∅-hyperdefinable and almost X-internal within X ∪ Y , then it
is X-internal within bddY (∅).

Proof: By weak elimination of hyperimaginaries there is x ∈ Xheq and
y ∈ Y heq with z ∈ dclheq(xy) and xy ∈ bdd(z). So tp(y) is Y -internal
and almost X-internal, whence bounded. �
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4. Local simplicity

Definition 4.1. Let A ⊆ B, and π(x,B) be a partial type over B. We
say that π(x,B) does not divide over A if for any indiscernible sequence
(Bi : i < ω) in tp(B/A) the partial type

⋃

i<ω

π(x,Bi)

is consistent. Clearly, tp(a/B) divides over A if and only if tp(a0/B)
does so for some finite subtuple a0 ⊆ a.

Example 4.2. If tp(a) ⊥ tp(b), then tp(a/b) does not divide over ∅.

We now define the appropriate version of local rank. We follow Ben
Yaacov’s terminology [1, Definition 1.4], more general than [5, Definiton
4.3.5].

Definition 4.3. Let π(x), Φ(x, y) and Ψ(y1, . . . , yk) be partial types
in (at most) countably many variables.

(1) Ψ is a k-inconsistency witness for Φ if

|= ∀y1 . . . yk ¬∃x [Ψ(y1, . . . , yk) ∧
k∧

i=1

Φ(x, yi)].

(2) The local (Φ,Ψ)-rank D(.,Φ,Ψ) is defined on partial types in x
as follows:

• D(π(x),Φ,Ψ) ≥ 0 if π(x) is consistent.
• D(π(x),Φ,Ψ) ≥ n + 1 if there is a sequence (ai : i < ω)
such that |= Ψ(ā) for any k-tuple ā ⊂ (ai : i < ω), and
D(π(x) ∧ Φ(x, ai),Φ,Ψ) ≥ n for all i < ω.

If D(π,Φ,Ψ) ≥ n for all n < ω, we put D(π,Φ,Ψ) = ∞.

Note that in Definition 4.3 (2) we may require (ai : i < ω) to be
indiscernible. Moreover, D(π(x, a),Φ,Ψ) ≥ n is a closed condition
on a, and D(tp(x/a),Φ,Ψ) ≥ n is a closed condition on x over a.

Definition 4.4. Let I be an ordered set. A sequence I = (ai : i ∈ I)
is independent over A, or A-independent, if tp(ai/A, aj : j < i) does
not divide over A for all i ∈ I. If A ⊆ B and p ∈ S(B), the sequence
(ai : i ∈ I) is a Morley sequence in p over A if it is B-indiscernible,
ai |= p and tp(ai/B, aj : j < i) does not divide over A for all i ∈ I. If
A = B, we simply call it a Morley sequence in p.
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Fact 4.5. [5, Corollary 3.2.5] or [4, Proposition 16.12] If tp(b/cd) does
not divide over d and tp(a/cbd) does not divide over bd, then tp(ab/cd)
does not divide over d.

Theorem 4.6. Let X be a hyperdefinable set over ∅. The following are
equivalent:

(1) Symmetry holds on X: For all a, b, c ∈ X, tp(a/bc) does not
divide over b if and only if tp(c/ab) does not divide over b.

(2) Transitivity holds on X: If a, b, c, d ∈ X, then tp(a/bcd) does
not divide over b if and only if tp(a/bc) does not divide over b
and tp(a/bcd) does not divide over bc.

(3) Local character holds on X: There is κ such that for all count-
able a ∈ X and A ⊂ X there is A0 ⊆ A with |A0| ≤ κ such that
tp(a/A) does not divide over A0. In fact, we can take κ = 2|T |.

(4) D(.,Φ,Ψ) < ∞ for any partial X-type Φ(x, y) and inconsis-
tency witness Ψ for Φ.

(5) For any A ⊆ B ⊂ X, a partial X-type π(x,B) does not divide
over A if and only if there is a Morley sequence I in tp(B/A)
such that {π(x,B′) : B′ ∈ I} is consistent.

If any of these conditions is satisfied, then for all A ⊆ B ⊂ X and
a ∈ X the type tp(a/B) does not divide over A if and only if

D(tp(a/B),Φ,Ψ) = D(tp(a/A),Φ,Ψ)

for all (Φ,Ψ). Moreover, Extension holds on X: For any partial X-
type π(x) over B, if π does not divide over A then it has a completion
which does not divide over A.

Proof: (1) ⇒ (2) Clearly, if tp(a/bcd) does not divide over b, it does not
divide over bc and tp(a/bc) does not divide over b. Conversely, suppose
that tp(a/bcd) does not divide over bc and tp(a/bc) does not divide
over b. By symmetry, tp(d/abc) does not divide over bc and tp(c/ab)
does not divide over b. By Fact 4.5 tp(cd/ab) does not divide over b,
so again by symmetry tp(a/bcd) does not divide over b.

(2) ⇒ (4) Suppose there is a partial X-type Φ and an inconsistency
witness Ψ for Φ such that D(x = x,Φ,Ψ) = ∞. This means that for
all n < ω there are

(bi, a
j
i : i < n, j < ω)

such that |= Ψ(ā) for all i < n and ā ⊂ (aji : j < ω) of the right length,

bi |=
∧

k≤iΦ(x, a
0
k), and (aji : j < ω) is indiscernible over {bka

0
k : k < i}.
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By Ramsey’s Theorem and compactness we may assume that i is in-
dexed by {±(1 + 1

n
) : n > 0} and that the sequence (bia

0
i )i is in-

discernible. Put I = {bia
0
i : i < −1} and J = {bia

0
i : i > 1}. Then

tp(b1/IJ) does not divide over I and tp(b1/IJa−1) does not divide over
IJ , since the former is finitely satisfiable in I and the latter in J . How-
ever, (aj−1 : j < ω) witnesses that Φ(x, a−1), and hence tp(b1/IJa−1),
divides over I, contradicting transitivity.

(4) ⇒ (3) Assume (4). First, we note that for A ⊆ B ⊂ X , if

D(tp(a/B),Φ,Ψ) = D(tp(a/A),Φ,Ψ)

for all (Φ,Ψ), then tp(a/B) does not divide over A. This is obvious,
as if some A-indiscernible sequence (Bi : i < ω) in tp(B/A) witnesses
dividing, we can take Φ(x, y) = tp(a, B) and Ψ = tp(B1, B2, . . . , Bn)
for n < ω sufficiently large. Then Ψ is an n-inconsistency witness
(clearly, we may restrict to countable B), and

D(tp(a/B),Φ,Ψ) < D(tp(a/A),Φ,Ψ).

Given tp(a/A) it is hence enough to take A0 ⊆ A big enough such that

D(tp(a/A),Φ,Ψ) = D(tp(a/A0),Φ,Ψ)

for all (Φ,Ψ). There are only 2|T | such pairs, so we need at most that
many parameters.

(3) ⇒ (4) Suppose D(x = x,Φ,Ψ) = ∞. Then for any cardinal κ we
can find an indiscernible sequence (aibi : i ≤ κ+) as in (2) ⇒ (4), such
that bκ+ |=

∧
i≤κ+ Φ(x, ai) and Φ(x, ai) divides over {aj : j < i} for all

i ≤ κ+. Then tp(bκ+/ai : i < κ+) divides over any subset of its domain
of cardinality ≤ κ.

(4) ⇒ (5). Assume (4). Given a ∈ X and A ⊆ B ⊂ X , for any pair
(Φ,Ψ) and any formula ϕ(y) we can adjoin either ∃y [xEy ∧ ϕ(y)] or
∃y [xEy∧¬ϕ(y)] and preserve D(.,Φ,Ψ)-rank. By compactness we can
thus complete tp(a/A) to a type p over B of the same D(.,Φ,Ψ)-rank.
In particular, no Φ-instance in p divides over A with Ψ as inconsistency
witness. Coding finitely many pairs (Φi,Ψi : i < n) in a single one, one
obtains an extension such that no Φi-instance Ψi-divides for any i < n;
by compactness we can do this for all pairs (Φ,Ψ) simultaneously and
obtain an extension which does not divide over A. Taking for B a
sufficiently saturated model, a sequence (ai : i < ω) ⊂ B such that
ai |= p ↾(A,aj :j<i) is a Morley sequence in tp(a/A).

This shows in particular that if π(x,B) does not divide over A, then
there is a Morley sequence I in tp(B/A) such that {π(x,B′) : B′ ∈ I}
is consistent.
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Conversely, suppose that π(x,B) divides over A, as witnessed by an
A-indiscernible sequence (Bi : i < ω) in tp(B/A) with

⋃
i<ω π(x,Bi)

inconsistent. Take any Morley sequence I in tp(B/A). By [5, Corollary
2.2.8] (which is shown there for real tuples, but transfers easily to
hyperimaginaries) we may assume that Bî I is A-conjugate to I for
all i ∈ I and that (Bi : i < ω) is indiscernible over AI. If π̄(x) =⋃

B′∈I π(x,B
′) were consistent, then (Bi : i < ω) would witness that

D(π̄(x) ∧ π(x,B0), π(x, y),Ψ) < D(π̄(x), π(x, y),Ψ)

for some inconsistency witness Ψ. But by A-conjugacy the two ranks
must be equal, a contradiction.

(5) ⇒ (1) Let us first show Extension. If A ⊆ B ⊂ X and π(x,B)
is a partial X-type which does not divide over A, let (Bi : i < α)
be a very long Morley sequence in tp(B/A). Consider any realization
a |=

∧
i<α π(x,Bi). Since α is large, there is an infinite subset J ⊂ α

such that p(aAX) = tp(aABi) is constant for i ∈ J . Then p(xAB)
is a completion of π which does not divide over A, as witnessed by
(Bi : i ∈ J).

Now given a, b, c ∈ X such that tp(a/bc) does not divide over b, let
B ∋ bc be a sufficiently saturated model, and p an extension of tp(a/bc)
to B which does not divide over b. Choose a sequence (ai : i < ω) ⊂ B
such that ai |= p ↾(bc,aj :j<i). This is a Morley sequence in tp(a/bc) over
b. Then (ai : i < ω) is a Morley sequence in tp(a/b), and ai |= tp(a/bc)
for all i < ω. Hence tp(c/ba) does not divide over b, and symmetry
holds.

Finally we show that if (1)− (5) hold and tp(a/B) does not divide
over A for A ⊆ B ⊂ X and a ∈ X , then D(tp(a/A),Φ,Ψ) ≥ n implies
D(tp(a/B),Φ,Ψ) ≥ n for all (Φ,Ψ). For n = 0 this is obvious. So sup-
pose D(tp(a/A),Φ,Ψ) ≥ n+1. Then there is (di : i < ω) indiscernible
over A such that d̄ |= Ψ for all d̄ ⊂ (di : i < ω) of the right length, and
D(tp(a/A) ∧ Φ(x, di),Φ,Ψ) ≥ n for all i < ω. Let q be a completion
of tp(a/A) ∧ Φ(x, d0) with D(q,Φ,Ψ) ≥ n. Clearly, we may assume
a |= q, and that tp(d0/aB) does not divide over aA. As tp(a/B) does
not divide over A, by symmetry and transitivity tp(ad0/B) does not
divide over A, and tp(a/d0B) does not divide over d0A. By induction
hypothesis,

D(tp(a/d0A),Φ,Ψ) ≥ n implies D(tp(a/d0B),Φ,Ψ) ≥ n.
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As tp(d0/B) does not divide over A and (di : i < ω) is A-indiscernible,
we may assume that it remains indiscernible over B. But then it wit-
nesses

D(tp(a/B),Φ,Ψ) ≥ D(tp(a/d0B),Φ,Ψ) + 1 ≥ n + 1. �

Definition 4.7. An A-hyperdefinable set X is simple (over A) if it
satisfies any of the conditions of Theorem 4.6 when we adjoin A to the
language. If X is simple over A and a, b, c ∈ X , we shall say that a
and c are independent over Ab, written a |⌣Ab

c, if tp(a/Abc) does not
divide over Ab.

Note that we only allow tuples and parameters from A ∪X . If X is
stably embedded, we can of course allow parameters from anywhere.

Remark 4.8. If X is merely hyperdefinable, it may be simple although
no definable or even type-definable imaginary set in the ambient struc-
ture is simple.

If X is simple, it is now standard to extend the notions of divid-
ing and independence to hyperimaginaries in Xheq. Moreover, we can
develop basic simplicity theory (canonical bases, the independence the-
orem, stratified ranks, generic types, stabilizers, see [5]) within Xheq,
replacing the notion of a model by a boundedly closed subset C of Xheq

such that Xheq-types over C are finitely satisfiable in C.

Proposition 4.9. Let X and Y be orthogonal ∅-hyperdefinable sets
such that X is simple over ∅. If A ⊂ Y is a set of parameters, then
X is simple over A, and over bddY (A). In particular, let Z be a set
hyperdefinable over some parameters A ⊂ X ∪ Y . If Z is X-internal
within X ∪ Y , then Z is simple over A; if Z ⊆ (X ∪ Y )heq is almost
X-internal, then Z is simple as well.

Proof: Simplicity over A is obvious from orthogonality; simplicity over
bddY (A) follows. Now if Z is X-internal within X ∪ Y , it lives in
dcleq(X, bddY (A)) by Corollary 3.2, and must be simple as well; if
Z ⊆ (X ∪ Y )heq is almost X-internal within X ∪ Y , it is X-internal
within bddY (∅) by Corollary 3.5. �

5. Groups interpretable in orthogonal sets

Recall that two hyperdefinable subgroups H1 and H2 of some group
G are commensurable if H1 ∩H2 has bounded index both in H1 and in
H2.
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Theorem 5.1. Suppose X and Y are orthogonal ∅-hyperdefinable sets
in a structure M, and G is an ∅-hyperdefinable group in (X ∪ Y )heq.
If X is simple over ∅, there is an ∅-hyperdefinable normal X-internal
subgroup N of G such that the quotient G/N is Y -internal. N is unique
up to commensurability.

Proof: Let us first show uniqueness: If N ′ is a second such group,
then N/(N ∩N ′) and N ′/(N ∩N ′) are X-internal and Y -internal, and
hence bounded by orthogonality of X and Y . Thus N and N ′ are
commensurable.

By Theorem 2.2 every element g ∈ G is of the form (gX , gY )E for
some gX ∈ Xheq and gY ∈ Y heq, both bounded over g, and some type-
definable equivalence relation E with bounded classes, depending on
tp(g). Hence tp(g/gY ) is X-internal and tp(g/gX) is Y -internal. Now
if h = (hX , hY )E and gh = ((gh)X, (gh)Y )E , then

(gh)X ∈ bdd(gX , gY , hX , hY ),

whence (gh)X ∈ bdd(gX , hX) by Corollary 1.7. Similarly (gh)Y ∈
bdd(gY , hY ).

Now X is simple, as is tp(g, h/gY , hY ) for any g, h ∈ G. Hence we
can consider g, h ∈ G such that g |⌣gY ,hY

h. Then for any stratified

local rank D

(†)
D(gh/(gh)Y ) ≥ D(gh/(gh)Y , gY , hY , g) = D(h/gY , hY , g)

= D(h/gY , hY ) = D(h/hY ),

as also h |⌣hY
gY by orthogonality (Example 4.2). Similarly

D(gh/(gh)Y ) ≥ D(g/gY ).

Now suppose G is a subset of (Xm × Y n)/E, where m,n are at most
countable. Then if g = (x̄g, ȳg)E we have g |⌣gY

ȳg, and gY ∈ bdd(ȳg),

whenceD(g/gY ) = D(g/ȳg). By compactness, there is aG-type p((x̄, ȳ)E)
implying thatD((x̄, ȳ)E/ȳ) is maximal for all local stratified ranks. But
if g, h |= p with g |⌣gY ,hY

h, then we must have equality in (†), which

implies that g, h and gh are pairwise independent over gY , hY , (gh)Y .
Put

S = stab(g/gY , hY , (gh)Y ).

By [3, Lemme 1.2 and Remarque 1.3] the element g is generic in the
coset Sg, and this coset is hyperdefinable over bdd(gY , hY , (gh)Y ).
Moreover, S is X-internal since tp(g/gY ) is.
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Suppose that S is not commensurable with Sh for some h ∈ G. Then
SSh is still X-internal, with

D(SSh) ≥ D(S) = D(p)

for every stratified local rank D, and for at least one such rank D0 we
have D0(SS

h) > D0(p). Choose g′ ∈ SSh with D0(g
′/h) = D0(SS

h).
By pre-multiplying with a generic element of S and post-multiplying
with a generic element of Sh, the inequality (†) implies that we may
assume D(g′/h) ≥ D(p) for every stratified local rank D. However,
tp(g′/h) is X-internal, so g′Y ∈ bdd(g′) implies g′Y ∈ bdd(h) by Lemma
1.7 and Proposition 3.2. Thus

D(g′/g′Y ) ≥ D(g′/h) ≥ D(p) and D0(g
′/g′Y ) ≥ D0(g

′/h) > D0(p),

contradicting our choice of p. Hence S is commensurable with all its
conjugates, and the locally connected component N of S is normal in G
[5, Definition 4.5.15 and Corollary 4.5.16]. In fact the same proof, with
NZ instead of SSh, shows that if Z is an X-internal hyperdefinable
subset of G, then Z is covered by boundedly many cosets of N . In
particular for any g′ ∈ G the type tp(g′/g′Y ) is covered by boundedly
many cosets of N . But then g′N ∈ bdd(g′Y ), and G/N is almost Y -
internal, whence Y -internal by Corollary 3.5. �

Question 5.2. If X and Y are orthogonal type-definable sets and G
is a relatively definable group in (X ∪ Y )eq, can we find a relatively
definable normal X-internal subgroup N such that G/N is Y -internal?

Question 5.3. What can we say if neither X nor Y is simple? Is it true
that in every hyperdefinable subgroup of ((X∪Y )heq there is a maximal
normal hyperdefinable X-internal subgroup NX , a maximal normal
hyperdefinable Y -internal subgroup NY , an X-internal hyperdefinable
local group GX , a Y -internal hyperdefinable local group GY and a
hyperdefinable locally bounded equivalence relation E on GX×GY such
that G/(NXNY ) is isogenous, or even isomorphic, to (GX ×GY )/E ?
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